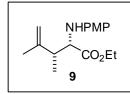
Absolute Configuration and Total Synthesis of a Novel Antimalarial Lipopeptide by the De Novo Preparation of Chiral Nonproteinogenic Amino Acids

Shibaji K. Ghosh,[†] Brinda Somanadhan,[‡] Kevin S.-W. Tan[§], Mark S. Butler^{‡,†}, Martin J. Lear^{†,*}

 [†]Department of Chemistry, Faculty of Science, and Medicinal Chemistry Program of the Life Sciences Institute, National University of Singapore, 3 Science Drive 3, Singapore 117543
[‡]MerLion Pharmaceuticals, The Capricorn #05-01, Singapore Science Park II, Singapore 117528
[§]Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597

Martin.Lear@nus.edu.sg

SUPPORTING INFORMATION

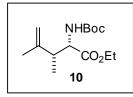

Contents			
1.	General Procedures and Methods	SI-2	
2.	Experimental Procedures and Characterization Data	SI-2	
3.	¹ H and ¹³ C NMR Spectra	SI-12	

1.General Procedures and Methods

Unless stated otherwise, all non-aqueous reactions were performed in flame-dried round bottom flasks under an inert argon atmosphere with freshly distilled dry solvents under anhydrous conditions. Tetrahydrofuran (THF) was distilled over sodium/benzophenone. Dichloromethane (CH₂Cl₂) was distilled over CaH₂. Commercial reagents were purchased from Sigma Aldrich, Fluka, Merck, Alfa Aesar or Strem Chemicals, and used as received without further purification. 4Å molecular sieves were activated by heating in a furnace at 300 °C for 20 h before storing in a dry dessicator, which would be heated at 200 °C under high vacuum for 15-20 min immediately prior to use. Yields refer to chromatographically and spectroscopically homogeneous materials, unless otherwise stated. Reaction progress was monitored by analytical thin layer chromatography (TLC) with 0.25 mm E. Merck precoated silica gel plates (60F-254) using UV light (254 nm) as visualizing agent, and ceric ammonium molybdate, KMnO4 or ninhydrin as developing stains. Flash chromatography was performed on silica gel 60 (0.040 – 0.063 mm) purchased from SiliCycle or ACME Research Support. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AMX500 (500 MHz) and Bruker ACF300 (300 MHz) NMR spectrometer at ambient atmosphere. 2D NMR was performed on Bruker AMX500 (500 MHz) NMR spectrometer. The deuterated solvents used were CDCl₃ and CD₃OD. Chemical shifts are reported in parts per million (ppm), and residual undeuterated solvent peaks were used as internal reference: proton (δ 7.26), carbon (δ 77.0) for CDCl₃ and proton (δ 3.31), carbon (δ 49.0) for CD₃OD . ¹H NMR coupling constants (J) are reported in Hertz (Hz), and multiplicities are presented as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublet), and br (broad). Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode. High resolution ESI mass spectra were obtained on a Bruker micrOTOF-Q II. Shimadzu LCMS-IT-TOF spectrometer was used for comparing retention time. Mass samples were dissolved in CH₃OH (HPLC Grade), unless otherwise stated. Samples for infra-red measurements were prepared as thin films neat or in CH₂Cl₂ solution spread on NaCl cells, and spectra were recorded on a IRPrestige-21 Shimadzu FTIR spectrometer. Optical rotations were recorded on a Jasco DIP-1000 polarimeter with a sodium lamp of wavelength 589 nm. Enantiomeric excess was determined by chiral-phase HPLC analysis on Shimadzu LC-10AT using the indicated chiral column.

2. Experimental Procedures and Characterization Data

(25,3R)-ethyl 2-(4-methoxyphenylamino)-3,4-dimethylpent-4-enoate (9): To a solution of

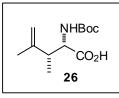


compound **8** (565 mg, 2.02 mmol) in dry THF (10 mL) was added Tebbe reagent (4.45 mL, 2.2 mmol) slowly at -78 °C and the reaction mixture was stirred at that temperature for 2 h and then slowly warmed up to room temperature and allowed to stirred for 12 h. THF (5 mL) was added to the reaction mixture and then 2.5 mL of 5% NaOH solution was added at -15 °C. After stirring for 10 min., it was warmed up to room temperature and filtered through short silica plug and washed with Et₂O. The collected

filtrate was extracted with Et₂O and the organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to get the crude material which was carefully purified over silica gel (7.5% EtOAc/hexane) to afford compound **9** (252 mg, 45%) as a yellow oil. $R_{\rm f} = 0.5$ (silica, 15% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = -90.2$ (c = 2.0, CHCl₃); IR (thin film) $v_{\rm max} = 3373$, 2979,

 $R_{\rm f} = 0.5$ (silica, 15% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = -90.2$ (c = 2.0, CHCl₃); IR (thin film) $v_{\rm max} = 3373$, 2979, 2832, 1729, 1516, 1369, 1241, 1182, 1036, 895, 821 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.77-6.74 (2H, d, J = 8.9 Hz), 6.61-6.59 (2H, d, J = 8.9 Hz), 4.82 (2H, s), 4.14-4.07 (2H, m), 3.92-3.90 (1H, d, J = 7.56 Hz), 3.77-3.73 (4H, m), 2.63-2.60 (1H, m), 1.78 (3H, s), 1.22-1.18 (6H, m); ¹³C NMR (CDCl₃, 125 MHz) δ 173.71, 152.78, 145.94, 141.41, 115.29, 114.83, 112.84, 61.69, 60.67, 55.70, 44.70, 19.52, 15.43, 14.18; HRMS (ESI): m/z calcd for C₁₆H₂₃O₃NNa⁺ [M+Na]⁺ 300.1570, found 300.1579.

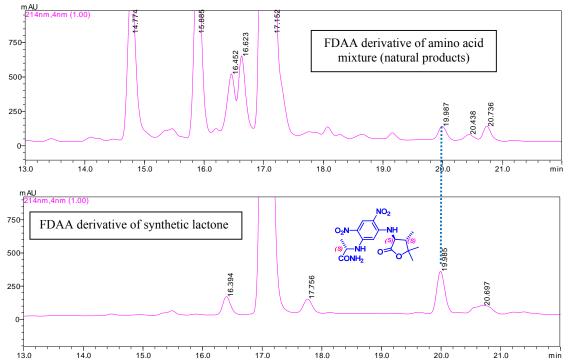
(2S,3R)-ethyl 2-(tert-butoxycarbonylamino)-3,4-dimethylpent-4-enoate (10): To a solution of ceric


ammonium nitrate (CAN) (643.3 mg, 0.47 mmol) in H₂O (10 mL) was added compound **9** (130 mg, 1.2 mmol) in acetonitrile (5 mL) dropwise at 0 $^{\circ}$ C and the reaction mixture was stirred at that temperature for 45 min. The reaction mixture was diluted with Et₂O and 1M HCl (5 mL) was added and it was extracted. The aqueous layer was basified with sat. NaHCO₃ and extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to get the

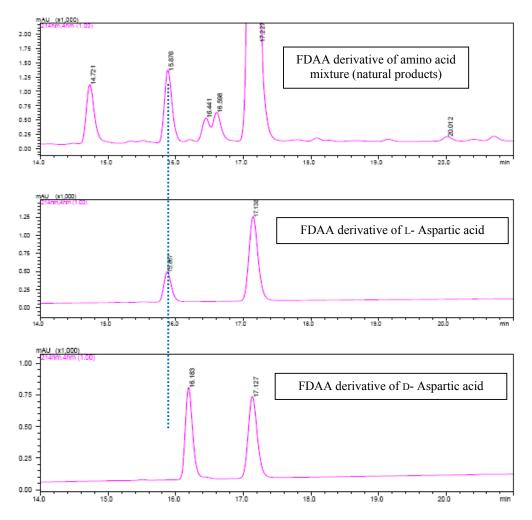
crude material which was dissolved in Dioxane/H₂O (3.0 mL/1.0 mL). To this soln. were added Et₃N

(68 μ L, 0.5 mmol) and (Boc)₂O (142 μ L, 0.62 mmol) at 0 °C and the reaction mixture was stirred at room temperature for 12 h. The reaction mixture was extracted with EtOAc and washed with brine, dried over Na₂SO₄. The solvent was removed under reduced pressure to get the crude material which was purified over silica gel (7.5% EtOAc/hexane) to afford compound **10** (80 mg, 63%) as a colourless oil.

