Table 1. Crystal data and structure refinement for <i>d</i> , <i>l</i> -20.				
Identification code	br42n			
Empirical formula	C38 H18 Co4 O12			
Formula weight	902.24			
Temperature	173(2) K			
Wavelength	1.54178 Å			
Crystal system	Tetragonal			
Space group	P4(1)			
Unit cell dimensions	a = 11.3000(3) Å	a = 90°.		
	b = 11.3000(3) Å	b = 90°.		
	c = 28.1345(18) Å	$g = 90^{\circ}$.		
Volume	3592.5(3) Å ³			
Z	4			
Density (calculated)	1.668 Mg/m ³			
Absorption coefficient	14.773 mm ⁻¹			
F(000)	1800			
Crystal size	$0.26 \ x \ 0.10 \ x \ 0.08 \ mm^3$			
Theta range for data collection	3.91 to 67.37°.			
Index ranges	-13<=h<=13, -12<=k<=12, -33<=l<=32			
Reflections collected	41758			
Independent reflections	6404 [R(int) = 0.1378]			
Completeness to theta = 67.37°	99.9 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.3845 and 0.1139			
Refinement method	Full-matrix least-squares on F ²	2		
Data / restraints / parameters	6404 / 33 / 269			
Goodness-of-fit on F ²	1.050			
Final R indices [I>2sigma(I)]	R1 = 0.0920, wR2 = 0.2480			
R indices (all data)	R1 = 0.1380, wR2 = 0.2777			
Absolute structure parameter	0.056(10)			
Extinction coefficient	0.0014(3)			
Largest diff. peak and hole	1.029 and -0.890 e.Å ⁻³			

	X	У	Z	U(eq)
C(1)	7505(11)	6051(11)	2263(5)	53(3)
C(2)	7099(12)	7527(12)	1482(5)	63(3)
C(3)	8955(13)	8006(13)	2154(5)	69(4)
C(4)	10772(16)	7858(17)	1350(6)	87(5)
C(5)	10679(16)	5984(16)	715(7)	84(4)
C(6)	8852(14)	7593(14)	693(6)	73(4)
C(7)	6894(13)	2872(12)	2774(5)	65(3)
C(8)	8689(13)	1367(13)	2912(6)	71(4)
C(9)	7053(12)	919(13)	2170(5)	65(3)
C(10)	10826(14)	1645(13)	2267(5)	70(4)
C(11)	10552(11)	2884(11)	1464(4)	54(3)
C(12)	9218(13)	848(13)	1556(5)	69(4)
C(13)	9656(10)	5760(10)	1668(4)	52(3)
C(14)	8800(10)	5462(10)	1375(4)	51(3)
C(15)	8117(11)	4438(11)	1145(4)	53(3)
C(16)	7424(10)	3754(10)	1517(4)	50(3)
C(17)	8209(9)	3180(10)	1900(4)	48(3)
C(18)	8932(11)	3435(11)	2247(4)	53(3)
C(19)	7483(9)	4864(9)	718(3)	79(4)
C(20)	6345(9)	5329(11)	706(3)	104(5)
C(21)	5899(7)	5798(10)	286(4)	117(7)
C(22)	6592(9)	5802(9)	-122(3)	96(5)
C(23)	7730(9)	5337(10)	-110(3)	83
C(24)	8176(7)	4868(9)	310(4)	83
C(25)	6271(11)	6209(13)	-585(4)	83
C(26)	5157(12)	6723(17)	-603(5)	119(7)
C(27)	4503(11)	6765(13)	-188(4)	83
C(28)	4794(10)	6293(13)	251(4)	83
C(29)	6635(8)	2800(8)	1303(3)	59(3)
C(30)	5491(9)	2647(10)	1475(4)	100(5)
C(31)	4812(8)	1698(11)	1320(5)	134(8)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for *d*,*l*-**20**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(32)	5276(10)	901(9)	993(5)	123(7)
C(33)	6419(11)	1054(9)	821(4)	110(6)
C(34)	7098(8)	2004(9)	976(4)	85(4)
C(35)	4743(14)	-138(13)	805(7)	117(7)
C(36)	3587(14)	-238(16)	960(7)	118(7)
C(37)	3082(16)	497(19)	1299(9)	162(11)
C(38)	3655(13)	1512(19)	1468(8)	150(9)
Co(1)	8335(2)	6807(2)	1794(1)	50(1)
Co(2)	9768(2)	6764(2)	1133(1)	59(1)
Co(3)	7938(2)	2084(2)	2423(1)	53(1)
Co(4)	9644(2)	2148(2)	1882(1)	53(1)
O(1)	9231(12)	879(12)	3190(4)	104(4)
O(2)	11554(11)	1365(13)	2524(5)	110(4)
O(3)	11169(9)	3352(8)	1206(4)	77(3)
O(4)	8905(10)	19(8)	1337(4)	79(3)
O(5)	6158(11)	3357(9)	3006(4)	88(3)
O(6)	6481(10)	129(9)	2034(4)	86(3)
O(7)	11273(15)	5518(11)	457(6)	131(6)
O(8)	11465(14)	8478(14)	1543(7)	133(5)
O(9)	8343(10)	8073(9)	426(4)	82(3)
O(10)	6375(10)	7987(10)	1290(4)	89(3)
O(11)	9358(12)	8745(8)	2363(4)	94(3)
O(12)	7014(8)	5594(7)	2538(3)	63(2)

C(1)-O(12)	1.083(14)
C(1)-Co(1)	1.830(13)
C(2)-O(10)	1.110(16)
C(2)-Co(1)	1.840(14)
C(3)-O(11)	1.120(16)
C(3)-Co(1)	1.830(15)
C(4)-O(8)	1.18(2)
C(4)-Co(2)	1.786(19)
C(5)-O(7)	1.12(2)
C(5)-Co(2)	1.795(19)
C(6)-O(9)	1.091(18)
C(6)-Co(2)	1.865(17)
C(7)-O(5)	1.192(17)
C(7)-Co(3)	1.776(15)
C(8)-O(1)	1.136(18)
C(8)-Co(3)	1.808(16)
C(9)-O(6)	1.166(17)
C(9)-Co(3)	1.801(15)
C(10)-O(2)	1.142(18)
C(10)-Co(4)	1.810(16)
C(11)-O(3)	1.135(15)
C(11)-Co(4)	1.770(13)
C(12)-O(4)	1.176(17)
C(12)-Co(4)	1.798(16)
C(13)-C(14)	1.315(17)
C(13)-Co(2)	1.890(12)
C(13)-Co(1)	1.936(12)
C(13)-H(13A)	1.0000
C(14)-C(15)	1.534(17)
C(14)-Co(2)	1.956(12)
C(14)-Co(1)	1.994(12)
C(15)-C(19)	1.478(14)
C(15)-C(16)	1.520(17)

Table 3. Bond lengths [Å] and angles [°] for d,l-20.

