Supporting Information for

A Crystalline Phosphaalkene Radical Anion

Xiaobo Pan,[†] Xingyong Wang,[†] Yue Zhao,[†] Yunxia Sui,[‡] and Xinping Wang[†]*

[†]State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. [‡]Centre of Modern Analysis, Nanjing University, Nanjing 210093, China.

E-mail: xpwang@nju.edu.cn

Contents

Experimental Section	S2
Table S1. Crystal data and structure refinement	S2
Figure S1. Cyclic voltammogram of 1	S4
Table S2. Experimental and calculated structural parameters	S5
Figure S2. HOMO (a) and LUMO (b) of 1	S6
Table S3. Selected Mulliken atomic spin densities for some atoms in 1^{-}	S7
Table S4. Experimental EPR parameters	S8
Figure S3. Calculated absorption spectrum of 1 ⁻	S9
Figure S4. Thermal ellipsoid drawing of $[K(THF)_4]^+ \cdot [\mathbf{1H}]^-$	S10
Table S5. Experimental and calculated structural parameters for anion [1H] ⁻	S11
Computational details	S12
Coordinates for optimized geometries of	S13

Experimental Section

All experiments were carried out under a nitrogen atmosphere by using standard Schlenk techniques and a glovebox. Solvents were dried prior to use. The phosphaalkene **1** was synthesized according to literature methods.^{s1} Cyclic voltammetry was performed on an IM6ex electrochemical workstation with platinum as the working and a saturated calomel electrode as reference. Freshly distilled THF was used as a solvent and ⁿBu₄NPF₆ (10⁻¹M) was used as electrolyte. EPR spectra were obtained using Bruker EMX-10/12 variable-temperature apparatus. UV-Vis spectra were recorded on Lambda 750 spectrometer. Element analyses were performed at Shanghai Institute of Organic Chemistry, the Chinese Academy of Sciences. X-ray crystal structures were obtained by using Bruker APEX DUO CCD detectors. CCDC-1007154 ([Li(DME)₃]⁺·1⁻) and 1006489 ([K(THF)₃]⁺·1⁻) contain the supplementary crystallographic data for this paper.

	$[K(THF)_3]^+ \cdot 1^{-}$	$[Li(DME)_3]^+ \cdot 1^{-}$	$[K(THF)_4]^+ \cdot [\mathbf{1H}]^-$
formula	C ₅₅ H ₈₅ KO ₄ P	C ₅₁ H ₈₃ LiO ₆ P	$C_{55}H_{86}KO_4P$
Mr [g mol ⁻¹]	880.30	830.08	881.31
crystal system	Orthorhombic	Triclinic	Monoclinic
space group	Pna2(1)	P-1	P2(1)/n
Z	4	2	4
μ (mm ⁻¹)	0.174	0.098	0.173
a (Å)	33.185(3)	11.2419(12)	9.996(3)
b (Å)	10.8157(9)	11.4340(12)	20.129(6)
c (Å)	14.5739(12)	20.378(2)	26.154(8)
α (°)		88.2750(10)	
β (°)		89.862(2)	93.930(5)
γ (°)		76.552(2)	
V [Å ³]	5230.8(7)	2546.4(5)	5250(3)
R1 (I>2σ(<i>I</i>))	0.0441	0.0473	
wR2 (all data)	0.1039	0.1110	

Table S1. Crystal Data and Structure Refinement

S1. Decken, A.; Claire, J. C.; Clyburne, J. A. C.; Cowley, A. H. Inorg. Chem. 1997, 36, 3741.

Synthesis of [Li(DME)₃]⁺·1⁻:

Under anaerobic and anhydrous conditions, a mixture of phosphaalkene **1** (0.138 g, 0.250 mmol) and excess lithium (0.013 g, 1.85 mmol) in DME (\approx 30 mL) was stirred at room temperature for 1 day. The resultant purple solution was filtered and the filtrate was then concentrated and stored at -30 °C for 1 day in glovebox to afford purple X-ray-quality crystals of phosphaalkene radical anion salts. Yield: 0.116 g, 56.0 %; m.p.: 65 °C, turn yellow; UV-Vis (DME): $\lambda_{max} = 578$, 504 and 366 nm; elemental analysis calcd (%): C, 73.78; H, 10.10; found: C 73.64, H 10.61.

