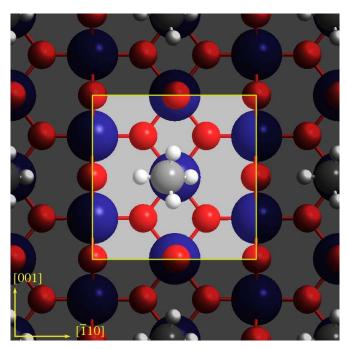

C–H Bond Activation of Methane via σ –d Interaction on the IrO₂(110) Surface: Density Functional Theory Study

Chia-Ching Wang, Shih Syong Siao, and Jyh-Chiang Jiang*


Department of Chemical Engineering, National Taiwan University of Science and Technology, 43,

Keelung Road, Section 4, Taipei, 106, Taiwan

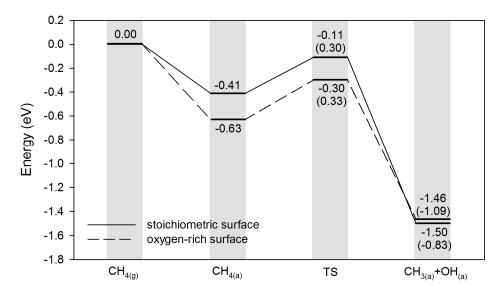

Supporting Information

Figure S1. (a) Top and (b) side views and layer definition of the $MO_2(110)$ (M = Ir, Ru or Ti) surface models applied in this work.

Figure S2. The top view of methane adsorption on the oxygen-rich $IrO_2(110)$ surface. The central rectangular demonstrates the 2 × 1 supercell.

Figure S3. The potential energy surface of methane adsorption and the hydrogen atom abstraction reaction on $IrO_2(110)$ surfaces.

TABLE S1: Selected Geometric Parameters (Å) of Transition State									
and	Final	State	of	Hydrogen	Atom	Abstraction	by	the	
Stoichiometric IrO ₂ (110) Surface									

	Transition State	Final State
d(C–H _a)	1.11	1.10
$d(C-H_b)$	1.40	2.36
$d(C-H_c)$	1.11	1.11
$d(O_{br}-H_b)$	1.28	0.98
$d(Ir_{cus}-C)$	2.26	2.07