C(15)-H(15A)	1.0000
C(16)-C(29)	1.522(14)
C(16)-C(17)	1.538(16)
C(16)-H(16A)	1.0000
C(17)-C(18)	1.306(17)
C(17)-Co(3)	1.949(11)
C(17)-Co(4)	1.998(11)
C(18)-Co(4)	1.954(12)
C(18)-Co(3)	1.959(12)
C(18)-H(18A)	1.0000
C(19)-C(20)	1.3900
C(19)-C(24)	1.3900
C(20)-C(21)	1.3900
C(20)-H(20A)	0.9500
C(21)-C(28)	1.372(9)
C(21)-C(22)	1.3900
C(22)-C(23)	1.3900
C(22)-C(25)	1.429(9)
C(23)-C(24)	1.3900
C(23)-H(23A)	0.9500
C(24)-H(24A)	0.9500
C(25)-C(26)	1.387(9)
C(25)-H(25A)	0.9500
C(26)-C(27)	1.382(9)
C(26)-H(26A)	0.9500
C(27)-C(28)	1.385(9)
C(27)-H(27A)	0.9500
C(28)-H(28A)	0.9500
C(29)-C(30)	1.3900
C(29)-C(34)	1.3900
C(30)-C(31)	1.3900
C(30)-H(30A)	0.9500
C(31)-C(38)	1.388(10)
C(31)-C(32)	1.3900
C(32)-C(33)	1.3900
C(32)-C(35)	1.421(9)

C(33)-C(34)	1.3900
C(33)-H(33A)	0.9500
C(34)-H(34A)	0.9500
C(35)-C(36)	1.382(9)
C(35)-H(35A)	0.9500
C(36)-C(37)	1.387(9)
C(36)-H(36A)	0.9500
C(37)-C(38)	1.401(9)
C(37)-H(37A)	0.9500
C(38)-H(38A)	0.9500
Co(1)-Co(2)	2.467(3)
Co(3)-Co(4)	2.458(3)
O(12)-C(1)-Co(1)	179.3(12)
O(10)-C(2)-Co(1)	178.0(14)
O(11)-C(3)-Co(1)	178.0(14)
O(8)-C(4)-Co(2)	171.0(17)
O(7)-C(5)-Co(2)	178.0(19)
O(9)-C(6)-Co(2)	177.8(15)
O(5)-C(7)-Co(3)	176.9(12)
O(1)-C(8)-Co(3)	173.8(14)
O(6)-C(9)-Co(3)	175.6(13)
O(2)-C(10)-Co(4)	176.9(14)
O(3)-C(11)-Co(4)	177.5(12)
O(4)-C(12)-Co(4)	177.7(13)
C(14)-C(13)-Co(2)	72.7(8)
C(14)-C(13)-Co(1)	72.8(7)
Co(2)-C(13)-Co(1)	80.3(5)
C(14)-C(13)-H(13A)	135.0
Co(2)-C(13)-H(13A)	135.0
Co(1)-C(13)-H(13A)	135.0
C(13)-C(14)-C(15)	145.9(11)
C(13)-C(14)-Co(2)	67.3(7)
C(15)-C(14)-Co(2)	134.6(8)
C(13)-C(14)-Co(1)	68.1(7)
C(15)-C(14)-Co(1)	133.8(8)

Co(2)-C(14)-Co(1)	77.3(4)
C(19)-C(15)-C(16)	118.4(10)
C(19)-C(15)-C(14)	109.9(10)
C(16)-C(15)-C(14)	110.6(10)
C(19)-C(15)-H(15A)	105.7
C(16)-C(15)-H(15A)	105.7
C(14)-C(15)-H(15A)	105.7
C(15)-C(16)-C(29)	112.9(9)
C(15)-C(16)-C(17)	113.5(9)
C(29)-C(16)-C(17)	108.5(9)
C(15)-C(16)-H(16A)	107.2
C(29)-C(16)-H(16A)	107.2
C(17)-C(16)-H(16A)	107.2
C(18)-C(17)-C(16)	142.4(11)
C(18)-C(17)-Co(3)	70.9(7)
C(16)-C(17)-Co(3)	134.9(8)
C(18)-C(17)-Co(4)	68.9(7)
C(16)-C(17)-Co(4)	134.2(8)
Co(3)-C(17)-Co(4)	77.0(4)
C(17)-C(18)-Co(4)	72.5(7)
C(17)-C(18)-Co(3)	70.1(7)
Co(4)-C(18)-Co(3)	77.8(5)
C(17)-C(18)-H(18A)	136.2
Co(4)-C(18)-H(18A)	136.2
Co(3)-C(18)-H(18A)	136.2
C(20)-C(19)-C(24)	120.0
C(20)-C(19)-C(15)	126.3(8)
C(24)-C(19)-C(15)	113.5(8)
C(21)-C(20)-C(19)	120.0
C(21)-C(20)-H(20A)	120.0
C(19)-C(20)-H(20A)	120.0
C(28)-C(21)-C(20)	123.1(9)
C(28)-C(21)-C(22)	116.8(9)
C(20)-C(21)-C(22)	120.0
C(21)-C(22)-C(23)	120.0
C(21)-C(22)-C(25)	127.7(8)

C(23)-C(22)-C(25)	112.3(8)
C(24)-C(23)-C(22)	120.0
C(24)-C(23)-H(23A)	120.0
C(22)-C(23)-H(23A)	120.0
C(23)-C(24)-C(19)	120.0
C(23)-C(24)-H(24A)	120.0
C(19)-C(24)-H(24A)	120.0
C(26)-C(25)-C(22)	113.5(9)
C(26)-C(25)-H(25A)	123.3
C(22)-C(25)-H(25A)	123.3
C(27)-C(26)-C(25)	117.9(10)
C(27)-C(26)-H(26A)	121.0
C(25)-C(26)-H(26A)	121.0
C(26)-C(27)-C(28)	127.8(10)
C(26)-C(27)-H(27A)	116.1
C(28)-C(27)-H(27A)	116.1
C(21)-C(28)-C(27)	116.0(10)
C(21)-C(28)-H(28A)	122.0
C(27)-C(28)-H(28A)	122.0
C(30)-C(29)-C(34)	120.0
C(30)-C(29)-C(16)	119.7(8)
C(34)-C(29)-C(16)	119.9(8)
C(31)-C(30)-C(29)	120.0
C(31)-C(30)-H(30A)	120.0
C(29)-C(30)-H(30A)	120.0
C(38)-C(31)-C(30)	122.8(11)
C(38)-C(31)-C(32)	117.2(11)
C(30)-C(31)-C(32)	120.0
C(33)-C(32)-C(31)	120.0
C(33)-C(32)-C(35)	111.6(10)
C(31)-C(32)-C(35)	128.4(10)
C(32)-C(33)-C(34)	120.0
C(32)-C(33)-H(33A)	120.0
C(34)-C(33)-H(33A)	120.0
C(33)-C(34)-C(29)	120.0
C(33)-C(34)-H(34A)	120.0