Synthesis of [K(THF)₃]⁺·1⁻:

Under anaerobic and anhydrous conditions, a mixture of phosphaalkene **1** (0.165 g, 0.298 mmol) and excess potassium (0.034 g, 0.870 mmol) in THF (\approx 50 mL) was stirred at room temperature for 1 day. The resultant purple solution was filtered and the filtrate was then concentrated and stored at around -20 °C for 1 day to afford purple X-ray-quality crystals of phosphaalkene radical anion salts. Yield: 0.097 g, 36.7 %; m.p.: 78 °C, turn yellow; UV-vis (THF): $\lambda_{max} = 572$, 502 and 366 nm. [K(THF)₃]⁺·1⁻ gradually decomposes in the solid state in the glove box with the color changes from purple to pale yellow, which together with solvates prevents accurate elemental analysis.

E(V)**Figure S1.** Cyclic voltammogram of **1** (1×10⁻³ M) in THF, containing 0.1 M ⁿBu₄NPF₆, measured at 100 mV s⁻¹ at 25 °C.

Experimental			
	1 ^{S1}	$[K(THF)_3]^+ \cdot 1^-$	$[\text{Li}(\text{DME})_3]^+ \cdot 1^{-1}$
P1C1 (Å)	1.681	1.757(3)	1.754(2)
P1-C22 (Å)	1.850	1.854(3)	1.871(2)
C1-C2 (Å)	1.482	1.452(5)	1.448(3)
C1-C5 (Å)	1.484	1.420(4)	1.452(3)
C2-C3 (Å)	1.404	1.432(5)	1.430(3)
C3-C4 (Å)	1.458	1.427(5)	1.445(3)
C4-C5 (Å)	1.400	1.435(5)	1.430(3)
C22-C27 (Å)	1.426	1.417(5)	1.431(3)
C22-C23 (Å)	1.421	1.450(4)	1.440(3)
C23-C24 (Å)	1.388	1.374(4)	1.397(3)
C24-C25 (Å)	1.376	1.388(5)	1.385(3)
C25-C26 (Å)	1.382	1.370(5)	1.386(3)
C26-C27 (Å)	1.387	1.401(4)	1.403(3)
∠C1–P1–C22 (°)	107.0	105.91(14)	106.90(10)
∠C2–C1–P1 (°)	136.1	134.5(2)	134.58(16)
∠C5–C1–P1 (°)	119.2	119.9(2)	120.16(16)
		Calculated	
	1	$[K(THF)_3]^+ \cdot 1^{-}$	1-
P1–C1 (Å)	1.693	1.771	1.765
P1–C22 (Å)	1.854	1.871	1.875
C1-C2 (Å)	1.472	1.445	1.444
C1-C5 (Å)	1.482	1.450	1.448
C2-C3 (Å)	1.416	1.438	1.435
C3-C4 (Å)	1.460	1.442	1.442
C4-C5 (Å)	1.407	1.429	1.425
C22-C27 (Å)	1.425	1.428	1.429
C22-C23 (Å)	1.430	1.432	1.433
C23-C24 (Å)	1.396	1.396	1.398
C24-C25 (Å)	1.392	1.392	1.391
C25-C26 (Å)	1.388	1.388	1.387
C26-C27 (Å)	1.401	1.403	1.403
∠C1–P1–C22 (°)	107.7	106.5	106.4
∠C2–C1–P1 (°)	135.2	135.0	135.2

 Table S2. Experimental and Calculated Structural Parameters for Phosphaalkene 1 and related Species.

S1. Decken, A.; Claire, J. C.; Clyburne, J. A. C.; Cowley, A. H. Inorg. Chem. 1997, 36, 3741.

Figure S2. HOMO (a) and LUMO (b) of 1 calculated at the PBE0/6-31G(d) level.

