Supporting Information

S1. X-ray data for acetaminophen crystallized from pure ethanol and in the presence of α-lactose monohydrate, D-mannitol, graphite, L-histidine and sodium chloride.

Figure S1. X-ray diffraction data for (a) AAP Form I simulated in Mercury 2.4 (b) AAP from pure ethanol (c) AAP crystallized in the presence of α-lactose monohydrate (d) AAP crystallized in the presence of D-mannitol (e) AAP crystallized in the presence of graphite (f) AAP crystallized in the presence of L-histidine and (g) AAP crystallized in the presence of sodium chloride.

Diffraction pattern simulated in Mercury 2.4 using CIF file found in Cambridge Structural Database (REF Code: HXACAN07).

S2. Optical micrographs of the α-lactose monohydrate and D-mannitol crystals used in the induction time measurements.

Figure S2. Optical micrographs of (a) α-lactose monohydrate and (b) D-mannitol crystals used in the acetaminophen induction time experiments.

S3. EpiCalc epitaxy calculation for (0-11) Form I acetaminophen with (0-11) α lactose monohydrate and (100) Form I acetaminophen with (00-1) D-mannitol.

(a)

(b)

Figure S3. A plot of dimensionless potential energy $\left(\mathrm{V} / \mathrm{V}_{0}\right)$ as a function of orientation angle (θ) for $\mathbf{a})(0-11)$ face of acetaminophen and $(0-11)$ face of α-lactose monohydrate and $\mathbf{b})(100)$ face of acetaminophen and (00-1) of D-mannitol.

The EpiCalc calculations were performed using the following lattice values for the (0-11) and (100) faces of Form I acetaminophen, the ($0-11$) face of α-lactose monohydrate and the ($00-1$) face of D-mannitol:
(0-11) Form I acetaminophen: $\mathrm{a}=14.84 \AA, \mathrm{~b}=7.09 \AA$ and $\beta=96.12^{\circ}$
(100) Form I acetaminophen: $a=11.62 \AA, b=9.23 \AA$ and $\beta=90^{\circ}$
(0-11) α-lactose monohydrate: $\mathrm{a}=15.19 \AA, \mathrm{~b}=9.57 \AA$ and $\alpha=95.85^{\circ}$
(00-1) D-mannitol: $\mathrm{a}=16.9 \AA, \mathrm{~b}=8.69 \AA$ and $\alpha=90^{\circ}$
The acetaminophen overlayer dimensions were 25×25 cells and the orientation angle range tested was 180° with a step size of 0.25°.

S4. EpiCalc epitaxy calculation for the (100) and (0-11) faces of Form I acetaminophen with the (002) face of graphite

(a)

(b)

Figure S4. A plot of dimensionless potential energy $\left(\mathrm{V} / \mathrm{V}_{0}\right)$ as a function of orientation angle (θ) for \mathbf{a}) (100) face of acetaminophen and (002) face of graphite and \mathbf{b}) ($0-11$) face of acetaminophen and (002) of graphite.

The EpiCalc calculations were performed using the following lattice values for the (100) and (0-11) faces of Form I acetaminophen and the (002) face of graphite:
(100) Form I acetaminophen: $\mathrm{a}=11.62 \AA, \mathrm{~b}=9.23 \AA$ and $\beta=90^{\circ}$
(0-11) Form I acetaminophen: $a=14.84 \AA, b=7.09 \AA$ and $\beta=96.12^{\circ}$
(002) graphite: $\mathrm{a}=\mathrm{b}=2.456 \AA$ and $\alpha=120^{\circ}$

The acetaminophen overlayer dimensions were 25×25 cells and the orientation angle range tested was 180° with a step size of 0.25°.

S5. Table displaying the minimum interaction energy and optimal orientation angle between the D-mannitol (00-1) face and acetaminophen (100) face at different interplanar distances

Interplanar distance (A)	Azimuthal Angle (${ }^{\circ}$)	Interaction energy per cell (kcal/mol)
7	90	-0.50
6.8	270	-0.55
6.6	270	-0.61
6.4	270	-0.66
6.2	270	-0.72
6	270	-0.78
5.8	270	-0.83
5.6	90	-0.92
5.4	90	-1.01
5.2	90	-1.11
5	90	-1.24
4.8	90	-1.39
4.6	90	-1.56
4.4	90	-1.72
4.2	75	-1.91
4	25	-2.16
3.8	25	-2.45
3.6	25	-2.77
3.4	25	-3.06
3.2	270	-3.33
3	90	-3.78
2.8	90	-4.28
2.6	90	-4.78
2.4	90	-4.99
2.2	90	-4.85
2	155	-4.84
1.8	270	-5.15
1.6	270	-5.59
1.4	270	-5.61
1.2	270	-4.53
1	260	-1.93
0.8	260	3.94
0.6	260	20.93
0.4	90	57.26
0.2	90	108.45

S6. Table displaying the minimum interaction energy and optimal orientation angle between the α-lactose $(\mathbf{0}-11)$ face and acetaminophen ($0-11$) face at different interplanar distances

Interplanar distance (\AA)	Azimuthal Angel ($\left.{ }^{\circ}\right)$	Interaction energy per cell $(\mathrm{kcal} / \mathrm{mol})$
6	265	-2.00
5.8	265	-2.25
5.6	265	-2.53
5.4	265	-2.84
5.2	265	-3.17
5	265	-3.56
4.8	265	-4.01
4.6	265	-4.53
4.4	265	-5.08
4.2	265	-5.61
4	265	-6.33
3.8	85	-7.20
3.6	85	-8.20
3.4	85	-9.19
3.2	85	-10.21
3	85	-11.31
2.8	85	-12.21
2.6	85	-13.33
2.4	85	-13.84
2.2	85	-12.98
2	265	-10.48
1.8	265	-8.39
1.6	265	-2.10
1.4	265	12.98
1.2	265	45.84
1	265	114.05
0.8	265	247.20
0.6	265	547.61
0.4	265	1200.92
0.2	265	3233.64