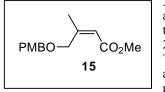
Generation Constant Constant


(2S,3R)-2-(tert-butoxycarbonylamino)-3,4-dimethylpent-4-enoic acid (26): To a solution of

Compound **10** (110 mg, 0.41 mmol) in THF/H₂O/MeOH (2 mL/2 mL/0.4 mL) was added LiOH (11 mg, 0.45 mmol) at 0 °C and the reaction mixture was allowed to stir for 2 h at that temperature. After completion of the reaction (monitored by TLC), the reaction mixture was extracted with Et₂O. The aqueous layer was acidified with 10% NaHSO₄ to pH 2-3 and then extracted with EtOAc, washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford compound **26** (102


mg, 85%) as a colourless oil.

 $R_{\rm f} = 0.2$ (silica, 5% CH₃OH/CH₂Cl₂); $[\alpha]_{\rm D}^{25} = +17.8$ (c = 0.64, CHCl₃); IR (thin film) $v_{\rm max} = 3324$, 2977, 2363, 1734, 1507, 1163 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 4.98-4.97 (1H, br), 4.85-4.78 (2H), 4.45 (1H, s), 2.65-2.64 (1H, br), 1.78 (3H, s), 1.42 (9H, s), 1.07-1.06 (3H, d, J = 6.95 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 176.91, 155.67, 145.31, 112.52, 80.07, 55.99, 42.94, 28.24, 20.57, 13.99; HRMS (ESI): m/z calcd for C₁₂H₂₀O₄N [M-H] 242.1398, found 242.1398.



LCMS chromatogram:

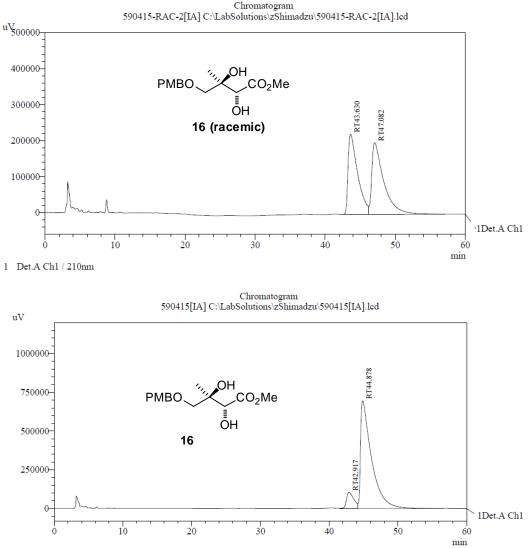
LCMS chromatogram for determining aspartic acid:

(Z)-methyl 4-(4-methoxybenzyloxy)-3-methylbut-2-enoate (15): To the suspension of CuI (640 mg,

3.36 mmol) in dry THF (10 mL) was added MeLi (3.35 mL, 6.70 mmol) at 0 °C and the reaction mixture was allowed to stir for 30 min. at that temperature. To this colourless soln. was added compound **14** (555 mg, 2.24 mmol) dropwise at -78 °C and stirred at that temperature for 4 h. To this reaction mixture was added 16 mL sat. NH₄Cl soln dropwise and after complete addition it was kept at -78 °C for 10 min. The reaction mixture was then warmed up slowly to room temperature. The

precipitate was filtered and the filtrate was extracted with Et_2O . The organic layer was washed with brine and dried over Na_2SO_4 . The solvent was removed under reduced pressure to get the crude material which was purified over silica gel (1.5% EtOAc/hexane) to obtain compound **15** (400 mg, 69%, exclusive Z-isomer) as a colourless oil.

 $R_{\rm f} = 0.7$ (silica, 5% EtOAc/hexane); IR (thin film) $v_{\rm max} = 2952$, 2838, 1716, 1613, 1515, 1444, 1363, 1248, 1153, 1035, 1032, 820 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.26-7.24 (2H, d, J = 8.2 Hz), 6.87-6.85 (2H, d, J = 8.85 Hz), 5.74 (1H, d, J = 1.9 Hz) 4.61 (2H, s), 4.43 (4H, s), 3.78 (3H, s), 3.66 (3H, s), 1.98 (3H, s); ¹³C NMR (CDCl₃, 125 MHz) δ 166.29, 156.18, 157.47, 130.32, 129.23, 116.70, 113.74, 72.35, 68.99, 55.20, 50.97, 21.69; HRMS (ESI): *m*/*z* calcd for C₁₄H₁₈O₄Na⁺ [M+Na]⁺ 273.1097, found 273.1106.

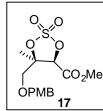

(2R,3R)-methyl 2,3-dihydroxy-4-(4-methoxybenzyloxy)-3-methylbutanoate (16) : To a solution of

16 ÖH

compound **15** (80 mg, 0.30 mmol) in ^tBuOH/H₂O (1:1, 8 mL) were added AD-mix α (420 mg, 1.4 gm/mmol) and methanesulfonamide (30 mg, 100 mg/mmol) at -1 °C and the reaction mixture was allowed to stir

for 96 h at that temperature. The reaction was quenched by addition of Na_2SO_3 (444 mg, 1.48 mg/mmol) and stirred for 1 h at room temperature until it became colourless. CH_2Cl_2 was used for extraction and the organic layer was washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure to get the crude product which was purified over silica gel (20% EtOAc/hexane) to obtain compound **16** (75 mg, 85%) as a colourless oil. The enantiomeric excess was determined through HPLC analysis with Chiralpak-IA column (0.46 cm x25 cm) using hexanes/2-propanol (90:10) at a flow rate of 1.0 mL/min; detection UV 210 nm; 82 % *ee*.

R_f = 0.3 (silica, 25% EtOAc/hexane); $[α]_D^{25} = -16.2$ (c = 4.0, CHCl₃); IR (thin film) $v_{max} = 3473$, 2954, 2863, 1728, 1613, 1515, 1248, 1174, 1091, 1032 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.23 (2H, d, J = 8.85 Hz), 6.88 (2H, d, J = 8.85 Hz), 4.43 (2H, s), 4.1 (1H, s), 3.80 (3H, s), 3.7 (3H, s), 3.47 (1H, d, J = 9.45 Hz), 3.37 (1H, d, J = 8.85 Hz), 1.22 (3H, s); ¹³C NMR (CDCl₃, 125 MHz) δ 173.39, 159.35, 129.44, 113.8, 75.26, 74.31, 73.32, 73.18, 55.25, 52.39, 20.65; HRMS (ESI): m/z calcd for C₁₄H₂₀O₆Na⁺ [M+Na]⁺ 307.1152, found 307.1159.

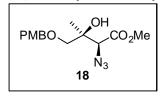


1 Det.A Ch1 / 210nm

PeakTable

Detector A Ch1 210nm							
	Peak#	Name	Ret. Time	Area	Height	Area %	Units
	1	RT42.917	42.917	7642634	102964	8.989	ppm
	2	RT44.878	44.878	77378875	694312	91.011	ppm
	Total			85021509	797275	100.000	

Cyclic sulfate (17): To a solution of compound 16 (835 mg, 2.94 mmol) in CH₂Cl₂ (20 mL) were added

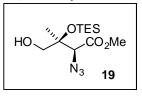


Et₃N (1.03 mL, 7.35 mmol) and SOCl₂ (540 μ L, 7.35 mmol) carefully at 0 °C and then the reaction mixture was allowed to stir for 30 min. at that temperature. After consumption of the starting material (checked by TLC), CH₂Cl₂ was evaporated in vacuo and the resulting cyclic sulphite was eluted with Et₂O through silica plug. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was dissolved in CH₃CN (14 mL). To this soln. were added RuCl₃ (2 mg), NaIO₄ (1.13 gm, 5.3 mmol), and H₂O (18 mL) at 0 °C and the reaction mixture was

allowed to stir for 30 min. at that temperature. The reaction mixture was diluted with Et_2O and extracted. The organic layer was washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure to get the crude product which was purified over silica gel (20% EtOAc/hexane) to afford compound **17** (800 mg, 79%) as a colourless oil.

