Effect of Crown Ethers on the Ground and Excited State Reactivity of Samarium Diiodide in Acetonitrile

Sandeepan Maity, *Kimberly Choquette, *Robert A. Flowers II**, Edamana Prasad**

§ Department of Chemistry, Lehigh University, Bethlehem, PA 1805, USA

¥ Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

E-mail: rof2@lehigh.edu and pre@iitm.ac.in

Supporting Information

Content	Page No.
1: Absorbance at 545 nm of Sm[15-crown-5] ₂ I ₂ vs time in the presence of	4
benzaldehyde.	
2: Observed rate constant vs concentration of benzaldehyde	4
3: Absorbance at 545 nm of Sm[15-crown-5] ₂ I ₂ vs time in the presence of	5
benzophenone	
4: Observed rate constant vs concentration of benzophenone	5
5: Absorbance at 545 nm of Sm[15-crown-5] ₂ I ₂ vs time in the presence of	6
nitrobenzene.	
6: Observed rate constant vs concentration of of nitrobenzene.	6
7: Absorbance at 545 nm of Sm[15-crown-5] ₂ I ₂ vs time in the presence of	7
1,4-dinitrobenzene.	
8: Observed rate constant vs concentration of 1,4-dinitrobenzene	7

9: Absorbance at 545 nm of of Sm[15-crown-5] ₂ I ₂ vs time in the presence of	8
nitrobenzene at 30° C	
10: Linear Eyring plot for the case of nitrobenzene	8
11: Absorbance at 545 nm of Sm[15-crown-5] ₂ I ₂ vs time in the presence of	9
$1,4$ -dinitrobenzene at 30^{0} C.	
12: Linear Eyring plot for the case of 1,4-dinitrobenzene.	9
13: Absorbance at 545 nm of Sm[15-crown-5] ₂ I ₂ vs time in the presence of	10
benzaldehyde at 30°C.	
14: Linear Eyring plot for the case of benzaldehdye.	10
15: Absorbance growth of precipitation formed through Sm[15-crown-5] ₂ I ₂ reduction	11
of benzyl bromide at 450 nm at 30°C.	
16: Linear Eyring plot for the case of benzyl bromide.	11
17: Transient absorbance spectra of Sm[15-crown-5] ₂ I ₂ in the presence of benzyl bromide	e12
18: Excited decay of Sm[15-crown-5]2I2 at 450 nm in the presence of benzyl bromide	12
19: Observed rate constant vs concentration of benzyl bromide	13
20: Transient absorption spectra of $Sm[15$ -crown- $5]_2I_2$ in the presence of benzyl bromide	13
after different time interval from laser excitation.	
21: Transient absorption spectra of Sm[15-crown-5] $_2$ I $_2$ in the presence of benzyl chloride	14
22: Excited decay of $Sm[15$ -crown- $5]_2I_2$ at 450 nm in the presence of benzyl chloride	14
23: Observed rate constant vs concentration of benzyl chloride	15
24: Transient absorption spectra of $Sm[15$ -crown- $5]_2I_2$ in the presence of benzyl chloride	15
after different time interval from the laser excitation.	
25: Transient absorption spectra of Sm[15-crown-5] ₂ I ₂ in the presence of 1-Iodohexane	16
26: Excited decay of Sm[15-crown-5]2I2 at 450 nm in the presence of 1-Iodohexane.	16

27:	Observed decay rate constant vs concentration of 1-Iodohexane.	17
28:	Transient absorption spectra of Sm[15-crown-5] ₂ I ₂ in the presence of 1-Iodohexane	17
	after the different time interval from the laser excitation.	
29:	Transient absorption spectra of $Sm[15\text{-}crown-5]_2I_2$ in the presence of acetophenone	18
30:	Steady state luminescence spectra of Sm[15-crown-5] ₂ I ₂ in the presence of	18
	acetophenone.	
31:	Stern Volmer plot for luminescence quenching in the presence of acetophenone	19
32:	Steady state luminescence spectra of Sm[15-crown-5] ₂ I ₂ in the presence of	19
	benzyl bromide	
33:	Stern Volmer plot for the luminescence quenching in the presence of benzyl bromide	20
34:	Steady state luminescence spectra of Sm[15-crown-5] ₂ I ₂ in the presence of	20
	benzyl chloride	
35:	Stern Volmer plot for the luminescence quenching in the presence of benzyl chloride	21
36:	Steady state luminescence spectra of $Sm[15$ -crown- $5]_2I_2$ in the presence of	21
	1-iodohexane.	
37:	Stern Volmer plot for the luminescence quenching in the presence of 1-iodohexane	22