C(29)-C(34)-H(34A)	120.0
C(36)-C(35)-C(32)	110.6(11)
C(36)-C(35)-H(35A)	124.7
C(32)-C(35)-H(35A)	124.7
C(35)-C(36)-C(37)	123.8(11)
C(35)-C(36)-H(36A)	118.1
C(37)-C(36)-H(36A)	118.1
C(36)-C(37)-C(38)	122.3(12)
C(36)-C(37)-H(37A)	118.9
C(38)-C(37)-H(37A)	118.9
C(31)-C(38)-C(37)	117.2(12)
C(31)-C(38)-H(38A)	121.4
C(37)-C(38)-H(38A)	121.4
C(1)-Co(1)-C(3)	98.3(6)
C(1)-Co(1)-C(2)	99.3(6)
C(3)-Co(1)-C(2)	103.1(6)
C(1)-Co(1)-C(13)	104.0(5)
C(3)-Co(1)-C(13)	105.0(6)
C(2)-Co(1)-C(13)	140.2(6)
C(1)-Co(1)-C(14)	101.9(5)
C(3)-Co(1)-C(14)	142.2(6)
C(2)-Co(1)-C(14)	104.7(6)
C(13)-Co(1)-C(14)	39.1(5)
C(1)-Co(1)-Co(2)	150.6(4)
C(3)-Co(1)-Co(2)	100.4(5)
C(2)-Co(1)-Co(2)	98.4(4)
C(13)-Co(1)-Co(2)	49.0(4)
C(14)-Co(1)-Co(2)	50.7(3)
C(4)-Co(2)-C(5)	101.5(8)
C(4)-Co(2)-C(6)	103.4(8)
C(5)-Co(2)-C(6)	97.5(8)
C(4)-Co(2)-C(13)	100.7(7)
C(5)-Co(2)-C(13)	105.4(7)
C(6)-Co(2)-C(13)	142.5(6)
C(4)-Co(2)-C(14)	139.2(7)
C(5)-Co(2)-C(14)	100.3(7)

C(6)-Co(2)-C(14)	107.4(6)
C(13)-Co(2)-C(14)	40.0(5)
C(4)-Co(2)-Co(1)	98.4(6)
C(5)-Co(2)-Co(1)	151.7(6)
C(6)-Co(2)-Co(1)	97.3(5)
C(13)-Co(2)-Co(1)	50.7(4)
C(14)-Co(2)-Co(1)	52.0(4)
C(7)-Co(3)-C(9)	102.6(6)
C(7)-Co(3)-C(8)	96.6(7)
C(9)-Co(3)-C(8)	103.6(7)
C(7)-Co(3)-C(17)	101.9(6)
C(9)-Co(3)-C(17)	104.6(6)
C(8)-Co(3)-C(17)	141.8(6)
C(7)-Co(3)-C(18)	97.5(6)
C(9)-Co(3)-C(18)	142.0(6)
C(8)-Co(3)-C(18)	105.8(6)
C(17)-Co(3)-C(18)	39.0(5)
C(7)-Co(3)-Co(4)	148.2(5)
C(9)-Co(3)-Co(4)	102.2(5)
C(8)-Co(3)-Co(4)	96.7(5)
C(17)-Co(3)-Co(4)	52.4(3)
C(18)-Co(3)-Co(4)	51.0(4)
C(11)-Co(4)-C(12)	101.5(6)
C(11)-Co(4)-C(10)	96.7(6)
C(12)-Co(4)-C(10)	104.2(7)
C(11)-Co(4)-C(18)	103.8(5)
C(12)-Co(4)-C(18)	140.0(6)
C(10)-Co(4)-C(18)	102.9(6)
C(11)-Co(4)-C(17)	102.3(5)
C(12)-Co(4)-C(17)	105.8(6)
C(10)-Co(4)-C(17)	140.1(6)
C(18)-Co(4)-C(17)	38.6(5)
C(11)-Co(4)-Co(3)	151.8(4)
C(12)-Co(4)-Co(3)	94.7(5)
C(10)-Co(4)-Co(3)	101.5(5)
C(18)-Co(4)-Co(3)	51.2(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Co(1)	52(1)	36(1)	61(1)	-1(1)	-4(1)	2(1)
Co(2)	61(1)	39(1)	78(1)	8(1)	7(1)	1(1)
Co(3)	63(1)	43(1)	52(1)	4(1)	1(1)	0(1)
Co(4)	63(1)	41(1)	57(1)	6(1)	5(1)	7(1)
O(1)	124(10)	119(10)	68(7)	35(7)	-1(7)	31(8)
O(2)	92(8)	129(10)	109(10)	25(8)	-13(7)	38(7)
O(3)	64(6)	60(6)	108(8)	4(5)	20(5)	-11(4)
O(4)	107(8)	47(5)	83(7)	-15(5)	16(5)	-14(5)
O(5)	97(8)	59(6)	108(8)	-2(6)	37(6)	3(5)
O(6)	106(8)	66(6)	86(7)	6(5)	-17(6)	-16(6)
O(7)	167(13)	83(8)	144(12)	36(8)	96(11)	46(8)
O(8)	105(10)	115(11)	177(15)	3(10)	-12(10)	-29(9)
O(9)	93(7)	68(6)	84(7)	31(5)	7(6)	17(5)
O(10)	81(7)	85(7)	101(8)	9(6)	-12(6)	43(6)
O(11)	143(10)	43(5)	95(8)	-13(5)	-27(7)	-10(6)
O(12)	73(6)	49(5)	68(6)	0(4)	9(4)	-2(4)

Table 4. Anisotropic displacement parameters (Å²x 10³) for *d*,*l*-**20**. The anisotropic displacement factor exponent takes the form: $-2p^{2}[h^{2} a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

	X	у	Z	U(eq)
H(13A)	10235	5317	1869	63
H(15A)	8734	3877	1025	64
H(16A)	6895	4332	1682	60
H(18A)	9219	4172	2407	64
H(20A)	5871	5326	985	124
H(23A)	8204	5340	-389	99
H(24A)	8954	4550	318	99
H(25A)	6771	6135	-855	99
H(26A)	4853	7037	-892	143
H(27A)	3765	7165	-206	99
H(28A)	4261	6312	512	99
H(30A)	5174	3192	1699	119
H(33A)	6736	510	597	132
H(34A)	7880	2108	859	102
H(35A)	5129	-688	602	140
H(36A)	3110	-844	826	142
H(37A)	2322	304	1421	195
H(38A)	3269	2050	1676	180

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for d,l-**20**.

Table 6. Torsion angles [°] for d,l-20.