 $R_{\rm f} = 0.45$ (silica, 20% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = +34.3$ (c = 4.2, CHCl₃); IR (thin film) $v_{\rm max} = 2957$, 2875, 1766, 1742, 1612, 1516, 1440, 1418, 1302, 1249, 1215, 1176 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.21 (2H, d, J = 8.7 Hz), 6.88 (2H, d, J = 8.7 Hz), 4.99 (1H, s), 4.43 (2H, q), 3.8 (3H, s), 3.77 (1H, d, J = 10.35 Hz), 3.7 (3H, s), 3.59 (1H, d, J = 10.35 Hz), 1.75 (3H, s); ¹³C NMR (CDCl₃, 75 MHz) δ 163.65, 159.50, 129.38, 128.72, 113.85, 91.87, 81.56, 73.35, 69.89, 55.26, 53.02, 22.15; HRMS (ESI): m/z calcd for C₁₄H₁₈O₈SNa⁺ [M+Na]⁺ 369.0615, found 369.0624.

(25,35)-methyl 2-azido-3-hydroxy-4-(4-methoxybenzyloxy)-3-methylbutanoate (18): To a solution

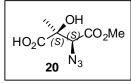


of compound **17** (800 mg, 2.31 mmol) in acetone/H₂O (56 mL/ 14 mL) was added NaN₃ (900 mg, 13.87 mmol) and the mixture was heated at 50 °C for 9 h. After consumption of the starting material (checked by TLC), acetone was evaporated in vacuo and the residue was dissolved in Et₂O. 20% H₂SO₄ (10 mL) was added carefully at 0 °C and the mixture was allowed to stir for 12 h at room temperature. Et₂O was used for extraction and the organic layer was washed with brine, dried over

Na₂SO₄, and concentrated under reduced pressure to get the crude product which was purified over silica gel (15% EtOAc/hexane) to obtain compound **18** (560 mg, 78%) as colourless oil. $R_f = 0.48$ (silica, 20% EtOAc/hexane); $[\alpha]_D^{25} = -34.4$ (c = 4.5, CHCl₃); IR (thin film) $v_{max} = 3512$, 2909,

R_f = 0.48 (silica, 20% EtOAc/hexane); $[α]_D^{25}$ = -34.4 (*c* = 4.5, CHCl₃); IR (thin film) *v*_{max} = 3512, 2909, 2864, 2114, 1733, 1613, 1514, 1248, 1207, 1175, 1094, 1032, 821 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.23 (2H, d, *J* = 8.7 Hz), 6.88 (2H, d, *J* = 8.7 Hz), 4.43 (2H, s), 4.02 (1H, s), 3.80 (3H, s), 3.66 (3H, s), 3.47 (1H, d, *J*= 9.36 Hz), 3.37 (1H, d, *J*= 9.36 Hz), 1.26 (3H, s); ¹³C NMR (CDCl₃, 75 MHz) δ 169.43, 159.39, 129.62, 129.58, 113.77, 74.39, 73.7, 73.29, 66.7, 55.27, 52.52, 22.29; HRMS (ESI): *m/z* calcd for C₁₄H₁₉O₅N₃Na⁺ [M+Na]⁺ 332.1217, found 332.1229.

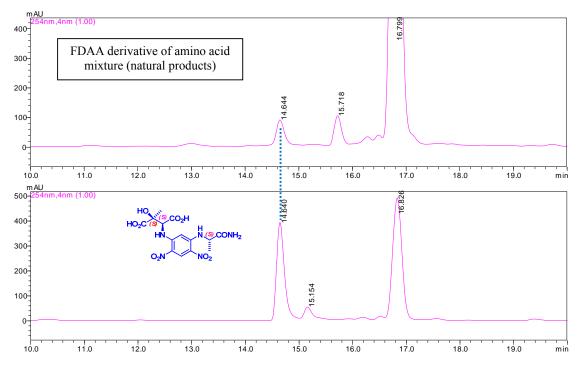
(25,35)-methyl 2-azido-3-(diethyl(propyl)silyloxy)-4-hydroxy-3-methylbutanoate (19): To a

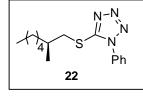


solution of compound **18** (560 mg, 1.81 mmol) in CH₂Cl₂ (20 mL) were added Et₃N (1.02 mL, 7.25 mmol) and TESOTf (1.02 mL, 4.53 mmol) slowly at 0 °C and it was allowed to stir for 45 min. at that temperature. CH₂Cl₂ was used for extraction and was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel to get 680 mg (1.61 mmol) of pure protected compound. To a solution of the TES protected compound in

 CH_2Cl_2 (30 mL) were added 6.1 mL phosphate buffer (pH 7.5) and DDQ (912 mg, 4.02 mmol) at 0 °C and it was allowed to stir for 3 h at room temperature. After completion of the reaction, it was directly transferred into a silica gel column and purified (7.5% EtOAc/hexane) to obtain compound **19** (268 mg, 70% over two steps) as a colourless oil.

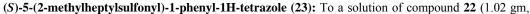
 $R_{\rm f} = 0.5$ (silica, 20% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = +15.6$ (c = 1.0, CHCl₃); IR (thin film) $v_{\rm max} = 3440$, 2956, 2878, 2114, 1747, 1458, 1436, 1277, 1243, 1174, 1057, 1010, 746 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 3.94 (1H, s), 3.84 (3H, s), 3.65-3.57 (1H, dd, J = 11.35, 7.55 Hz), 3.56-3.53 (1H, dd, J = 11.35, 7.55 Hz), 2.0-1.98 (1H, m), 1.38 (3H, s), 0.97 (9H, t, J = 8.2), 0.64 (6H, q, J = 8.2); ¹³C NMR (CDCl₃, 125 MHz) δ 169.20, 78.31, 68.40, 67.38, 52.40, 21.93, 6.83, 6.58; HRMS (ESI): m/z calcd for C₁₂H₂₆O₄N₃Si [M+H] 304.1693, found 304.2841.

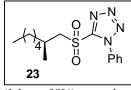

(25,35)-3-azido-2-hydroxy-4-methoxy-2-methyl-4-oxobutanoic acid (20): To a solution of compound


19 (240 mg, 0.8 mmol) in dry CH_2Cl_2 (25 mL) were added TEMPO (25 mg, 0.16 mmol) and diacetoxyiodobenzene (773 mg, 2.4 mmol) at 0 °C and it was allowed to stir for 10 h. at room temperature. CH_2Cl_2 was concentrated

and directly transferred into a silica gel column and purified (3% EtOAc/hexane) to obtain 168 mg (70%) of aldehyde which was again dissolved in THF/H₂O/^hBuOH (12 mL/ 12 mL/ 2.4 mL) and to this soln. were added 4.8 mL 2-methyl-2-butene, NaClO₂ (160 mg, 1.8 mmol) and NaH₂PO₄ (400 mg, 3.34 mmol) in 6 mL H₂O at 0 °C and the reaction mixture was allowed to stir for 12 h at room temperature. THF was removed under reduced pressure and 50 mL 1M HCl was added and then extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the residue which was dissolved in 12 mL sat. NaHCO₃ and extracted with Et₂O. The aqueous layer was acidified with 10 mL 3M HCl and then extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to obtain compound **20** (101mg, 63% over two steps) as a colourless oil.

(101mg, 63% over two steps) as a colourless oil. $R_{\rm f} = 0.2$ (silica, 5% CH₃OH/CH₂Cl₂); $[\alpha]_{\rm D}^{25} = -44.1$ (c = 2.0, CHCl₃); IR (thin film) $v_{\rm max} = 3490$, 2959, 2117, 1730, 1438, 1263, 1215, 1182, 1106, 1013, 847 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 4.16 (1H, s), 3.88 (3H, s), 1.57 (3H, s); ¹³C NMR (CDCl₃, 75 MHz) δ 176.61, 167.99, 66.37, 53.03, 23.05; HRMS (ESI): *m/z* calcd for C₆H₈O₅N₃ [M-H] 202.0469, found 202.0473.

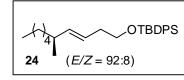

(S)-5-(2-methylheptylthio)-1-phenyl-1H-tetrazole (22): To a solution of compound 21a (1.9 gm, 6.27



mmol) in dry Et₂O (25 mL) was added LiBH₄ (410 mg, 18.81 mmol) at 0 $^{\circ}$ C and it was allowed to stir for 2 h. at room temperature. MeOH was added slowly to quench and after getting the clear soln., the solvent was evaporated and the residue was extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to obtain 600 mg of pure corresponding alcohol (74%). To the soln, of resulting alcohol in dry THF (50 mL) were added PPh₃ (1.7 gm,

6.46 mmol), 1-phenyl-1H-tetrazole-5-thiol (1.15 gm, 6.46 mmol) and DIAD (1.3 mL, 6.46 mmol) at 0 °C and it was allowed to stir for 8 h. at room temperature. THF was concentrated and directly transferred into silica gel column and purified (5% EtOAc/hexane) to obtain compound **22** (1.02 gm, 56% over two steps) as a colourless oil.