Figure SF1: Absorbance decay of $Sm[15\text{-crown-}5]_2I_2$ at 545 nm in the presence of benzaldehyde [29 mM]. [Sm(II)] = 1.37 Mm

Figure SF2: Observed rate constant vs concentration plot for Sm[15-crown- $5]_2I_2$ -benzaldehyde system. Rate constant = $(5.08 \pm .21)$ M⁻¹ s⁻¹.

Figure SF3: Absorbance decay of $Sm[15\text{-}crown-5]_2I_2$ at 545 nm in the presence of benzophenone [29 mM]. [Sm(II)] = 1.37 mM

Figure SF4: Observed rate constant vs concentration plot for Sm[15-crown- $5]_2I_2$ -benzophenone system. Rate constant = $(1.03\pm.02)$ M⁻¹ s⁻¹.

Figure SF5: Absorbance decay of $Sm[15\text{-crown-}5]_2I_2$ at 545 nm in the presence of nitrobenzene [75 mM]. [Sm(II)] = 5 mM.

Figure SF6: Observed rate constant vs concentration plot for Sm[15-crown-5]₂I₂ -nitrobenzene system. [Sm(15-crown-5)₂I₂] = 5 mM; [Nitrobenzene] = 25-100 mM. Rate constant 14.2 ± 1.4 $M^{-1}s^{-1}$.

Figure SF7: Absorbance decay of $Sm[15\text{-}crown-5]_2I_2$ at 545 nm in the presence of 1,4-dinitrobenzene [50 mM]. [Sm(II)] = 5 mM.

Figure SF8: Observed rate constant vs concentration plot for $Sm[15\text{-crown-5}]_2I_2$ -1,4-dinitrobenzene system. [$Sm(15\text{-crown-5})_2I_2$] = 5 mM; [1,4-Nitrobenzene] = 125-750 mM. Rate constant 6329.6 ± 390.5 $M^{-1}s^{-1}$.

Figure SF9: Absorbance decay of $Sm[15\text{-crown-}5]_2I_2$ at 545 nm at 30°C in the presence of nitrobenzene [50 mM]. [Sm(II)] = 5 mM.

Figure SF10: Eyring plot for Sm[15-crown-5]₂I₂ -nitrobenzene system over a temperature range of 30-50°C. [Sm(15-crown-5)₂I₂] = 5 mM; [Nitrobenzene] = 50 mM. y = -6243.42x -6.5519

Figure SF11: Absorbance decay of $Sm[15\text{-}crown-5]_2I_2$ at 545 nm at 30°C in the presence of 1,4-dinitrobenzene [50 mM]. [Sm(II)] = 5 mM.

Figure SF12: Eyring plot for Sm[15-crown-5]₂I₂ -1,4-dinitrobenzene system over a temperature range of 30-50°C. [Sm(15-crown-5)₂I₂] = 5 mM; [1,4-dinitrobenzene] = 50 mM. y = -3349.77x - 12.11

Figure SF13: Absorbance decay of $Sm[15\text{-crown-}5]_2I_2$ at 545 nm at 30°C in the presence of benzaldehyde [50 mM]. [Sm(II)] = 5 mM.

Figure SF14: Eyring plot for Sm[15-crown-5]₂I₂ -benzaldehyde system over a temperature range of 30-50°C. [Sm(15-crown-5)₂I₂] = 5 mM; [benzaldehyde] = 50 mM. y = -2062.5x - 28.3.

