Supporting Information

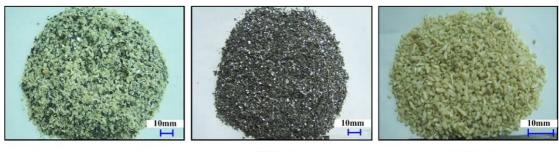
Environmental friendly crush-magnetic separation technology

for recycling metal-plated plastics from end-of-life vehicles

Mianqiang Xue, Ji Li, Zhenming Xu*

School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China Corresponding author phone: +86 21 54747495; Fax: +86 21 54747495; e-mail: zmxu@sjtu.edu.cn

Supporting Information Content


3 pages (including the cover page)

3 Figures

FIGURE S1. Liberation characteristics of MPP

FIGURE S2. The effect of steps on the separation efficiency

FIGURE S3. The average annual value of crushed ABS (2010-12-1 ~ 2011-11-30)

(a) Comminuted materials

(b) Coatings

(c) Plastics

FIGURE S1. Liberation characteristics of MPP

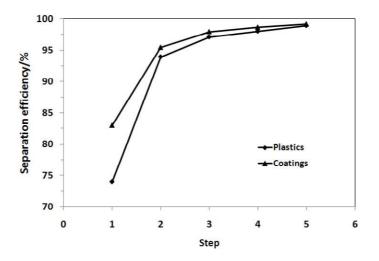


FIGURE S2. The effect of steps on separation efficiency

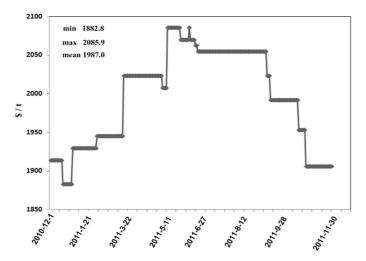


FIGURE S3. The average annual value of crushed ABS (2010-12-1 ~ 2011-11-30) (All the value of each day comes from the website: http://www.recyclechina.com/)

Profit Calculation

Nomenclature

RE	the revenue
RE _p	the revenue of plastics
RE _c	the revenue of coatings
W	mass fraction
0	recycling rate
CO	cost
CO _e	cost of equipments
COs	cost of salary
CO _r	cost of raw materials
CO _p	cost of electric power
CO _d	cost of depreciation
COm	cost of maintenance
WH	working hours a year
PC	production capacity
PR	profit

(1)
$$RE_p = 1t \times W_p \times O_p \times \$1987.0/t = 1t \times 0.86 \times 0.79 \times \$1987.0/t = \$1350.0$$

$$RE_{c} = 1t \times W_{c} \times O_{c} \times \$2484.5/t = 1t \times 0.14 \times 0.82 \times \$2484.5/t = \$285.2$$

$$RE = RE_p + RE_c = \$1350.0 + \$285.2 = \$1635.2$$

(2)
$$CO_s = \frac{\$1.62/h \times 4}{PC} = \frac{\$1.62/h \times 4}{0.6t/h} = \$10.8/t$$

 $CO_d = \frac{CO_e}{WH \times PC} = \frac{\$38819}{10 \times 250 \times 8h \times 0.6t/h} = 3.2\$/t$
 $CO = CO_s + CO_r + CO_p + CO_d + CO_m = \$10.8 + \$1187.5 + \$15 + \$3.2 + \$0.8 = \$1217.3$

(3)
$$PR = RE - CO = \$1635.2 - \$1217.3 = \$417.9$$