P1	0.594
C2	0.108
C3	-0.003
C4	0.074
C5	0.050
C6	0.022
C7	0.042
C9	-0.016
C10	0.070
C12	-0.035
C14	-0.050
C16	0.094
C18	-0.027
C19	0.067
C47	-0.016
C56	0.013
C86	0.012

Table S3. Selected Mulliken atomic spin densities for some atoms in 1^{-}

Radical species	Isotropic coupling	g and hyperfine tensors	Phosphorus spin densities
$[K(THF)_3]^+ \cdot 1^{-}$	g = 2.0062,	$g_{//} = 2.0045, a_{//}(^{31}\text{P}) = 211 \text{ G};$	$\rho_{\rm s}({\rm P}) = 1.62$ %
	<i>a</i> = 80.4 G	$g \perp = 2.0087, a \perp (^{31}\text{P}) = 10.2 \text{ G}$	$\rho_p(P) = 51.09 \%$
$[Li(DME)_3]^+ \cdot 1^{-}$	g = 2.0062,	$g_{//} = 2.0038, a_{//}(^{31}\text{P}) = 211.5 \text{ G};$	$\rho_{s}(P) = 1.60 \%$
	<i>a</i> = 79.3 G	$g \perp = 2.0091, a \perp (^{31}\text{P}) = 8.9 \text{ G}$	$\rho_p(P) = 51.37 \%$
2 ^{•–} , Ref.S2	g = 2.005,	$g_{//} = 2.003, a_{//}(^{31}\text{P}) = 162 \text{ G};$	$\rho_{s}(P) = 1.17 \%$
	<i>a</i> = 54.1 G	$g \perp = 2.006, a \perp (^{31}\text{P}) = 2.20 \text{ G}$	$\rho_p(P) = 40.7 \%$
3 [•] , Ref.S3	<i>g</i> = 2.0049,	$g_{//} = 1.9986, a_{//}(^{31}\text{P}) = 215 \text{ G};$	$\rho_{s}(P) = 1.60 \%$
	<i>a</i> = 77.6 G	$g \perp = 2.0075, a \perp (^{31}\text{P}) = 10.5 \text{ G}$	$\rho_p(P) = 52.0 \%$
4 ^{•–} , Ref.S4	<i>g</i> = 2.0039,	$g_{//} = 2.0018, a_{//}(^{31}\text{P}) = 249 \text{ G};$	$\rho_{s}(P) = 1.90 \%$
	<i>a</i> = 89.7 G	$g \perp = 2.005, a \perp (^{31}\text{P}) = 9.97 \text{ G}$	$\rho_p(P) = 61.0 \%$
5 [•] , Ref.S4	g = 2.0059,	$g_{//} = 2.0030, a_{//}(^{31}\text{P}) = 217 \text{ G};$	$\rho_{\rm s}({\rm P}) = 1.60 \%$
	<i>a</i> = 78.7 G	$g \perp = 2.0104, a \perp (^{31}\text{P}) = 7.83 \text{ G}$	$\rho_{\rm p}({\rm P}) = 53.0$ %

Table S4. Experimental EPR parameters and spin densities obtained for the radical anions of 1-5

S2. Geoffroy, M.; Jouaiti, A.; Terron, G.; Cattani-Lorente, M. J. Phys. Chem. 1992, 96, 8241.

S3. Gouverd, C.; Brynda, M.; Berclaz, T.; Geoffroy, M. J. Organomet. Chem. 2006, 691, 72.

S4. Badri, A. A.; Chentit, M.; Geoffroy, M.; Jouaiti, A. J. Chem. Soc., Fara. Trans. 1997, 93, 3631.

Figure S3. Calculated absorption spectrum of 1^{-} .

Figure S4. Thermal ellipsoid (50%) drawing of $[K(THF)_4]^+ \cdot [1H]^-$. Except for H1, all other H atoms have been omitted for clarity.

	$[K(THF)_4]^+ \cdot [\mathbf{1H}]^-$	[1H] ⁻ (Calculated)
P1–C1 (Å)	1.766(11)	1.788
P1-C22 (Å)	1.873(11)	1.904
∠C-P-C (°)	104.9(5)	107.7

Table S5. Experimental and Calculated Structural Parameters for Anion $[1H]^-$

Computational details

All the geometry optimizations were carried out at the (U)PBE0/6-31G(d) level of theory. The obtained stationary points were characterized by frequency calculations. The molecular orbitals and spin densities were calculated at the level of (U)PBE0/6-31G(d) at the optimized geometries. The UV-vis absorption spectrum was calculated using time-dependent DFT (TD-DFT) method and polarized continuum model (PCM) was adopted to consider solvent (THF) effects. All calculations were performed with the Gaussian 09 program suite.

Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kieth, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J., Gaussian, Inc., Wallingford CT, 2010.