Figure SF15: Absorbance growth of precipitation formed through $Sm[15\text{-crown-}5]_2I_2$ reduction of benzyl bromide at 450 nm at 30°C. Benzyl bromide = [50 mM]. [Sm(II)] = 5 mM.

Figure SF16: Eyring plot for $Sm[15\text{-crown-}5]_2I_2$ –benzyl bromide system over a temperature range of 30-50°C. $[Sm(15\text{-crown-}5)_2I_2] = 5$ mM; [benzyl bromide] = 50 mM. y = -6113.9x - 14.24.

Figure SF17: Transient absorption spectra of Sm[15-crown-5]2I2 in the presence of benzyl bromide. BB= [Benzyl bromide] = 0 mM (\triangleleft), 2.07 mM [BB1] = 2.07 mM (\bullet) and 4.14 mM [BB2] = 4.14 mM (\blacktriangle) and 6.21 mM [BB3] = 6.21 mM (\blacktriangledown). [SmI₂] = 1.76 mM.

Figure SF18: Excited decay of Sm[15-crown-5]₂I₂ at 450 nm with increasing amount of benzyl brmide. BB=[Benzyl brmide] = 0 mM (solid), 2.07 mM [BB1] = 2.07 mM (dash), 4.14 mM [BB2] = 4.14 mM (dot) and 6.21 mM [BB3] = 6.21 mM (dash dot). $[SmI_2] = 1.76$ mM.

Figure SF19: Observed rate constant of excited state decay of Sm[15-crown- $5]_2I_2$ at 450 nm vs concentration of benzyl bromide plot.

Figure SF20: Transient absorption spectra of Sm[15-crown-5]₂I₂ in the presence of benzyl bromide at 100 ns(\blacktriangleleft); 250 ns (\bullet); 500 ns (\blacktriangle), 1 μ s (\blacktriangledown) and 4.5 μ s (\bullet) after the laser pulse. [Benzyl bromide]: 6.21 mM and [SmI₂]: 1.76 mM.

Figure SF21: Transient absorption spectra of Sm[15-crown-5]2I2 in the presence of benzyl chloride. BC= [Benzyl chloride] = 0 mM (▶), [BC1] (•) and 12.42 mM [BC2] = 12.42 mM(▲), [BC3] = 16.56 mM (\blacktriangledown), [BC4] = 20.7 mM (•) and 24.84 mM [BC5] = 24.84 mM (\blacktriangleleft) [SmI₂] = 1.76 mM.

Figure SF22: Excited decay of Sm[15-crown-5] $_2$ I $_2$ at 450 nm with increasing amount of benzyl chloride. BC = [Benzyl chloride] = 0 mM (solid), [BC1] = 8.28 mM (dash), [BC2] = 12.42 mM (dot), 16.56 mM [BC3] = 16.56 mM (dash dot), 20.7 mM [BC4] = 20.7 mM (dash dot dot) and 24.84 mM [BC5] = 24.84 mM (short dash). [SmI $_2$] = 1.76 mM.

Figure SF23: Observed rate constant of excited state decay of Sm[15-crown- $5]_2I_2$ at 450 nm vs concentration of benzyl chloride plot.

Figure SF24: Transient absorption spectra of Sm[15-crown-5]₂I₂ in the presence of benzyl chloride at 200 ns(\blacktriangleleft); 500 ns (\bullet); 1 μ s (\blacktriangle) and 2 μ s (\blacktriangledown) after the laser pulse. [Benzyl chloride]: 24.84 mM and [SmI₂]: 1.76 mM.

Figure SF25: Transient absorption spectra of Sm[15-crown-5]2I2 in the presence of 1-Iodohexane. IH= [1-Iodohexane] = 0 mM (▶), 9.66 mM [IH1] = 9.66 mM (•) and 19.32 mM [IH2] = 19.32 mM (▲), [IH3] = 28.98 mM (\blacktriangledown), 38.64 mM [IH4] = 38.64 mM (•) and 48.3 mM [IH5] = 48.3 mM (•) [SmI₂] = 1.76 mM.