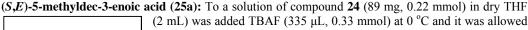
 $R_{\rm f}$ = 0.6 (silica, 15% EtOAc/hexane); [α]_D²⁵ = +1.4 (*c* = 1.84, CHCl₃); IR (thin film) $v_{\rm max}$ = 2957, 2927, 2856, 1600, 1500, 1386, 1240, 760 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.54-7.51 (4H, m), 5.24-5.21 (1H, m), 3.47-3.43 (1H, dd, *J*= 12.6, 5.7 Hz), 3.27-3.23 (1H, m), 1.93-1.90 (1H, m), 1.49-1.34 (2H, m), 1.31-1.22 (7H, m), 1.03-1.01 (3H, d, *J*= 6.3 Hz), 0.88-0.86 (3H, t, *J*= 6.95 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 154.72, 133.77, 130.00, 129.71, 123.85, 74.29, 40.53, 35.84, 32.91, 31.86, 26.42, 22.52, 21.54, 19.05, 13.98; HRMS (ESI): *m/z* calcd for C₁₅H₂₂N₄SNa⁺ [M+Na]⁺ 313.1457, found 313.1455.

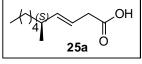


3.52 mmol) in absolute EtOH (60 mL) was added (NH₄)₆Mo₇O₂₄.4H₂O (870 mg, 0.7 mmol) dissolved in 19 mL H₂O₂ at 0 °C and it was allowed to stir for 8 h. at room temperature. The solvent was evaporated and then the residue was extracted with EtOAc, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel (7.5% EtOAc/hexane) to afford compound 23

(1.1 gm, 98%) as a colourless oil.

 $R_{\rm f} = 0.38$ (silica, 15% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = -8.3$ (c = 1.75, CHCl₃); IR (thin film) $v_{\rm max} = 2957$, 2930, 2859, 1497, 1339, 1153, 762 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.70-7.66 (2H, m), 7.62-7.56 (3H, m), 3.84-3.77 (1H, dd, J= 14.5, 4.9 Hz), 3.61-3.54 (1H, dd, J= 14.5, 8.07 Hz), 2.36-2.30 (1H, m), 1.57-1.50 (1H, m), 1.38-1.28 (7H, m), 1.16-1.14 (3H, d, J=6.8 Hz), 0.90-0.85 (3H, t, J=7.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 154.08, 133.07, 131.40, 129.63, 125.13, 61.84, 36.49, 31.57, 28.22, 25.93, 22.46, 19.68, 13.95; HRMS (ESI): m/z calcd for C₁₅H₂₂O₂N₄SNa⁺ [M+Na]⁺ 345.1356, found 345.1348.

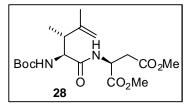

(S,E)-tert-butyl(5-methyldec-3-enyloxy)diphenylsilane (24): To a solution of compound 23 (200 mg,



0.62 mmol) in dry DME (4 mL) was added KHMDS (1.4 mL, 0.5M in toluene, 0.7 mmol) dropwise at -60 °C and it was stirred at that temperature for 1 h. Then 3-(tert-butyldiphenylsilyloxy)propanal (290 mg, 0.92 mmol) in DME (4 mL) was added slowly at -60 °C and it was allowed to stir for 12 h. To this reaction mixture 2 mL H₂O was added and it was vigorously stirred for 1 h. The reaction

mixture was extracted with Et₂O, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel (1.5% EtOAc/hexane) to afford compound 24 (89 mg, 35%) as a colourless oil.

 $R_{\rm f} = 0.8$ (silica, 5% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = +13.5$ (c = 0.6, CHCl₃); IR (thin film) $v_{\rm max} = 2957$, 2929, 2857, 1738, 1472, 1429, 1112, 969, 823, 736 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 7.69-7.67 (4H, d, J =5.8 Hz), 7.42-7.35 (6H, m), 5.37-5.34 (2H, m), 3.70-3.66 (2H, t, J= 6.6 Hz), 2.29-2.23 (2H, m), 2.05 (1H, m), 1.44-1.25 (10H, m), 1.05 (9H, s), 1.01-0.93 (3H, d, J = 8.0 Hz), 0.90-0.85 (3H, t, J= 7.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 138.66, 135.60, 134.13, 129.48, 127.55, 124.51, 64.12, 37.07, 36.73, 36.08, 32.02, 26.96, 26.85, 22.63, 20.68, 19.23, 14.10; GCMS (M-^tBu) 351.2.

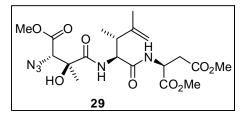


to stir for 2 h. at room temperature. The reaction was quenched with sat. NH₄Cl and THF was evaporated and the residue was extracted with Et₂O, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel (10%

EtOAc/hexane) to get 26 mg (70%) of corresponding alcohol. To the soln. of CrO₃ (100 mg, 1.0 mmol) in 1 mL 3M H₂SO₄ was added the alcohol in 2 mL acetone at 0 °C and it was allowed to stir for 3 h. at room temperature. The reaction mixture was quenched with EtOH and filtered through filter paper. The filtrate was concentrated and the residue was extracted with EtOAc, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel (25% EtOAc/hexane) to afford compound 25a (20 mg, 72%) as a colourless oil.

 $R_{\rm f} = 0.3$ (silica, 50% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = +14.0$ (c = 2.0, CHCl₃); IR (thin film) $v_{\rm max} = 2957, 2927, 2855, 1713, 1703, 1462, 1248, 969, 805, 725 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) <math>\delta$ 5.48-5.46 (2H, m), 3.07 (2H, d, J = 5.0 Hz), 1.29 (8H, br), 0.96 (3H, d, J = 8.0 Hz), 0.86 (3H, t, J = 7.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) & 176.66, 141.34, 118.95, 37.55, 36.77, 36.61, 31.93, 26.86, 22.61, 20.32, 14.05; HRMS (ESI): *m/z* calcd for C₁₁H₁₉O₂[M-H] 183.1391, found 183.1389.

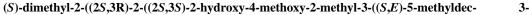
(S)-dimethyl-2-((2S,3R)-2-(tert-butoxycarbonylamino)-3,4-dimethylpent-4-enamido) succinate

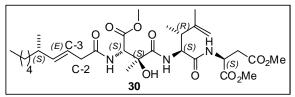


(28): To a soln. of 26 (60 mg, 0.25 mmol) in dry CH₂Cl₂ (2mL) were added DIPEA (87 µL, 0.5 mmol), dimethylasparate hydrochloride salt (73 mg, 0.37 mmol), HATU (113 mg, 0.3 mmol) and HOAt (3.5 mg, 0.03 mmol) at -10 °C and it was allowed to stir for 12 h. at room temperature. The reaction was extracted with CH₂Cl₂, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel (35% EtOAc/hexane) to afford

compound 28 (76 mg, 80%) as a colourless oil.

 $R_{\rm f} = 0.3$ (silica, 40% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = +22.4$ (c = 0.8, CHCl₃); IR (thin film) $v_{\rm max} = 3317, 3256, 3077, 2979, 1747, 1682, 1655, 1652, 1557, 1519, 1434, 1367, 1303, 1168, 1013 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) <math>\delta$ 6.98 (1H, br), 4.87 (2H, s), 4.77 (2H, s), 4.2 (1H, br), 3.74 (3H, s), 3.67 (3H, s), 3.0 (1H, dd, J = 17.6, 4.4 Hz), 2.86 (1H, dd, J = 17.6, 4.4 Hz), 2.68 (1H, t, J = 6.9), 1.77 (3H, s), 1.42 (9H, s), 0.99 (3H, d, J = 6.9); ¹³C NMR (CDCl₃, 125 MHz) δ 171.21, 170.72, 155.63, 145.96, 112.34, 80.13, 57.04, 52.66, 51.91, 48.68, 42.39, 35.98, 28.19, 21.08, 13.84; HRMS (ESI): m/z calcd for C₁₈H₃₀O₇N₂Na⁺ [M+Na]⁺ 409.1945, found 409.1953.