Co(2)-C(13)-C(14)-C(15)	137.7(19)
Co(1)-C(13)-C(14)-C(15)	-137.4(19)
Co(1)-C(13)-C(14)-Co(2)	84.9(4)
Co(2)-C(13)-C(14)-Co(1)	-84.9(4)
C(13)-C(14)-C(15)-C(19)	-161.6(17)
Co(2)-C(14)-C(15)-C(19)	-42.3(15)
Co(1)-C(14)-C(15)-C(19)	78.8(13)
C(13)-C(14)-C(15)-C(16)	66(2)
Co(2)-C(14)-C(15)-C(16)	-174.8(9)
Co(1)-C(14)-C(15)-C(16)	-53.7(15)
C(19)-C(15)-C(16)-C(29)	46.4(14)
C(14)-C(15)-C(16)-C(29)	174.4(9)
C(19)-C(15)-C(16)-C(17)	170.3(10)
C(14)-C(15)-C(16)-C(17)	-61.6(12)
C(15)-C(16)-C(17)-C(18)	65(2)
C(29)-C(16)-C(17)-C(18)	-168.3(15)
C(15)-C(16)-C(17)-Co(3)	-172.4(9)
C(29)-C(16)-C(17)-Co(3)	-46.1(14)
C(15)-C(16)-C(17)-Co(4)	-50.7(14)
C(29)-C(16)-C(17)-Co(4)	75.6(12)
C(16)-C(17)-C(18)-Co(4)	-136.4(17)
Co(3)-C(17)-C(18)-Co(4)	83.0(3)
C(16)-C(17)-C(18)-Co(3)	140.6(17)
Co(4)-C(17)-C(18)-Co(3)	-83.0(3)
C(16)-C(15)-C(19)-C(20)	39.2(14)
C(14)-C(15)-C(19)-C(20)	-89.2(11)
C(16)-C(15)-C(19)-C(24)	-146.4(9)
C(14)-C(15)-C(19)-C(24)	85.2(10)
C(24)-C(19)-C(20)-C(21)	0.0
C(15)-C(19)-C(20)-C(21)	174.0(11)
C(19)-C(20)-C(21)-C(28)	-178.6(12)

C(19)-C(20)-C(21)-C(22)	0.0
C(28)-C(21)-C(22)-C(23)	178.7(11)
C(20)-C(21)-C(22)-C(23)	0.0
C(28)-C(21)-C(22)-C(25)	-3.5(15)
C(20)-C(21)-C(22)-C(25)	177.9(12)
C(21)-C(22)-C(23)-C(24)	0.0
C(25)-C(22)-C(23)-C(24)	-178.2(10)
C(22)-C(23)-C(24)-C(19)	0.0
C(20)-C(19)-C(24)-C(23)	0.0
C(15)-C(19)-C(24)-C(23)	-174.7(9)
C(21)-C(22)-C(25)-C(26)	4.6(19)
C(23)-C(22)-C(25)-C(26)	-177.4(12)
C(22)-C(25)-C(26)-C(27)	-1(2)
C(25)-C(26)-C(27)-C(28)	-4(3)
C(20)-C(21)-C(28)-C(27)	177.4(11)
C(22)-C(21)-C(28)-C(27)	-1.2(18)
C(26)-C(27)-C(28)-C(21)	5(3)
C(15)-C(16)-C(29)-C(30)	-137.4(9)
C(17)-C(16)-C(29)-C(30)	95.9(9)
C(15)-C(16)-C(29)-C(34)	49.7(12)
C(17)-C(16)-C(29)-C(34)	-76.9(10)
C(34)-C(29)-C(30)-C(31)	0.0
C(16)-C(29)-C(30)-C(31)	-172.8(9)
C(29)-C(30)-C(31)-C(38)	-178.4(16)
C(29)-C(30)-C(31)-C(32)	0.0
C(38)-C(31)-C(32)-C(33)	178.5(15)
C(30)-C(31)-C(32)-C(33)	0.0
C(38)-C(31)-C(32)-C(35)	-4.0(18)
C(30)-C(31)-C(32)-C(35)	177.5(14)
C(31)-C(32)-C(33)-C(34)	0.0
C(35)-C(32)-C(33)-C(34)	-177.9(12)
C(32)-C(33)-C(34)-C(29)	0.0
C(30)-C(29)-C(34)-C(33)	0.0
C(16)-C(29)-C(34)-C(33)	172.8(9)
C(33)-C(32)-C(35)-C(36)	-176.7(14)
C(31)-C(32)-C(35)-C(36)	6(2)

C(32)-C(35)-C(36)-C(37)	-8(3)
C(35)-C(36)-C(37)-C(38)	9(4)
C(30)-C(31)-C(38)-C(37)	-177.7(17)
C(32)-C(31)-C(38)-C(37)	4(3)
C(36)-C(37)-C(38)-C(31)	-6(4)
O(12)-C(1)-Co(1)-C(3)	-158(100)
O(12)-C(1)-Co(1)-C(2)	97(100)
O(12)-C(1)-Co(1)-C(13)	-50(100)
O(12)-C(1)-Co(1)-C(14)	-10(100)
O(12)-C(1)-Co(1)-Co(2)	-29(100)
O(11)-C(3)-Co(1)-C(1)	161(43)
O(11)-C(3)-Co(1)-C(2)	-97(43)
O(11)-C(3)-Co(1)-C(13)	54(43)
O(11)-C(3)-Co(1)-C(14)	39(43)
O(11)-C(3)-Co(1)-Co(2)	4(43)
O(10)-C(2)-Co(1)-C(1)	151(38)
O(10)-C(2)-Co(1)-C(3)	50(39)
O(10)-C(2)-Co(1)-C(13)	-84(39)
O(10)-C(2)-Co(1)-C(14)	-104(38)
O(10)-C(2)-Co(1)-Co(2)	-53(39)
C(14)-C(13)-Co(1)-C(1)	91.7(8)
Co(2)-C(13)-Co(1)-C(1)	166.4(5)
C(14)-C(13)-Co(1)-C(3)	-165.6(8)
Co(2)-C(13)-Co(1)-C(3)	-90.8(6)
C(14)-C(13)-Co(1)-C(2)	-32.3(12)
Co(2)-C(13)-Co(1)-C(2)	42.5(9)
Co(2)-C(13)-Co(1)-C(14)	74.8(7)
C(14)-C(13)-Co(1)-Co(2)	-74.8(7)
C(13)-C(14)-Co(1)-C(1)	-97.7(8)
C(15)-C(14)-Co(1)-C(1)	50.6(12)
Co(2)-C(14)-Co(1)-C(1)	-168.1(4)
C(13)-C(14)-Co(1)-C(3)	23.1(13)
C(15)-C(14)-Co(1)-C(3)	171.4(11)
Co(2)-C(14)-Co(1)-C(3)	-47.3(10)
C(13)-C(14)-Co(1)-C(2)	159.3(8)
C(15)-C(14)-Co(1)-C(2)	-52.4(12)

