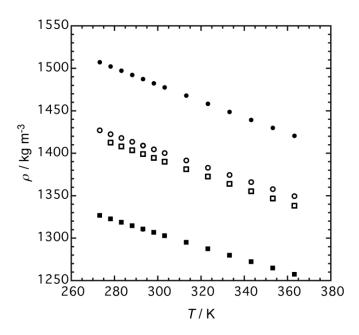
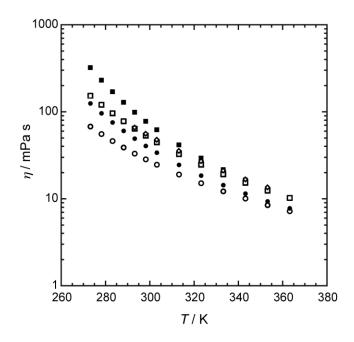
Supporting Information

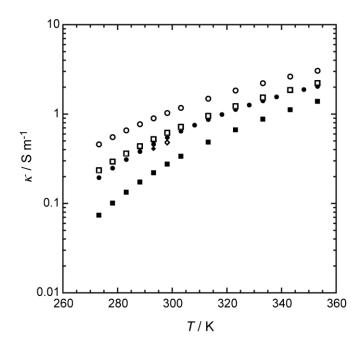
Electrical Conductivities, Viscosities, and Densities of *N*-methoxymethyl- and *N*-butyl-*N*-methylpyrrolidinium Ionic Liquids with bis(fluorosulfonyl)amide anion

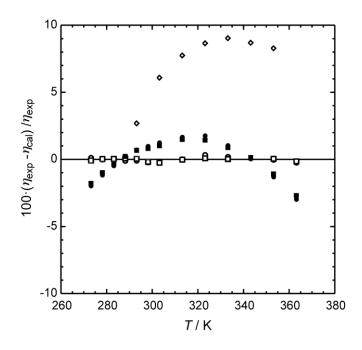

Takashi Makino,[†] Mitsuhiro Kanakubo, ^{†*} Tatsuya Umecky, [†] Akira Suzuki, [†] Tetsuo Nishida,[‡] and Jun Takano [‡]

National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Miyaginoku, Sendai 983-8551, Japan, and Research and Development Department, Stella Chemifa Corporation, 1-41 Rinkai-cho, Izumiotsu, Osaka 595-0075, Japan


[†] National Institute of Advanced Industrial Science and Technology

^{*} Corresponding author. e-mail: m-kanakubo@aist.go.jp, fax: +81-22-232-7002.


[‡] Stella Chemifa Co., Ltd.


Figure S1. Temperature *T* dependencies of the experimental density ρ_{exp} . Circle (open), [Pyr_{1,101}][FSA]; square (open), [Pyr_{1,4}][FSA]; diamond (filled), [Pyr_{1,4}][FSA] (ref. 4); circle (filled), [Pyr_{1,101}][NTf₂] (ref. 15); square (filled), [Pyr_{1,4}][NTf₂] (ref. 16). The data point of [Pyr_{1,4}][FSA] in ref. 4 is behind that of the present study.

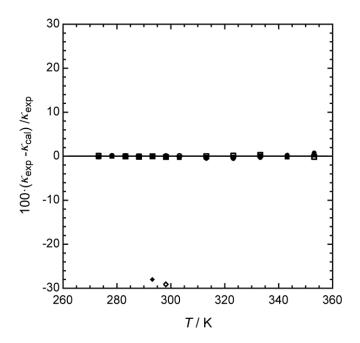

Figure S2. Temperature *T* dependencies of the experimental viscosity η_{exp} . Circle (open), [Pyr_{1,101}][FSA]; square (open), [Pyr_{1,4}][FSA]; diamond (open), [Pyr_{1,4}][FSA] (ref. 2); diamond (filled), [Pyr_{1,4}][FSA] (ref. 4); circle (filled), [Pyr_{1,101}][NTf₂] (ref. 15); square (filled), [Pyr_{1,4}][NTf₂] (ref. 16). The data point of [Pyr_{1,4}][FSA] in ref. 4 is behind those of the present study and ref. 2.

Figure S3. Temperature *T* dependencies of the experimental electrical conductivity κ_{exp} . Circle (open), [Pyr_{1,101}][FSA]; square (open), [Pyr_{1,4}][FSA]; diamond (open), [Pyr_{1,4}][FSA] (ref. 2); diamond (filled), [Pyr_{1,4}][FSA] (ref. 4); circle (filled), [Pyr_{1,101}][NTf₂] (ref. 15); square (filled), [Pyr_{1,4}][NTf₂] (ref. 16).

Figure S4. Overview of the residuals between the experimental viscosity η_{exp} and the calculated viscosity η_{cal} as a function of temperature *T*. Circle (open), [Pyr_{1,101}][FSA] for VFT; circle (filled), [Pyr_{1,101}][FSA] for Litovitz; square (open), [Pyr_{1,4}][FSA] for VFT; square (filled), [Pyr_{1,4}][FSA] for Litovitz; diamond (filled), [Pyr_{1,4}][FSA] (ref. 4) for VFT; diamond (open), [Pyr_{1,4}][FSA] (ref. 2) for VFT.

Figure S5. Overview of the residuals between the experimental electrical conductivity κ_{exp} and the calculated electrical conductivity κ_{cal} as a function of temperature *T*. Circle (open), [Pyr_{1,101}][FSA] for VFT; circle (filled), [Pyr_{1,101}][FSA] for Litovitz; square (open), [Pyr_{1,4}][FSA] for VFT; square (filled), [Pyr_{1,4}][FSA] for Litovitz; diamond (filled), [Pyr_{1,4}][FSA] (ref. 4) for VFT; diamond (open), [Pyr_{1,4}][FSA] (ref. 2) for VFT.