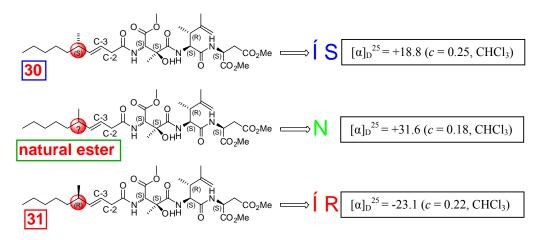

(S)-dimethyl-2-((2S,3R)-2-((2S,3S)-3-azido-2-hydroxy-4-methoxy-2-methyl-4-oxobutanamido)-3,4dimethylpent-4-enamido)succinate (29): To a soln. of 28 (30 mg, 0.08 mmol) in dry CH₂Cl₂ (1 mL)



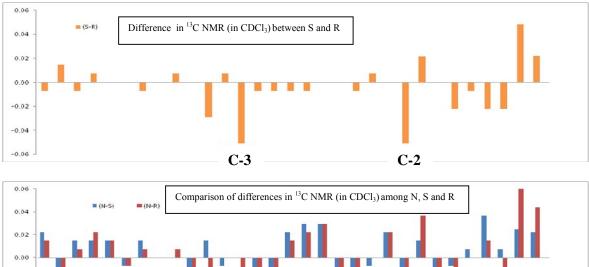
was added TFA (500 µL) at 0 °C and it was allowed to stir for 2 h. at room temperature. CH_2Cl_2 (1 mL) was concentrated under reduced pressure to get the TFA salt which was dissolved in dry CH_2Cl_2 (1 mL) and to this soln. were added DIPEA (34 µL, 0.2 mmol), compound **20** (16 mg, 0.08 mmol) in CH_2Cl_2 (1 mL) , HATU (60 mg, 0.16 mmol) and HOAt (5 mg, 0.04 mmol) at -10 °C and it was allowed to stir for 12 h. at room temperature.

The reaction was extracted with CH_2Cl_2 , washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure to get the crude product which was purified over silica gel (65% EtOAc/hexane) to obtain compound **29** (18 mg, 50% over two steps).

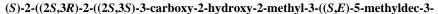
 $R_{\rm f} = 0.3$ (silica, 50% EtOAc/hexane); $[\alpha]_{\rm D}^{25} = -34.7$ (c = 1.0, CHCl₃); IR (thin film) $v_{\rm max} = 3305$, 2106, 1744, 1738, 1652, 1544, 1438, 1299, 1133, 1002, 912, 856, 732 cm⁻¹; H NMR (CDCl₃, 500 MHz) δ 7.19 (1H, d, J = 8.8 Hz), 6.99 (1H, d, J = 7.6 Hz), 4.91 (1H, s), 4.84 (1H, s), 4.80-4.78 (1H, m), 4.57-4.54 (1H, m), 4.23 (1H, s), 3.90 (1H, s), 3.85 (3H, s), 3.75 (3H, s), 3.69 (3H, s), 2.98 (1H, dd, J = 17.3, 4.4 Hz), 2.88 (1H, dd, 1H, dd, J = 17.3, 4.4 Hz), 2.88 (1H, dd, 1H, dd, J = 17.3, 4.4 Hz), 2.80-2.77 (1H, m), 1.8 (3H, s), 1.48 (3H, s), 1.08 (3H, d, J = 6.9 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 172.62, 171.24, 170.67, 170.46, 169.28, 145.60, 112.59, 65.84, 55.53, 52.90, 52.76, 52.03, 48.71, 42.14, 38.58, 35.85, 29.66, 23.92, 20.86, 14.11; HRMS (ESI): m/z calcd for C₁₉H₂₉O₉N₅Na⁺ [M+Na]⁺ 494.1857, found 494.1851.

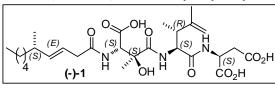


enamido)-4-oxobutanamido)-3,4dimethylpent-4-enamido)succinate (30): To a soln. of 29 (20 mg, 0.04 mmol) in THF/H₂O (3 mL/300 μ L) was added Me₃P (300 μ L, 1.0M in THF) at 0 °C and it was allowed to stir for 1 h. After complete consumption of 29 THF was removed in

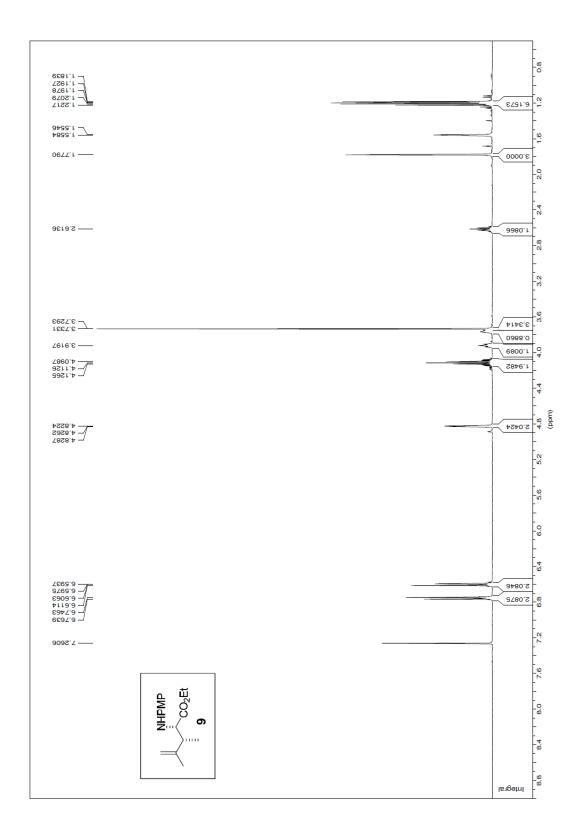

vacuo and extracted with EtOAc, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel (5% MeOH/ CH₂Cl₂) to get 13 mg (0.03 mmol) of corresponding amine which was dissolved in dry CH₂Cl₂ (3 mL). To this soln. were added DIPEA (15 μ L, 0.09 mmol), compound **25a** (8 mg, 0.04 mmol) in CH₂Cl₂ (2 mL) , HATU (35 mg, 0.09 mmol) and HOAt (2 mg, 0.02 mmol) at -10 °C and it was allowed to stir for 12 h. at room temperature. The reaction was extracted with CH₂Cl₂, washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude product which was purified over silica gel (50% EtOAc/hexane) to afford compound **30** (10 mg , 40% over two steps) as a colourless oil.

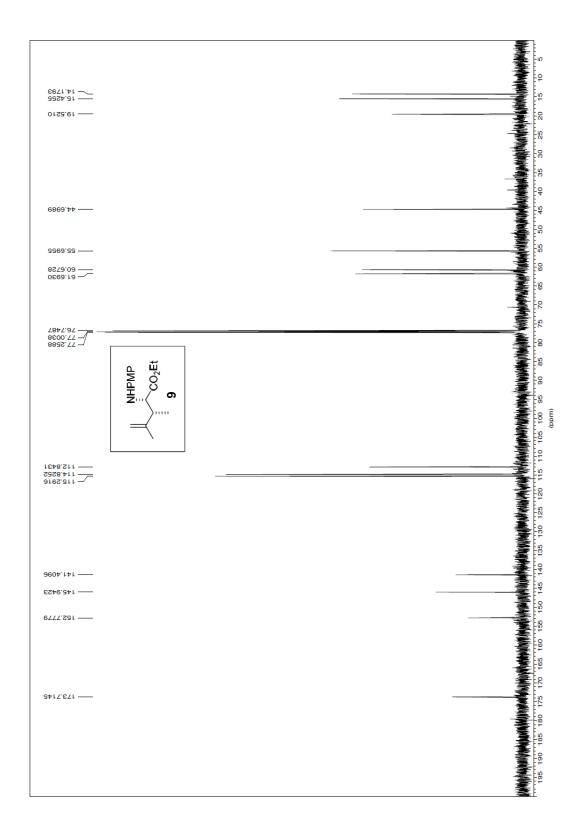
EtOAc/hexane) to afford compound **30** (10 mg , 40% over two steps) as a colourless oil. $R_f = 0.38$ (silica, 40% EtOAc/hexane); $[\alpha]_D^{25} = +18.8$ (c = 0.25, CHCl₃); IR (thin film) $v_{max} = 3289$, 2957, 2921, 2850, 1748, 1729, 1654, 1647, 1527, 1287, 1210, 1107 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.13 (1H, d, J = 8.8 Hz), 7.08 (1H, d, J = 8.2 Hz), 6.88 (1H, d, J = 8.2 Hz), 5.55 (2H, m), 4.9 (1H, s), 4.84 (3H, m), 4.77 (1H, m), 4.43 (1H, m), 3.75 (3H, s), 3.72 (3H, s), 3.68 (3H, s), 3.0 (3H, m), 2.86 (1H, dd, J = 17.3, 4.4 Hz), 2.75 (1H, t, J = 7 Hz), 2.16-2.13 (1H, m), 1.76 (3H, s), 1.46 (3H, s), 1.29 (8H, br), 1.04 (3H, d, J = 6.95 Hz), 0.97 (3H, d, J = 7.0 Hz), 0.87 (3H, t, J = 7.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 175.86, 172.74, 171.75, 171.29, 170.65, 170.03, 145.59, 142.48, 119.93, 112.68, 76.44, 57.56, 55.19, 52.92, 52.80, 52.04, 48.66, 42.16, 40.19, 36.77, 36.73, 35.88, 31.97, 29.69, 26.92, 23.97, 22.60, 20.93, 20.40, 14.15, 14.08; HRMS (ESI): m/z calcd for C₃₀H₄₉O₁₀N₃Na⁺ [M+Na]⁺ 634.3310, found 634.3291.

