Supporting Information:

Confirmation of K-Momentum Dark Exciton Vibronic Sidebands Using ¹³C-labeled, Highly Enriched (6,5) Single-walled Carbon Nanotubes

Jeffrey L. Blackburn,[#]* Josh M. Holt,[#] Veronica Irurzun,[^] Daniel Resasco, [^] Garry Rumbles[#]

Chemical and Material Science Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, United States

[^] School of Chemical, Biological, and Materials Engineering, University of Oklahoma, 100 East Boyd Street, Sarkeys Energy Center, Norman, OK 73019, United States

Experimental Details

Two types of SWCNTs were prepared by the CoMoCAT® process. One sample, hereafter denoted "12C", was prepared by the typical CoMoCAT® process,²⁶ using ultrahigh purity ¹²CO. The other sample, "13C", was prepared using 100% ¹³CO (Cambridge Isotope Laboratories). Briefly, one gram of calcined catalyst was set into a vertical quartz reactor of $\frac{1}{2}$ inch diameter and pre-reduced under H₂ (300 sccm) for 30 minutes at 545 °C. Subsequently the temperature was raised to 680 °C under He (300 sccm). Carbon monoxide (300 sccm) was finally fed at 680 °C for 30 minutes.

The raw 12C and 13C samples were dispersed into aqueous solution using 1% (by weight) sodium cholate as a surfactant. The absorbance spectra of the un-enriched 12C and 13C samples appeared identical, and indicated that both samples contained a polydisperse mixture of semiconducting and metallic SWCNTs, with a range of diameters. Raman spectra of the un-enriched samples (not shown) indicate a mixture of s- and m-SWCNTs, with diameters in the range of \sim 0.7 to 1.0 nm.

To produce highly enriched (6,5) SWCNT samples, we subjected the 12C and 13C samples to density gradient ultracentrifugation (DGU). The 1% sodium cholate dispersions were diluted with a sodium cholate solution and iodixanol density gradient to produce solutions with 2% sodium cholate solution and 25% iodixanol. The DGU conditions were identical to those described previously for enrichment by diameter.¹⁴ The centrifuge tube was prepared with an iodixanol concentration ranging from 7.5% to 22.5%, and the SWCNT dispersions were loaded into the tube at the bottom of the density gradient. After centrifugation at 140,000 rpm in an SW41 swing-bucket rotor (207,570 x g avg. RCF), a purple band enriched in (6,5) SWCNTs was isolated at low density, at around half-height of the centrifuge tube. The 12C and 13C samples studied here were extracted just above this purple band, and appeared clear to the eye when placed into a 1 cm cuvette.

Raman spectroscopy was performed in a back-scattering configuration on the enriched samples after separation, using an excitation wavelength of 532 nm. Samples were excited in solution, and the excitation power was held to ≤ 50 mW. The slit width was 0.1 mm, allowing for a resolution of 2 - 4 cm⁻¹ across the measured spectrum.

Steady-state absorbance measurements were made using a Cary 500 double beam spectrometer at a spectral resolution of 1 nm. Photoluminescence spectra were obtained in front-face configuration using a modified Fourier transform instrument with excitation provided by a tungsten lamp coupled to a monochromator. The photoluminescence excitation (PLE) map of the un-enriched 12C sample (Supporting Information) indicates a diameter range from ~0.69 – 1.05 nm. The population distributions are determined by creating a histogram of the integrated intensity of each peak in a particular PLE spectrum. The given percentage of a particular SWCNT is calculated as the integrated intensity of that particular SWCNT divided by the total integrated intensity of all SWCNTs within the population. A PLE intensity histogram allows us to estimate the average diameter as 0.82 + - 0.068 nm for the un-enriched 12C sample and 0.77 + - 0.037 nm for the enriched samples. The population distribution for the enriched 12C and 13C samples are nearly identical.

Figure S1. Photoluminescence excitation (PLE) maps of un-enriched 12C sample, compared to (6,5)-enriched 12C sample.

Figure S2. Diameter distributions extracted from PLE spectra of un-enriched or (6,5)-enriched 12C samples.