Co(2)-C(14)-Co(1)-C(2)	88.9(5)
C(15)-C(14)-Co(1)-C(13)	148.3(15)
Co(2)-C(14)-Co(1)-C(13)	-70.4(7)
C(13)-C(14)-Co(1)-Co(2)	70.4(7)
C(15)-C(14)-Co(1)-Co(2)	-141.3(13)
O(8)-C(4)-Co(2)-C(5)	-96(11)
O(8)-C(4)-Co(2)-C(6)	163(11)
O(8)-C(4)-Co(2)-C(13)	12(11)
O(8)-C(4)-Co(2)-C(14)	25(12)
O(8)-C(4)-Co(2)-Co(1)	64(11)
O(7)-C(5)-Co(2)-C(4)	2(50)
O(7)-C(5)-Co(2)-C(6)	108(50)
O(7)-C(5)-Co(2)-C(13)	-103(50)
O(7)-C(5)-Co(2)-C(14)	-143(50)
O(7)-C(5)-Co(2)-Co(1)	-132(50)
O(9)-C(6)-Co(2)-C(4)	81(40)
O(9)-C(6)-Co(2)-C(5)	-23(40)
O(9)-C(6)-Co(2)-C(13)	-151(40)
O(9)-C(6)-Co(2)-C(14)	-126(40)
O(9)-C(6)-Co(2)-Co(1)	-179(100)
C(14)-C(13)-Co(2)-C(4)	167.0(9)
Co(1)-C(13)-Co(2)-C(4)	92.1(7)
C(14)-C(13)-Co(2)-C(5)	-87.7(9)
Co(1)-C(13)-Co(2)-C(5)	-162.6(6)
C(14)-C(13)-Co(2)-C(6)	37.8(13)
Co(1)-C(13)-Co(2)-C(6)	-37.2(11)
Co(1)-C(13)-Co(2)-C(14)	-74.9(7)
C(14)-C(13)-Co(2)-Co(1)	74.9(7)
C(13)-C(14)-Co(2)-C(4)	-19.7(13)
C(15)-C(14)-Co(2)-C(4)	-167.7(12)
Co(1)-C(14)-Co(2)-C(4)	51.6(11)
C(13)-C(14)-Co(2)-C(5)	101.7(9)
C(15)-C(14)-Co(2)-C(5)	-46.2(13)
Co(1)-C(14)-Co(2)-C(5)	173.1(6)
C(13)-C(14)-Co(2)-C(6)	-157.0(8)
C(15)-C(14)-Co(2)-C(6)	55.0(13)

Co(1)-C(14)-Co(2)-C(6)	-85.7(6)
C(15)-C(14)-Co(2)-C(13)	-148.0(16)
Co(1)-C(14)-Co(2)-C(13)	71.3(7)
C(13)-C(14)-Co(2)-Co(1)	-71.3(7)
C(15)-C(14)-Co(2)-Co(1)	140.7(13)
C(1)-Co(1)-Co(2)-C(4)	-124.6(10)
C(3)-Co(1)-Co(2)-C(4)	3.9(8)
C(2)-Co(1)-Co(2)-C(4)	109.0(8)
C(13)-Co(1)-Co(2)-C(4)	-97.0(8)
C(14)-Co(1)-Co(2)-C(4)	-148.8(7)
C(1)-Co(1)-Co(2)-C(5)	9.8(15)
C(3)-Co(1)-Co(2)-C(5)	138.2(13)
C(2)-Co(1)-Co(2)-C(5)	-116.7(13)
C(13)-Co(1)-Co(2)-C(5)	37.3(13)
C(14)-Co(1)-Co(2)-C(5)	-14.5(13)
C(1)-Co(1)-Co(2)-C(6)	130.6(9)
C(3)-Co(1)-Co(2)-C(6)	-100.9(7)
C(2)-Co(1)-Co(2)-C(6)	4.2(6)
C(13)-Co(1)-Co(2)-C(6)	158.2(7)
C(14)-Co(1)-Co(2)-C(6)	106.4(7)
C(1)-Co(1)-Co(2)-C(13)	-27.6(9)
C(3)-Co(1)-Co(2)-C(13)	100.9(7)
C(2)-Co(1)-Co(2)-C(13)	-154.0(6)
C(14)-Co(1)-Co(2)-C(13)	-51.8(6)
C(1)-Co(1)-Co(2)-C(14)	24.3(9)
C(3)-Co(1)-Co(2)-C(14)	152.8(6)
C(2)-Co(1)-Co(2)-C(14)	-102.2(6)
C(13)-Co(1)-Co(2)-C(14)	51.8(6)
O(5)-C(7)-Co(3)-C(9)	13(25)
O(5)-C(7)-Co(3)-C(8)	-93(25)
O(5)-C(7)-Co(3)-C(17)	121(25)
O(5)-C(7)-Co(3)-C(18)	160(25)
O(5)-C(7)-Co(3)-Co(4)	153(24)
O(6)-C(9)-Co(3)-C(7)	-76(16)
O(6)-C(9)-Co(3)-C(8)	24(17)
O(6)-C(9)-Co(3)-C(17)	178(100)

O(6)-C(9)-Co(3)-C(18)	164(16)
O(6)-C(9)-Co(3)-Co(4)	125(16)
O(1)-C(8)-Co(3)-C(7)	-174(14)
O(1)-C(8)-Co(3)-C(9)	81(14)
O(1)-C(8)-Co(3)-C(17)	-56(14)
O(1)-C(8)-Co(3)-C(18)	-75(14)
O(1)-C(8)-Co(3)-Co(4)	-23(14)
C(18)-C(17)-Co(3)-C(7)	87.3(8)
C(16)-C(17)-Co(3)-C(7)	-59.6(12)
Co(4)-C(17)-Co(3)-C(7)	159.2(5)
C(18)-C(17)-Co(3)-C(9)	-166.2(8)
C(16)-C(17)-Co(3)-C(9)	47.0(12)
Co(4)-C(17)-Co(3)-C(9)	-94.3(5)
C(18)-C(17)-Co(3)-C(8)	-29.8(12)
C(16)-C(17)-Co(3)-C(8)	-176.7(11)
Co(4)-C(17)-Co(3)-C(8)	42.1(10)
C(16)-C(17)-Co(3)-C(18)	-146.9(15)
Co(4)-C(17)-Co(3)-C(18)	71.9(7)
C(18)-C(17)-Co(3)-Co(4)	-71.9(7)
C(16)-C(17)-Co(3)-Co(4)	141.3(13)
C(17)-C(18)-Co(3)-C(7)	-99.6(8)
Co(4)-C(18)-Co(3)-C(7)	-175.2(5)
C(17)-C(18)-Co(3)-C(9)	22.1(12)
Co(4)-C(18)-Co(3)-C(9)	-53.6(10)
C(17)-C(18)-Co(3)-C(8)	161.4(8)
Co(4)-C(18)-Co(3)-C(8)	85.7(6)
Co(4)-C(18)-Co(3)-C(17)	-75.6(7)
C(17)-C(18)-Co(3)-Co(4)	75.6(7)
O(3)-C(11)-Co(4)-C(12)	-119(27)
O(3)-C(11)-Co(4)-C(10)	-13(27)
O(3)-C(11)-Co(4)-C(18)	93(27)
O(3)-C(11)-Co(4)-C(17)	132(27)
O(3)-C(11)-Co(4)-Co(3)	118(27)
O(4)-C(12)-Co(4)-C(11)	-94(33)
O(4)-C(12)-Co(4)-C(10)	166(33)
O(4)-C(12)-Co(4)-C(18)	34(34)