Figure SF26: Excited decay of $Sm[15\text{-crown-}5]_2I_2$ at 450 nm with increasing amount of 1-Iodohexane. IH = [1-Iodohexane] = 0 mM (solid), 9.66 mM [IH1] = 9.66 mM (dash), [IH2] 19.32 mM (dot), 28.98 mM [IH3] = 28.98 mM (dash dot), 38.64 mM [IH4] = 38.64 mM (dash dot) and [IH5] = 48.3 mM (short dash). $[SmI_2] = 1.76$ mM.

Figure SF27: Observed rate constant of excited state decay of Sm[15-crown- $5]_2I_2$ at 450 nm vs concentration of 1-Iodohexane plot.

Figure SF28: Transient absorption spectra of Sm[15-crown-5]₂I₂ in the presence of 1-Iodohexane at 100 ns(\blacktriangleleft); 250 ns (\bullet); 500 ns (\blacktriangle) and 1 μ s (\blacktriangledown) after the laser pulse. [1-Iodohexane]: 48.3 mM and [SmI₂]: 1.76 mM.

Figure SF29: Transient absorption spectra of Sm[15-crown-5]2I2 in the presence of acetophenone. AC= [Acetophenone] = 0 mM (▶), 4.83 mM [AC1] = 4.83 mM (•), [AC2] = 7.24 mM (♠), [AC3] = 9.66 mM (\blacktriangledown), [AC4] = 12.07 mM (♦) and 14.49 mM [AC5] = 14.49 mM (\blacktriangleleft) [SmI₂] = 1.76 mM

Figure SF30: Steady state luminescence spectra of $Sm[15\text{-crown-}5]_2I_2$ in the presence of increasing amount of acetophenone. AC= [Acetophenone] = 0 mM(solid), 2.41 mM [AC1] = 2.41 mM (dash), 4.83 mM [AC2] = 4.83 mM (dot), [AC3] = 7.23 mM (dash dot) and [AC4] = 9.66 mM (dash dot dot). [SmI₂] = 1.76 mM.

Figure SF31: Stern Volmer plot for the luminescence quenching of $Sm[15\text{-crown-}]_2I_2$ in the presence of Acetophenone.

Figure SF32: Steady state luminescence spectra of $Sm[15\text{-crown-}5]_2I_2$ in the presence of increasing amount of benzyl bromide. BB= [Benzyl bromide] = 0 mM(solid), 2.07 mM [BB1] = 2.07 mM (dash), [BB2] = 4.14 mM (dot), [BB3] = 6.21 mM (dash dot) and 8.28 mM ([BB4] = 8.28 mM (dash dot dot). [SmI₂] = 1.76 mM.

Figure SF33: Stern Volmer plot for the luminescence quenching of $Sm[15\text{-crown-}5]_2I_2$ in the presence of Benzyl bromide.

Figure SF34: Steady state luminescence spectra of $Sm[15\text{-}crown-5]_2I_2$ in the presence of increasing amount of benzyl chloride. BC= [Benzyl chloride] = 0 mM(solid), [BC1] = 8.28 mM (dash), [BC2] = 10.35 mM (dot), [BC3] = 12.45 mM (dash dot) and 14.49 mM [BC4] = 14.49 mM (dash dot dot). [SmI₂] = 1.76 mM.

Figure SF35: Stern Volmer plot for the luminescence quenching of $Sm[15\text{-crown-}5]_2I_2$ in the presence of benzyl chloride.

Figure SF36: Steady state luminescence spectra of $Sm[15\text{-crown-}5]_2I_2$ in the presence of increasing amount of 1-Iodohexane. IH= [1-Iodohexane] = 0 mM(solid), [IH1] = 9.66 mM (dash), [IH2] = 19.32 mM (dot), [IH3] = 28.93 mM (dash dot) and [IH4] = 38.64 mM (dash dot dot). $[SmI_2] = 1.76$ mM.

Figure SF37: Stern Volmer plot for the luminescence quenching of $Sm[15\text{-crown-}5]_2I_2$ in the presence of 1-Iodohexane.