Coordinates for optimized geometries:

1			
Р	-0.87692800	-1.51017300	-0.00067000
С	-3.97941700	-0.55911800	-0.01704500
Н	-3.78019900	-1.62593800	-0.03170400
С	-5.29441800	-0.08590200	-0.00813200
С	-5.49866500	1.30527700	0.01172200
Н	-6.51350200	1.69458600	0.01989300
С	-4.44192000	2.20844200	0.02038400
Н	-4.63887300	3.27769200	0.03496600
С	-1.51682600	3.74352800	0.02104000
Н	-2.28983900	4.50804900	0.03672500
С	-0.17130900	4.11513500	0.01086000
Н	0.06919200	5.17313100	0.01989700
С	0.85780700	3.16723400	-0.01271800
С	0.50919300	1.80691900	-0.02154400
Н	1.28669200	1.05167000	-0.04077400
С	-1.44897200	0.08365400	-0.01167200
С	-3.14004000	1.72167200	0.00929900
С	-1.84693800	2.39868000	0.00952000
С	-0.82573500	1.41775300	-0.00833000
С	-2.90952500	0.33407200	-0.00809200
С	-6.50524700	-1.02269600	-0.02060900
С	-7.35347000	-0.77859500	1.23823600
Н	-7.71728300	0.25296600	1.29099800
Н	-6.77124800	-0.97450400	2.14551500
Н	-8.22773600	-1.44113600	1.24348000
С	-7.35553500	-0.74152400	-1.27032600
Н	-7.71987000	0.29098500	-1.29176800
Н	-8.22942700	-1.40415900	-1.29398500
Н	-6.77454500	-0.91001900	-2.18388600
С	-6.09952200	-2.49873600	-0.04287500
Н	-6.99779000	-3.12639300	-0.05146700
Н	-5.51251300	-2.77390100	0.84075200
Н	-5.51416500	-2.74735300	-0.93541800
С	2.33747600	3.55965400	-0.04050000
С	2.97504100	3.02895800	-1.33518200
Н	2.48223100	3.45740500	-2.21546400
Н	2.90338600	1.93823800	-1.40474300
Н	4.03800500	3.29812100	-1.37531000
С	2.54010700	5.07629700	0.00494500
Н	2.08486400	5.57536200	-0.85819500
Н	3.61177500	5.30456400	-0.01093200

Н	2.12220000	5.51610100	0.91784800
С	3.05547700	2.94486700	1.17218300
Н	2.62555600	3.31617600	2.10959000
Н	4.12001000	3.21124700	1.15782500
Н	2.98364100	1.85201800	1.17798400
С	0.97561700	-1.44400000	0.01722500
С	1.67907400	-1.43829100	1.25679400
С	3.07392200	-1.30883800	1.22321000
Н	3.61197900	-1.27572500	2.15882200
С	3.80585600	-1.23274800	0.04620700
С	3.09656700	-1.34537800	-1.14674800
Н	3.66233700	-1.34772700	-2.06902400
С	1.70753700	-1.47095900	-1.21049800
С	1.02606300	-1.59975200	2.65621500
С	0.15039000	-2.86352200	2.70618600
Н	0.74002000	-3.75407700	2.46055800
Н	-0.70007900	-2.82545500	2.01789500
Н	-0.25849300	-2.99078600	3.71562400
С	2.07723700	-1.78895400	3.76444700
Н	2.73542400	-2.64389100	3.57321400
Н	1.55521600	-1.97909300	4.70839500
Н	2.69448200	-0.89636500	3.91536700
С	0.20982000	-0.35893700	3.05727500
Н	0.82727500	0.54457400	3.00369800
Н	-0.14029000	-0.46917300	4.09101200
Н	-0.66591300	-0.20512000	2.42612700
С	5.33102500	-1.10350400	0.02093500
С	5.93297800	-2.37066100	-0.60919300
Н	5.58227400	-2.51898100	-1.63600200
Н	5.66289500	-3.26132800	-0.03091500
Н	7.02720800	-2.29919000	-0.63569000
С	5.92577600	-0.93532000	1.42182700
Н	5.53103800	-0.04555400	1.92585400
Н	7.01299200	-0.81977100	1.34753200
Н	5.73185600	-1.80668400	2.05752800
С	5.73532200	0.12026300	-0.81637000
Н	5.37299700	0.05105700	-1.84742600
Н	6.82787500	0.20819400	-0.85359500
Н	5.33355100	1.04225000	-0.38191300
С	1.08137000	-1.66296300	-2.61744100
С	0.27816100	-0.42791900	-3.05888600
Н	-0.59706200	-0.24644400	-2.43402100
Н	-0.07098900	-0.56604100	-4.08957800
Н	0.90436900	0.47081000	-3.03146700