O(4)-C(12)-Co(4)-C(17)	12(33)
O(4)-C(12)-Co(4)-Co(3)	63(33)
O(2)-C(10)-Co(4)-C(11)	109(27)
O(2)-C(10)-Co(4)-C(12)	-147(27)
O(2)-C(10)-Co(4)-C(18)	3(27)
O(2)-C(10)-Co(4)-C(17)	-9(28)
O(2)-C(10)-Co(4)-Co(3)	-49(27)
C(17)-C(18)-Co(4)-C(11)	92.4(8)
Co(3)-C(18)-Co(4)-C(11)	165.1(5)
C(17)-C(18)-Co(4)-C(12)	-35.4(13)
Co(3)-C(18)-Co(4)-C(12)	37.3(10)
C(17)-C(18)-Co(4)-C(10)	-167.2(8)
Co(3)-C(18)-Co(4)-C(10)	-94.5(6)
Co(3)-C(18)-Co(4)-C(17)	72.7(7)
C(17)-C(18)-Co(4)-Co(3)	-72.7(7)
C(18)-C(17)-Co(4)-C(11)	-96.9(8)
C(16)-C(17)-Co(4)-C(11)	47.1(11)
Co(3)-C(17)-Co(4)-C(11)	-171.1(5)
C(18)-C(17)-Co(4)-C(12)	157.3(8)
C(16)-C(17)-Co(4)-C(12)	-58.7(12)
Co(3)-C(17)-Co(4)-C(12)	83.0(6)
C(18)-C(17)-Co(4)-C(10)	19.7(12)
C(16)-C(17)-Co(4)-C(10)	163.7(11)
Co(3)-C(17)-Co(4)-C(10)	-54.5(9)
C(16)-C(17)-Co(4)-C(18)	144.0(15)
Co(3)-C(17)-Co(4)-C(18)	-74.2(7)
C(18)-C(17)-Co(4)-Co(3)	74.2(7)
C(16)-C(17)-Co(4)-Co(3)	-141.8(12)
C(7)-Co(3)-Co(4)-C(11)	-22.8(13)
C(9)-Co(3)-Co(4)-C(11)	117.7(10)
C(8)-Co(3)-Co(4)-C(11)	-136.8(10)
C(17)-Co(3)-Co(4)-C(11)	18.6(9)
C(18)-Co(3)-Co(4)-C(11)	-31.8(10)
C(7)-Co(3)-Co(4)-C(12)	-148.0(10)
C(9)-Co(3)-Co(4)-C(12)	-7.5(7)
C(8)-Co(3)-Co(4)-C(12)	98.0(7)

C(17)-Co(3)-Co(4)-C(12)	-106.6(6)
C(18)-Co(3)-Co(4)-C(12)	-157.0(7)
C(7)-Co(3)-Co(4)-C(10)	106.4(10)
C(9)-Co(3)-Co(4)-C(10)	-113.1(7)
C(8)-Co(3)-Co(4)-C(10)	-7.6(7)
C(17)-Co(3)-Co(4)-C(10)	147.8(6)
C(18)-Co(3)-Co(4)-C(10)	97.4(7)
C(7)-Co(3)-Co(4)-C(18)	9.0(10)
C(9)-Co(3)-Co(4)-C(18)	149.5(7)
C(8)-Co(3)-Co(4)-C(18)	-105.0(7)
C(17)-Co(3)-Co(4)-C(18)	50.4(6)
C(7)-Co(3)-Co(4)-C(17)	-41.4(10)
C(9)-Co(3)-Co(4)-C(17)	99.1(6)
C(8)-Co(3)-Co(4)-C(17)	-155.4(6)
C(18)-Co(3)-Co(4)-C(17)	-50.4(6)

#===END

Table 1. Crystal data and structure refinen	nent for <i>d</i> , <i>l</i> - 27 .		
Identification code	br57s		
Empirical formula	C26 H18		
Formula weight	330.40		
Temperature	173(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	Pca2(1)		
Unit cell dimensions	a = 11.8926(4) Å	a = 90°.	
	b = 19.5888(6) Å	b = 90°.	
	c = 7.6155(3) Å	$g = 90^{\circ}$.	
Volume	1774.12(11) Å ³		
Z	4		
Density (calculated)	1.237 Mg/m ³		
Absorption coefficient	0.530 mm ⁻¹		
F(000)	696		
Crystal size	0.19 x 0.09 x 0.09 mm ²	3	
Theta range for data collection	2.26 to 67.39°.		
Index ranges	-14<=h<=14, -20<=k<=	=23, -9<=l<=6	
Reflections collected	6256		
Independent reflections	2490 [R(int) = 0.0311]		
Completeness to theta = 67.39°	95.7 %		
Absorption correction	Semi-empirical from eq	uivalents	
Max. and min. transmission	0.9539 and 0.9061	0.9539 and 0.9061	
Refinement method	Full-matrix least-square	s on F ²	
Data / restraints / parameters	2490 / 1 / 235		
Goodness-of-fit on F ²	1.030		
Final R indices [I>2sigma(I)]	R1 = 0.0419, wR2 = 0.	0867	
R indices (all data)	R1 = 0.0580, wR2 = 0.	0929	
Absolute structure parameter	0(2)		
Largest diff. peak and hole	0.126 and -0.176 e.Å ⁻³	0.126 and -0.176 e.Å ⁻³	

	х	у	Z	U(eq)
C(1)	3423(2)	6405(1)	5940(3)	35(1)
C(2)	2830(2)	5826(1)	5592(3)	34(1)
C(3)	3226(2)	5181(1)	6167(3)	31(1)
C(4)	2637(2)	4567(1)	5830(3)	35(1)
C(5)	3057(2)	3954(1)	6351(3)	40(1)
C(6)	4106(2)	3918(1)	7231(3)	41(1)
C(7)	4687(2)	4500(1)	7585(3)	35(1)
C(8)	4262(2)	5147(1)	7093(3)	30(1)
C(9)	4836(2)	5768(1)	7486(3)	33(1)
C(10)	4429(2)	6383(1)	6937(3)	33(1)
C(11)	5063(2)	7036(1)	7379(3)	37(1)
C(12)	4475(2)	7476(1)	8835(3)	37(1)
C(13)	5209(2)	8085(1)	9369(3)	34(1)
C(14)	6268(2)	7956(1)	10183(3)	40(1)
C(15)	6953(2)	8476(1)	10698(3)	39(1)
C(16)	6643(2)	9166(1)	10416(3)	34(1)
C(17)	7335(2)	9721(1)	10915(3)	42(1)
C(18)	7012(2)	10373(1)	10601(4)	48(1)
C(19)	5980(2)	10508(1)	9779(3)	48(1)
C(20)	5284(2)	9988(1)	9280(4)	40(1)
C(21)	5596(2)	9300(1)	9592(3)	34(1)
C(22)	4899(2)	8746(1)	9096(3)	34(1)
C(23)	5287(2)	7458(1)	5803(4)	39(1)
C(24)	5478(3)	7790(1)	4551(4)	48(1)
C(25)	3341(2)	7690(1)	8334(3)	40(1)
C(26)	2435(3)	7879(1)	7925(4)	52(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for *d*,*l*-**27**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.363(3)
C(1)-C(10)	1.418(3)
C(1)-H(1A)	0.9500
C(2)-C(3)	1.416(3)
C(2)-H(2A)	0.9500
C(3)-C(4)	1.416(3)
C(3)-C(8)	1.421(3)
C(4)-C(5)	1.361(3)
C(4)-H(4A)	0.9500
C(5)-C(6)	1.418(3)
C(5)-H(5A)	0.9500
C(6)-C(7)	1.360(4)
C(6)-H(6A)	0.9500
C(7)-C(8)	1.416(3)
C(7)-H(7A)	0.9500
C(8)-C(9)	1.427(3)
C(9)-C(10)	1.364(3)
C(9)-H(9A)	0.9500
C(10)-C(11)	1.522(3)
C(11)-C(23)	1.481(3)
C(11)-C(12)	1.569(3)
C(11)-H(11A)	1.0000
C(12)-C(25)	1.462(4)
C(12)-C(13)	1.532(3)
C(12)-H(12A)	1.0000
C(13)-C(22)	1.363(3)
C(13)-C(14)	1.426(3)
C(14)-C(15)	1.362(3)
C(14)-H(14A)	0.9500
C(15)-C(16)	1.416(3)
C(15)-H(15A)	0.9500