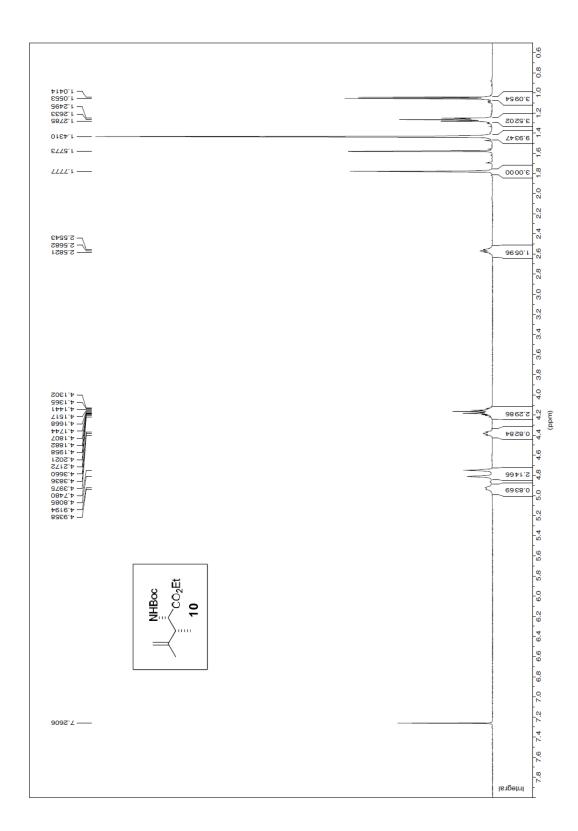


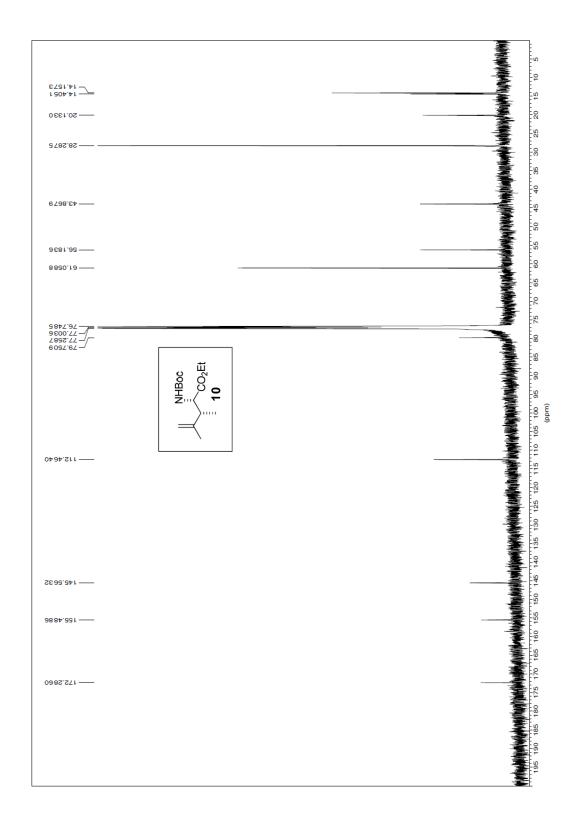

¹³ C NMR	in	CDCl ₃	in	125	MHz:
---------------------	----	-------------------	----	-----	------

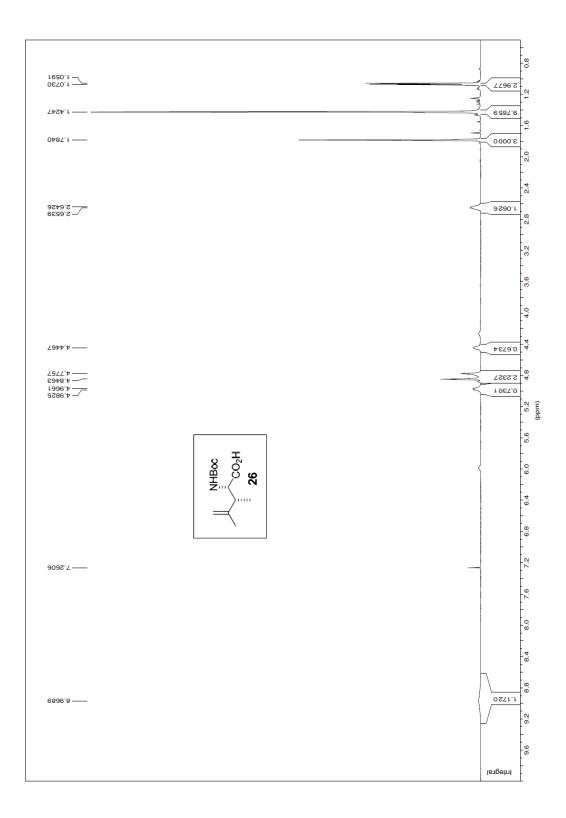
(7S) /52	(N)/pcwtcn'guvgt	(7R) /53
14.08	14.11	14.09
14.15	14.12	14.14
20.40	20.42	20.41
20.93	20.95	20.93
22.60	22.61	22.60
23.97	23.96	23.97
26.92	26.94	26.93
29.69	29.69	29.69
31.97	31.97	31.97
35.88	35.87	35.88
36.73	36.74	36.76
36.77	36.76	36.76
40.19	40.19	40.24
42.16	42.15	42.17
48.66	48.63	48.66
52.04	52.07	52.05
52.80	52.83	52.81
52.92	52.95	52.92
55.19	55.14	55.19
57.56	57.52	57.57
76.44	76.44	76.44
112.68	112.70	112.68
119.93	119.91	119.98
142.48	142.50	142.46
145.59	145.56	145.59
170.03	170.03	170.06
170.65	170.66	170.66
171.29	171.32	171.31
171.75	171.76	171.78
172.74	172.76	172.69
175.86	175.88	175.83