С	0.20115400	-2.92398700	-2.65609800
Н	0.77966400	-3.81025000	-2.37160100
Н	-0.18240900	-3.07650800	-3.67194000
Н	-0.66651600	-2.86351800	-1.99136300
С	2.15310900	-1.88035600	-3.70019500
Н	2.80150000	-2.73552100	-3.47859700
Н	2.77921800	-0.99467600	-3.85561400
Н	1.64967600	-2.08580300	-4.65096700

1			
Р	-0.88427800	-1.56613900	-0.01810500
С	-1.48350400	0.09427000	-0.01289100
С	-0.87397600	1.40333200	-0.00345100
С	-1.89967800	2.40641200	0.01228000
С	-3.17347200	1.73158900	0.00910800
С	-2.91229600	0.33041400	-0.00746100
С	-3.99424000	-0.56863700	-0.01539100
Н	-3.78187500	-1.63363600	-0.02817000
С	-5.30682800	-0.10760300	-0.00774300
С	-5.53854500	1.28788700	0.00993400
Н	-6.55948300	1.66495600	0.01681900
С	-4.48814900	2.19494700	0.01831300
Н	-4.69559300	3.26448700	0.03174000
С	-1.56069000	3.75485700	0.02617000
Н	-2.33954000	4.51673100	0.03971400
С	-0.22263800	4.13732400	0.02224400
Н	0.01659400	5.19638000	0.03352900
С	0.80711300	3.17559900	0.00261800
С	0.46715100	1.82149900	-0.00972700
Н	1.25183800	1.07194000	-0.02685200
С	2.28927300	3.57041500	-0.01943900
С	3.01160900	2.95482400	1.19010400
Н	2.57615400	3.32125200	2.12728600
Н	4.07825400	3.22127900	1.18079400
Н	2.93496000	1.86274000	1.19134500
С	2.93789900	3.04985900	-1.31255000
Н	4.00278500	3.31992700	-1.35092800
Н	2.44329700	3.48064000	-2.19115700
Н	2.86165700	1.96014500	-1.38626900
С	2.49433300	5.08709100	0.03338000
Н	2.06727600	5.52060200	0.94526200

Н	2.03722200	5.58761100	-0.82814300
Н	3.56712100	5.31797700	0.02283500
С	-6.50894600	-1.05759600	-0.01916100
С	-6.09282800	-2.53069200	-0.03891400
Н	-5.49814400	-2.79335000	0.84292900
Н	-5.49960200	-2.76980500	-0.92840000
Н	-6.98524800	-3.16962400	-0.04671900
С	-7.36544400	-0.79152900	-1.26800500
Н	-6.77933000	-0.95997300	-2.17852400
Н	-7.72884400	0.24126200	-1.29445600
Н	-8.23853100	-1.45846800	-1.29183000
С	-7.36407900	-0.82455400	1.23714600
Н	-8.23765200	-1.49123600	1.24392200
Н	-7.72679400	0.20737600	1.29157500
Н	-6.77732000	-1.01769800	2.14232900
С	0.98726900	-1.45524600	0.00776300
С	1.73941100	-1.46053700	-1.21216900
С	3.12968800	-1.33224900	-1.14804900
Н	3.69764700	-1.31317400	-2.06964300
С	3.83711400	-1.22786400	0.04555700
С	3.10105000	-1.31358700	1.21828800
Н	3.63525700	-1.27320000	2.15625100
С	1.70502700	-1.44834000	1.24300800
С	1.05856600	-1.61631300	2.64596700
С	0.31470600	-2.96102200	2.72881200
Н	-0.11141300	-3.08838600	3.73302700
Н	1.00398500	-3.79416300	2.54195700
Н	-0.50110700	-3.01259800	2.00264500
С	2.10332200	-1.65353500	3.77585100
Н	2.65612000	-0.71082400	3.86689100
Н	2.82370500	-2.47271700	3.66032800
Н	1.57743700	-1.81221800	4.72461300
С	0.11670100	-0.45213000	2.99390100
Н	-0.25733100	-0.57800400	4.01917100
Н	-0.73953500	-0.39242600	2.32150400
Н	0.65032200	0.50391200	2.93984800
С	5.36128400	-1.08027800	0.02320800
С	5.95471400	-0.92573100	1.42636100
Н	5.76144300	-1.80580700	2.05039100
Н	5.54906900	-0.04659900	1.93981400
Н	7.04239600	-0.80117200	1.35630500
С	5.98413600	-2.32794900	-0.62453900
Н	7.07851900	-2.24120300	-0.65651400
Н	5.62670500	-2.46856700	-1.65010400