Table 3. Bond lengths [Å] and angles $[\circ]$ for *d*,*l*-**27**.

C(16)-C(17)	1.415(3)
C(16)-C(21)	1.419(3)
C(17)-C(18)	1.356(3)
C(17)-H(17A)	0.9500
C(18)-C(19)	1.404(4)
C(18)-H(18A)	0.9500
C(19)-C(20)	1.366(4)
C(19)-H(19A)	0.9500
C(20)-C(21)	1.418(3)
C(20)-H(20A)	0.9500
C(21)-C(22)	1.417(3)
C(22)-H(22A)	0.9500
C(23)-C(24)	1.176(3)
C(24)-H(24)	0.9320
C(25)-C(26)	1.181(4)
C(26)-H(26)	0.9486
C(2) C(1) C(10)	121 1(2)
C(2) - C(1) - C(10)	110 5
C(10)-C(1)-H(1A)	119.5
C(1)-C(2)-C(3)	120.6(2)
C(1)-C(2)-H(2A)	119.7
C(3)-C(2)-H(2A)	119.7
C(4)-C(3)-C(2)	122.4(2)
C(4) - C(3) - C(8)	118.6(2)
C(2)-C(3)-C(8)	119.0(2)
C(5)-C(4)-C(3)	121.1(2)
C(5)-C(4)-H(4A)	119.5
C(3)-C(4)-H(4A)	119.5
C(4)-C(5)-C(6)	120.3(2)
C(4)-C(5)-H(5A)	119.9
C(6)-C(5)-H(5A)	119.9
C(7)-C(6)-C(5)	120.0(2)
C(7)-C(6)-H(6A)	120.0
C(5)-C(6)-H(6A)	120.0
C(6)-C(7)-C(8)	121.1(3)

C(6)-C(7)-H(7A)	119.4
C(8)-C(7)-H(7A)	119.4
C(7)-C(8)-C(3)	118.9(2)
C(7)-C(8)-C(9)	122.5(2)
C(3)-C(8)-C(9)	118.6(2)
C(10)-C(9)-C(8)	121.3(2)
C(10)-C(9)-H(9A)	119.4
C(8)-C(9)-H(9A)	119.4
C(9)-C(10)-C(1)	119.4(2)
C(9)-C(10)-C(11)	119.9(2)
C(1)-C(10)-C(11)	120.7(2)
C(23)-C(11)-C(10)	112.2(2)
C(23)-C(11)-C(12)	110.25(18)
C(10)-C(11)-C(12)	113.4(2)
C(23)-C(11)-H(11A)	106.8
C(10)-C(11)-H(11A)	106.8
C(12)-C(11)-H(11A)	106.8
C(25)-C(12)-C(13)	111.9(2)
C(25)-C(12)-C(11)	112.6(2)
C(13)-C(12)-C(11)	111.2(2)
C(25)-C(12)-H(12A)	106.9
C(13)-C(12)-H(12A)	106.9
C(11)-C(12)-H(12A)	106.9
C(22)-C(13)-C(14)	118.3(2)
C(22)-C(13)-C(12)	122.9(2)
C(14)-C(13)-C(12)	118.8(2)
C(15)-C(14)-C(13)	121.4(2)
C(15)-C(14)-H(14A)	119.3
C(13)-C(14)-H(14A)	119.3
C(14)-C(15)-C(16)	121.0(2)
C(14)-C(15)-H(15A)	119.5
C(16)-C(15)-H(15A)	119.5
C(17)-C(16)-C(15)	122.7(2)
C(17)-C(16)-C(21)	119.1(2)
C(15)-C(16)-C(21)	118.2(2)
C(18)-C(17)-C(16)	120.9(3)

C(18)-C(17)-H(17A)	119.6
C(16)-C(17)-H(17A)	119.6
C(17)-C(18)-C(19)	120.2(2)
C(17)-C(18)-H(18A)	119.9
C(19)-C(18)-H(18A)	119.9
C(20)-C(19)-C(18)	121.0(2)
C(20)-C(19)-H(19A)	119.5
C(18)-C(19)-H(19A)	119.5
C(19)-C(20)-C(21)	120.2(3)
C(19)-C(20)-H(20A)	119.9
C(21)-C(20)-H(20A)	119.9
C(22)-C(21)-C(20)	122.0(2)
C(22)-C(21)-C(16)	119.3(2)
C(20)-C(21)-C(16)	118.7(2)
C(13)-C(22)-C(21)	121.9(2)
C(13)-C(22)-H(22A)	119.0
C(21)-C(22)-H(22A)	119.0
C(24)-C(23)-C(11)	179.2(3)
C(23)-C(24)-H(24)	174.4
C(26)-C(25)-C(12)	178.3(3)
C(25)-C(26)-H(26)	177.8