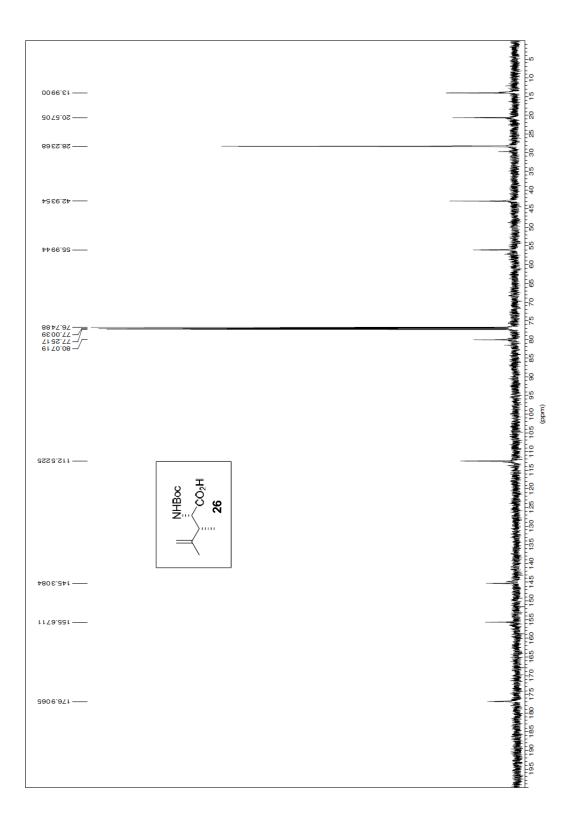


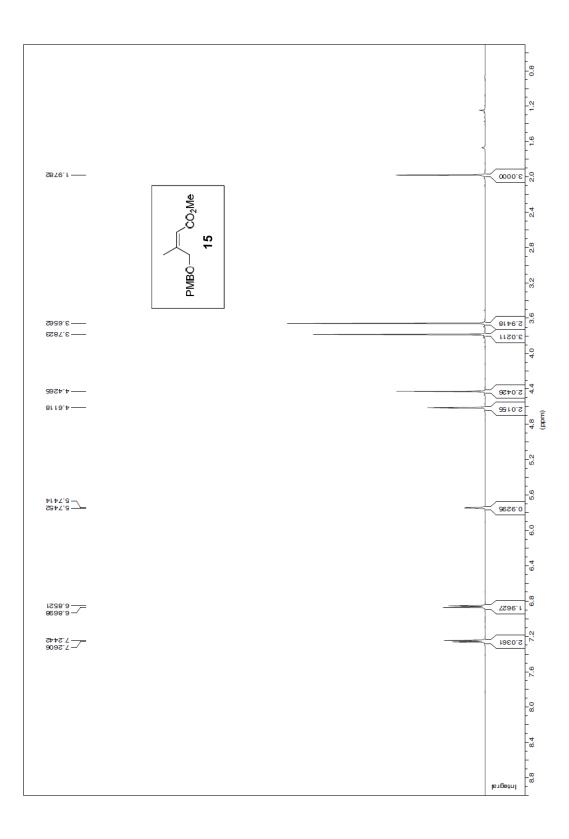


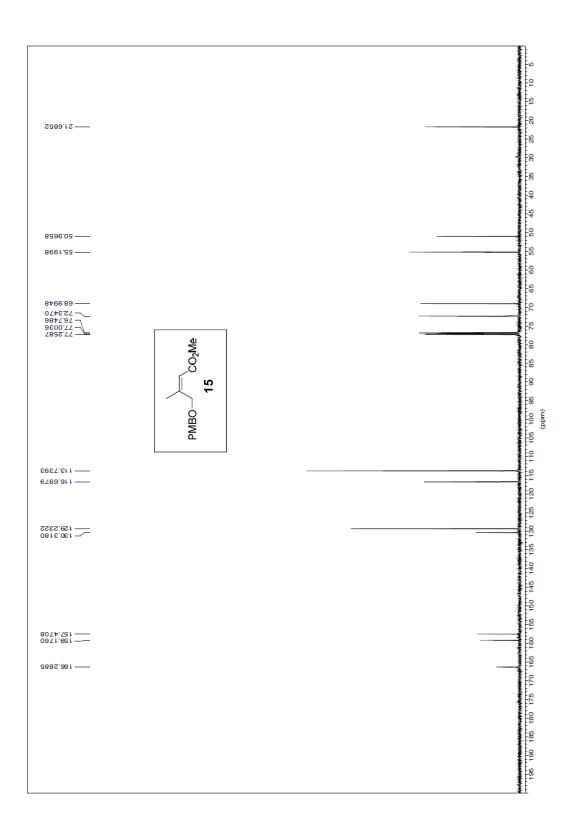

enamido)propanamido)-3,4-dimethylpent-4enamido)succinic acid (1) : To a soln. of 30 (3 mg, 0.005 mmol) in ClCH₂CH₂Cl (2 mL) was added Me₃SnOH (27 mg, 0.15 mmol) and the reaction mixture was heated at 80 °C for 48 h. ESI mass was checked for crude reaction

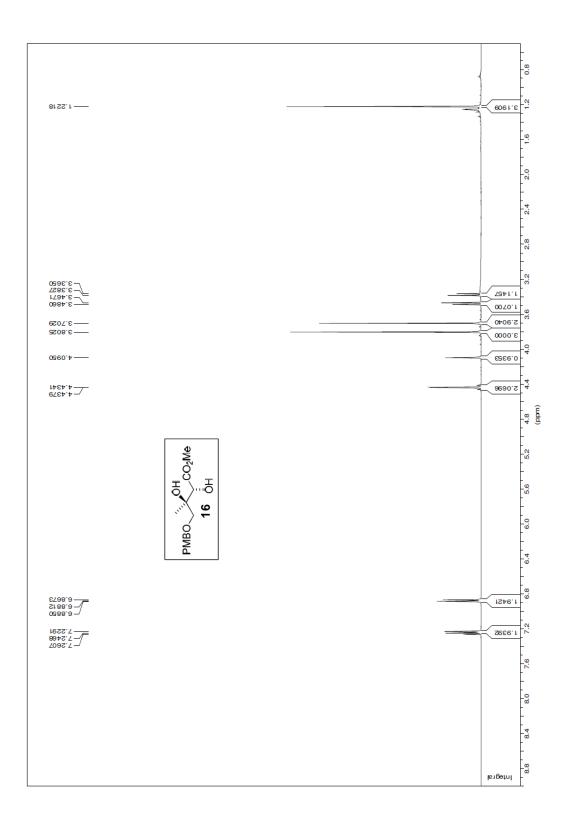

mixture and found di-acid as major product. The solvent was evaporated and the residue was extracted with EtOAc, washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure to get the crude product which was dissolved in THF/H₂O/MeOH (1 mL/1 mL/ 0.2 mL). To this soln. was added LiOH (10 mg, 0.42 mmol) at 0 °C and it was allowed to stir for 12 h. at room temperature. The reaction mixture was acidified with 3M HCl and extracted with EtOAc, washed with brine, dried over Na_2SO_4 and concentrated under reduced pressure to get the crude product which was purified by prep. HPLC to afford compound **1** (1.3 mg, 46%) as a colourless oil.

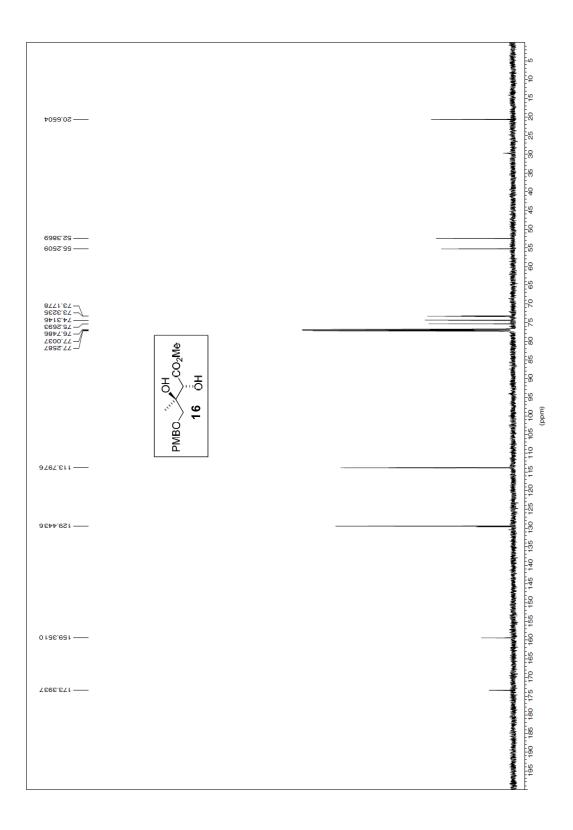

 $R_{\rm f} = 0.1$ (silica, 20% CH₃OH/CH₂Cl₂); $[\alpha]_{\rm D}^{25} = -20.0$ (c = 0.1, CH₃OH); IR (thin film) $v_{\rm max} = 2927$, 2855, 1733, 1656, 1521, 1195 cm⁻¹; ¹H NMR (MeOD-4, 500 MHz) δ 5.52-5.0 (2H, m), 4.61-4.6 (2H, m), 4.43 (1H, d, J = 6.9 Hz), 2.97 (2H, d, J = 6.9 Hz), 2.81 (2H, t, J = 7.0 Hz), 2.67-2.65 (2H, m), 2.13 (1H, m), 1.76 (3H, s), 1.44 (3H, s), 1.29 (8H, br), 1.07 (3H, d, J = 6.9 Hz), 0.97 (3H, d, J = 6.9 Hz), 0.89 (3H, t, J = 7.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 176.35, 174.13, 173.95, 173.59, 173.28, 172.66, 147.01, 142.79, 121.74, 113.38, 76.51, 57.12, 50.33, 44.33, 40.63, 38.09, 38.00, 36.83, 33.15, 28.10, 24.45, 23.67, 20.95, 20.45, 15.55, 14.43; HRMS (ESI): *m/z* calcd for C₂₇H₄₂O₁₀N₃[M-H] 568.2876, found 568.2868.