Н	5.72757800	-3.22925100	-0.05605600
С	5.75316000	0.16123700	-0.79358600
Н	6.84555000	0.26800400	-0.82815700
Н	5.33226900	1.06893600	-0.34763200
Н	5.38976300	0.10091300	-1.82471800
С	1.12681300	-1.63317600	-2.62881800
С	2.19794100	-1.67555800	-3.73298500
Н	2.91096600	-2.49853200	-3.59979500
Н	2.75745800	-0.73553600	-3.81037600
Н	1.69483700	-1.83182800	-4.69437100
С	0.38189100	-2.97640600	-2.72528400
Н	-0.45190300	-3.02388400	-2.01958000
Н	1.06466800	-3.81022100	-2.51868000
Н	-0.01947000	-3.10636400	-3.73931600
С	0.19645200	-0.46688200	-3.00076200
Н	-0.16580500	-0.60105500	-4.02918400
Н	0.73577100	0.48626700	-2.95048900
Н	-0.66779000	-0.39457600	-2.33972100

[1H]⁻

С	0.708541	1.582413	0.383910
С	-0.620287	2.013898	0.582531
С	1.276211	3.810560	-0.454850
С	-0.034213	4.208450	-0.243053
С	-1.000663	3.316063	0.287115
С	2.712345	0.478472	0.266383
С	2.927917	1.819535	-0.210597
С	1.671556	2.507443	-0.141402
С	4.206036	2.217114	-0.606999
С	5.091320	0.012811	-0.042059
С	3.822854	-0.391575	0.353651
С	5.269241	1.331000	-0.531021
С	6.308576	-0.914458	0.043579
С	-3.339751	2.754675	1.126381
С	-2.431358	3.819159	0.504716
С	7.364965	-0.297360	0.975050
С	6.918157	-1.098187	-1.356072
С	-2.418374	5.032666	1.449016
С	5.957271	-2.301898	0.586740
С	-3.041481	4.237380	-0.843122
С	-0.994687	-1.565149	-0.986689

С	-2.143712	-1.780803	1.155851
С	-3.360334	-1.608830	0.485759
С	-3.437837	-1.312825	-0.870604
С	-2.243300	-1.348328	-1.579078
С	-4.757707	-1.036422	-1.594720
С	-4.670482	0.307593	-2.334804
С	-5.947071	-0.969476	-0.632314
С	-5.028002	-2.156126	-2.613212
С	-2.236265	-2.173830	2.655510
С	-2.113147	-0.950711	3.581296
С	-3.593475	-2.831354	2.976226
С	-1.179526	-3.231700	3.015275
С	0.154433	-1.785323	-2.003589
С	0.513025	-0.469595	-2.711206
С	1.426270	-2.399697	-1.415307
С	-0.325468	-2.806176	-3.062035
С	1.333543	0.318325	0.605339
Р	0.557537	-1.034150	1.480684
С	-0.918764	-1.627490	0.435372
Н	-4.351362	3.159876	1.259972
Н	-3.411978	1.863023	0.493684
Н	-2.970302	2.437258	2.108232
Н	7.687930	0.686857	0.620074
Н	6.957191	-0.167652	1.984007
Н	8.252074	-0.942854	1.041572
Н	7.220646	-0.140001	-1.791161
Н	6.188750	-1.554396	-2.035019
Н	7.804059	-1.747311	-1.314459
Н	-3.437425	5.411834	1.609265
Н	-1.996931	4.756516	2.422278
Н	-1.812921	5.851530	1.046563
Н	5.219280	-2.806623	-0.046835
Н	6.857993	-2.928375	0.620941
Н	5.549257	-2.245315	1.602202
Н	-4.064293	4.616874	-0.709263
Н	-3.077543	3.383155	-1.529032
Н	-2.448648	5.022501	-1.324620
Н	-5.603460	0.506497	-2.878591
Н	-3.850493	0.318808	-3.059845
Н	-4.501146	1.130923	-1.632373
Н	-6.860870	-0.729656	-1.189598
Н	-6.112764	-1.925100	-0.121447
Н	-5.804789	-0.194418	0.129467
Н	-5.967979	-1.971297	-3.150162