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	44(2)	28(1)	34(1)	1(1)	0(1)	5(1)
C(2)	34(2)	35(1)	32(1)	-1(1)	-3(1)	3(1)
C(3)	34(2)	32(1)	26(1)	-1(1)	4(1)	1(1)
C(4)	36(2)	36(1)	32(1)	-5(1)	2(1)	-2(1)
C(5)	53(2)	29(1)	38(1)	-4(1)	5(1)	-5(1)
C(6)	59(2)	27(1)	35(1)	1(1)	6(1)	5(1)
C(7)	41(2)	33(1)	30(1)	-1(1)	0(1)	7(1)
C(8)	33(2)	32(1)	26(1)	-1(1)	4(1)	1(1)
C(9)	34(2)	34(1)	30(1)	-3(1)	-2(1)	2(1)
C(10)	37(2)	31(1)	30(1)	-2(1)	2(1)	-1(1)
C(11)	41(2)	31(1)	39(1)	-2(1)	0(1)	1(1)
C(12)	48(2)	33(1)	31(1)	0(1)	4(1)	-4(1)
C(13)	44(2)	31(1)	27(1)	0(1)	2(1)	-1(1)
C(14)	58(2)	31(1)	31(1)	2(1)	-2(1)	7(1)
C(15)	43(2)	42(1)	31(1)	-1(1)	-5(1)	5(1)
C(16)	39(2)	35(1)	27(1)	-4(1)	5(1)	0(1)
C(17)	40(2)	48(2)	37(1)	-5(1)	1(1)	-7(1)
C(18)	54(2)	42(2)	48(2)	-10(1)	7(2)	-15(1)
C(19)	60(2)	29(1)	55(2)	-1(1)	10(2)	1(1)
C(20)	43(2)	32(1)	45(1)	0(1)	2(1)	2(1)
C(21)	41(2)	30(1)	31(1)	-4(1)	4(1)	-1(1)
C(22)	41(2)	32(1)	30(1)	1(1)	-1(1)	1(1)
C(23)	43(2)	34(1)	41(1)	-11(1)	6(1)	-4(1)
C(24)	59(2)	44(2)	41(1)	-2(1)	7(1)	-7(1)
C(25)	48(2)	33(1)	39(1)	-4(1)	9(1)	-8(1)
C(26)	50(2)	45(2)	60(2)	-9(1)	8(2)	-4(2)

Table 4. Anisotropic displacement parameters (Å²x 10³) for *d*,*l*-**27**. The anisotropic displacement factor exponent takes the form: $-2p^{2}[h^{2} a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	Х	У	Z	U(eq)
H(1A)	3158	6831	5508	42
H(2A)	2143	5854	4958	41
H(4A)	1937	4584	5230	42
H(5A)	2645	3547	6125	48
H(6A)	4403	3488	7572	49
H(7A)	5390	4471	8173	42
H(9A)	5515	5753	8143	39
H(11A)	5811	6896	7859	44
H(12A)	4397	7179	9895	45
H(14A)	6501	7498	10370	48
H(15A)	7648	8375	11255	47
H(17A)	8034	9635	11476	50
H(18A)	7487	10741	10940	58
H(19A)	5762	10967	9566	57
H(20A)	4589	10088	8722	48
H(22A)	4195	8838	8557	41
H(24)	5565	8076	3583	77
H(26)	1696	8018	7623	77

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for d,l-**27**.

C(10)-C(1)-C(2)-C(3)	-2.3(4)
C(1)-C(2)-C(3)-C(4)	-179.9(2)
C(1)-C(2)-C(3)-C(8)	-0.8(3)
C(2)-C(3)-C(4)-C(5)	177.9(2)
C(8)-C(3)-C(4)-C(5)	-1.1(3)
C(3)-C(4)-C(5)-C(6)	-0.7(3)
C(4)-C(5)-C(6)-C(7)	1.2(3)
C(5)-C(6)-C(7)-C(8)	0.1(3)
C(6)-C(7)-C(8)-C(3)	-1.9(3)
C(6)-C(7)-C(8)-C(9)	178.3(2)
C(4)-C(3)-C(8)-C(7)	2.4(3)
C(2)-C(3)-C(8)-C(7)	-176.7(2)
C(4)-C(3)-C(8)-C(9)	-177.8(2)
C(2)-C(3)-C(8)-C(9)	3.1(3)
C(7)-C(8)-C(9)-C(10)	177.4(2)
C(3)-C(8)-C(9)-C(10)	-2.3(3)
C(8)-C(9)-C(10)-C(1)	-0.7(4)
C(8)-C(9)-C(10)-C(11)	180.0(2)
C(2)-C(1)-C(10)-C(9)	3.0(4)
C(2)-C(1)-C(10)-C(11)	-177.6(2)
C(9)-C(10)-C(11)-C(23)	127.5(2)
C(1)-C(10)-C(11)-C(23)	-51.8(3)
C(9)-C(10)-C(11)-C(12)	-106.7(3)
C(1)-C(10)-C(11)-C(12)	74.0(3)
C(23)-C(11)-C(12)-C(25)	67.0(3)
C(10)-C(11)-C(12)-C(25)	-59.8(3)
C(23)-C(11)-C(12)-C(13)	-59.4(3)
C(10)-C(11)-C(12)-C(13)	173.8(2)
C(25)-C(12)-C(13)-C(22)	-11.2(3)
C(11)-C(12)-C(13)-C(22)	115.6(3)

Table 6. Torsion angles [°] for d,l-27.

C(25)-C(12)-C(13)-C(14)	169.1(2)
C(11)-C(12)-C(13)-C(14)	-64.1(3)
C(22)-C(13)-C(14)-C(15)	0.8(4)
C(12)-C(13)-C(14)-C(15)	-179.5(2)
C(13)-C(14)-C(15)-C(16)	-1.0(4)
C(14)-C(15)-C(16)-C(17)	-179.3(2)
C(14)-C(15)-C(16)-C(21)	0.4(3)
C(15)-C(16)-C(17)-C(18)	179.2(3)
C(21)-C(16)-C(17)-C(18)	-0.6(4)
C(16)-C(17)-C(18)-C(19)	0.2(4)
C(17)-C(18)-C(19)-C(20)	0.0(4)
C(18)-C(19)-C(20)-C(21)	0.1(4)
C(19)-C(20)-C(21)-C(22)	-180.0(2)
C(19)-C(20)-C(21)-C(16)	-0.5(4)
C(17)-C(16)-C(21)-C(22)	-179.8(2)
C(15)-C(16)-C(21)-C(22)	0.4(3)
C(17)-C(16)-C(21)-C(20)	0.7(3)
C(15)-C(16)-C(21)-C(20)	-179.1(2)
C(14)-C(13)-C(22)-C(21)	0.1(3)
C(12)-C(13)-C(22)-C(21)	-179.6(2)
C(20)-C(21)-C(22)-C(13)	178.8(2)
C(16)-C(21)-C(22)-C(13)	-0.7(3)
C(10)-C(11)-C(23)-C(24)	-97(20)
C(12)-C(11)-C(23)-C(24)	135(20)
C(13)-C(12)-C(25)-C(26)	16(9)
C(11)-C(12)-C(25)-C(26)	-110(9)

¹H and ¹³C NMR spectra

of

d,I-9, *meso*-9, *d,I*-14, *meso*-20, *d,I*-23, *d,I*-24,

d,*l*-26, and *d*,*l*-27

	134.538 133.789 133.789 133.789 123.789 123.789 129.129 128.233 126.933 126.933 126.119 126.129 126.129 125.434 125.425 125.425 125.3355	83.154 83.154 77.224 77.110 76.907 76.589 73.553	39.525
200 180 1			40 20 0 ppm