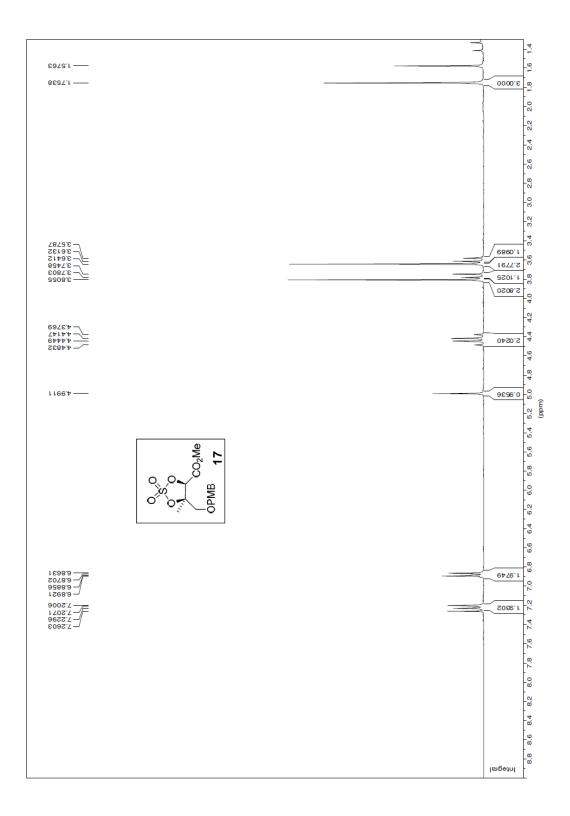


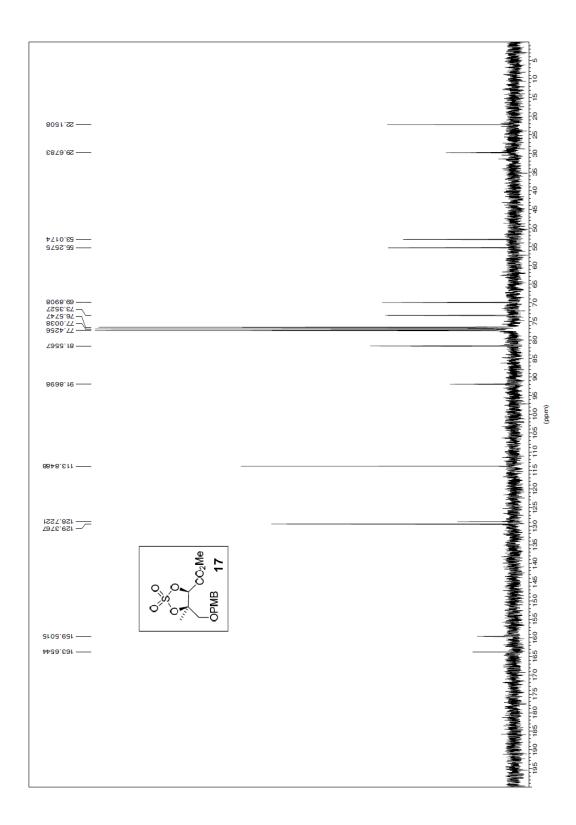


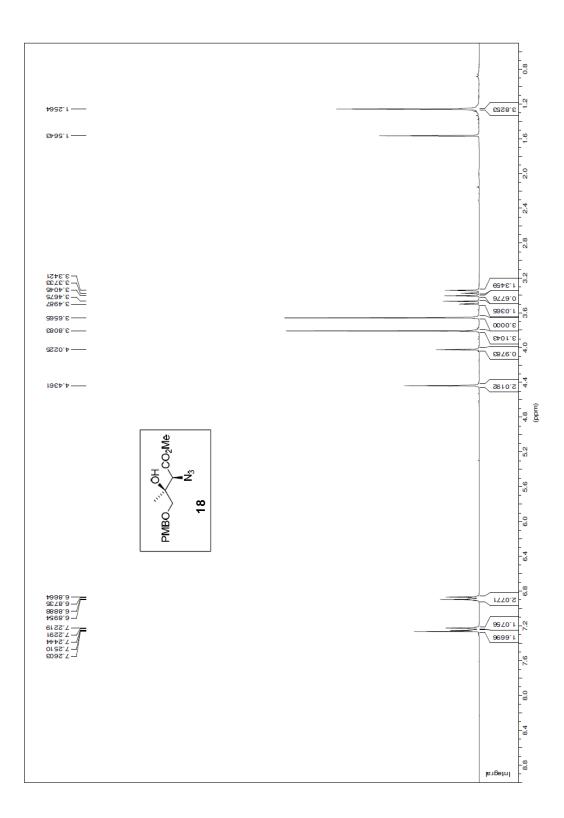


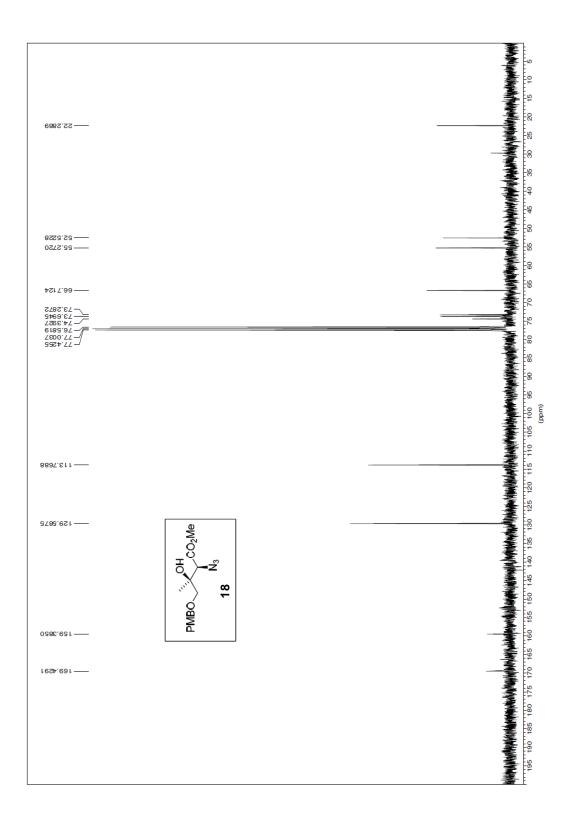


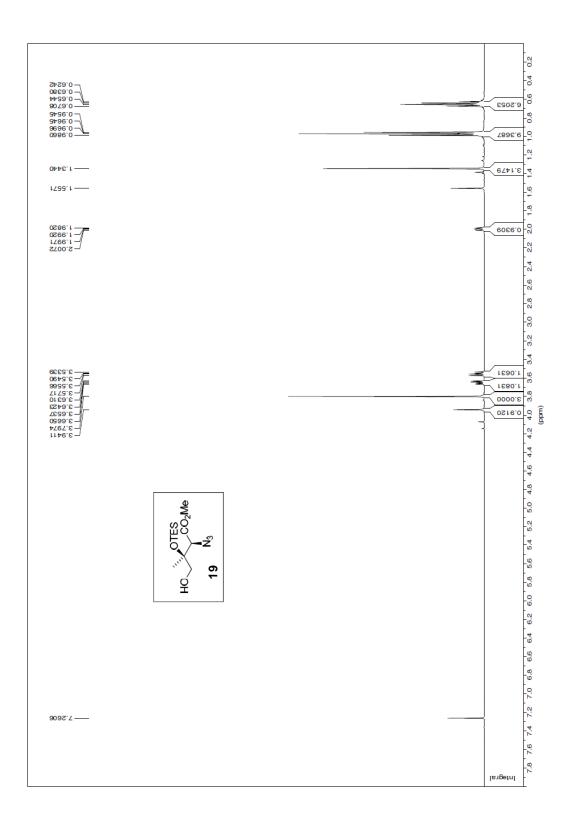











SI-21