Н	-5.104674	-3.127617	-2.111386
Н	-4.224526	-2.226776	-3.354039
Н	-2.258768	-1.256775	4.626692
Н	-2.883415	-0.209561	3.335115
Н	-1.133333	-0.478004	3.488673
Н	-3.824997	-3.651835	2.286742
Н	-3.553473	-3.243538	3.991704
Н	-4.426659	-2.119996	2.959017
Н	-1.333103	-3.573314	4.047571
Н	-1.260518	-4.101369	2.352339
Н	-0.163921	-2.835131	2.949702
Н	-0.355386	-0.047447	-3.231440
Н	1.299823	-0.646321	-3.456347
Н	0.876150	0.270021	-1.993251
Н	1.198889	-3.272382	-0.791923
Н	2.072689	-2.732222	-2.237723
Н	1.993329	-1.677335	-0.833405
Н	-0.620824	-3.750992	-2.589750
Н	0.496991	-3.016401	-3.756994
Н	-1.169473	-2.453783	-3.662045
Н	1.997516	4.520465	-0.859705
Н	-0.322338	5.228016	-0.492376
Н	6.257577	1.663355	-0.842698
Н	4.373509	3.230601	-0.971637
Н	3.672604	-1.392326	0.749996
Н	-2.280028	-1.202381	-2.654653
Н	-1.344397	1.304884	0.974478
Н	-4.280123	-1.687295	1.049076
Н	1.515422	-2.056400	1.240326

$[K(THF)_3]^+ \cdot \mathbf{1}^{-}$

Κ	1.810209	1.379262	0.211328
Р	-0.54587	-2.11259	0.727266
0	0.970801	3.941267	0.415757
0	4.413595	1.994813	-0.2594
0	2.722448	0.567176	2.649928
С	0.187762	-1.17862	-0.58712
С	-0.26439	-0.12538	-1.46715
С	0.785338	0.212145	-2.39023
С	1.908933	-0.6476	-2.10884
С	1.53908	-1.48603	-1.01239
С	2.460909	-2.44495	-0.54161

Н	2.157935	-3.09805	0.271511
С	3.713698	-2.5848	-1.12815
С	4.056329	-1.73457	-2.20987
Н	5.023022	-1.84626	-2.69582
С	3.171821	-0.78241	-2.69366
Н	3.45424	-0.16321	-3.54441
С	0.598489	1.237693	-3.31738
Н	1.388569	1.49364	-4.02243
С	-0.61109	1.92256	-3.36068
Н	-0.73959	2.7023	-4.10443
С	-1.6675	1.600455	-2.48014
С	-1.47717	0.584569	-1.54359
Н	-2.28346	0.315241	-0.86919
С	-3.02732	2.306043	-2.54933
С	-4.10119	1.284952	-2.96143
Н	-3.86958	0.8548	-3.94247
Н	-5.08624	1.766503	-3.02449
Н	-4.16895	0.461614	-2.24238
С	-3.38923	2.889203	-1.1741
Н	-4.36339	3.393216	-1.21538
Н	-2.64036	3.624999	-0.85495
Н	-3.44818	2.112833	-0.40475
С	-3.04525	3.451268	-3.5659
Н	-2.857	3.095861	-4.58512
Н	-2.29905	4.219425	-3.32844
Н	-4.03015	3.932634	-3.56171
С	4.718266	-3.64897	-0.67385
С	4.19624	-4.48602	0.49685
Н	3.280422	-5.02559	0.232776
Н	3.984225	-3.8669	1.37653
Н	4.94976	-5.22814	0.785441
С	6.028192	-2.97846	-0.22923
Н	5.855686	-2.32237	0.632962
Н	6.468268	-2.37424	-1.03011
Н	6.767641	-3.7344	0.064084
С	5.013789	-4.60299	-1.84336
Н	5.733719	-5.37287	-1.53813
Н	5.434045	-4.07289	-2.70426
Н	4.097318	-5.1027	-2.17551
С	-2.36245	-1.66496	0.748323
С	-2.87308	-0.69182	1.666107
С	-4.21991	-0.33108	1.588603
Н	-4.60424	0.416013	2.271016
С	-5.10986	-0.89059	0.676447

С	-4.61707	-1.90237	-0.13537
Н	-5.30373	-2.3853	-0.81427
С	-3.28429	-2.33851	-0.10965
С	-2.9512	-3.5794	-0.98384
С	-2.40403	-4.71327	-0.09793
Н	-2.21075	-5.60152	-0.71253
Н	-3.134	-4.98543	0.673774
Н	-1.46832	-4.43544	0.394569
С	-4.20097	-4.1632	-1.6686
Н	-4.64094	-3.47552	-2.40041
Н	-4.97628	-4.45712	-0.9515
Н	-3.90293	-5.06495	-2.21481
С	-1.96863	-3.26052	-2.12261
Н	-1.86062	-4.143	-2.76612
Н	-0.97894	-2.98307	-1.76052
Н	-2.3438	-2.43562	-2.73917
С	-6.57251	-0.43799	0.651586
С	-7.37324	-1.1144	-0.46476
Н	-7.42342	-2.20104	-0.3325
Н	-6.94448	-0.90817	-1.45224
Н	-8.40174	-0.73517	-0.46181
С	-7.23123	-0.78842	1.996298
Н	-8.28176	-0.47136	2.00201
Н	-6.72703	-0.29483	2.834125
Н	-7.19888	-1.86875	2.176592
С	-6.64847	1.081367	0.43339
Н	-7.69416	1.41326	0.439412
Н	-6.20696	1.360679	-0.52951
Н	-6.11974	1.634969	1.216522
С	-2.04207	-0.02484	2.793406
С	-2.87641	0.922746	3.670939
Н	-3.70777	0.410091	4.167331
Н	-3.27638	1.773673	3.107088
Η	-2.22904	1.328816	4.457083
С	-1.48989	-1.09998	3.745348
Η	-0.82869	-1.80201	3.23039
Η	-2.31226	-1.66813	4.195009
Н	-0.92235	-0.62563	4.55783
С	-0.90214	0.831219	2.221213
Н	-0.34565	1.312616	3.037382
Н	-1.30143	1.61253	1.56226
Н	-0.21124	0.209039	1.648306
С	0.653027	4.708544	-0.75296
Н	0.164241	4.049163	-1.47773

Н	1.586738	5.086075	-1.19482
С	-0.22666	5.852885	-0.26958
Н	-0.16914	6.730794	-0.9193
Н	-1.27424	5.534292	-0.21718
С	0.327434	6.09484	1.133058
Н	1.252406	6.681143	1.0815
Н	-0.3702	6.614423	1.796018
С	0.62297	4.673096	1.593259
Η	1.456063	4.609921	2.302433
Η	-0.26084	4.210227	2.054104
С	2.977596	1.286359	3.855126
Η	2.042771	1.744416	4.211956
Η	3.692956	2.08777	3.637827
С	3.496286	0.260028	4.852967
Η	3.320139	0.555004	5.891475
Η	4.573686	0.106801	4.717948
С	2.723179	-0.98721	4.429259
Η	3.186592	-1.92157	4.758095
Η	1.700959	-0.95673	4.823585
С	2.708879	-0.84653	2.913422
Η	3.602365	-1.29386	2.456532
Η	1.822058	-1.28347	2.441343
С	4.987826	2.478393	-1.47719
Η	4.236784	2.41565	-2.27302
Η	5.262229	3.533692	-1.34016
С	6.212428	1.610902	-1.74686
Η	6.98989	2.141628	-2.30396
Η	5.922938	0.718659	-2.31252
С	6.631318	1.212958	-0.33291
Η	7.182177	2.028061	0.151892
Η	7.249346	0.311	-0.30131
С	5.276835	1.013402	0.327989
Η	4.882982	0.010094	0.115233
Н	5.278707	1.170029	1.411006