The Total Synthesis of Mevashuntin

Christopher C. Nawrat and Christopher J. Moody*
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
c.j.moody@nottingham.ac.uk

SUPPORTING INFORMATION

Table of Contents

General Experimental Details S3
Experimental Procedures S4
Comparison of Natural and Synthetic Mevashuntin 1 S21
Comparison of Natural and Synthetic Mevashuntin Methyl Ester 16 S23
Copies of ${ }^{1} H$ and ${ }^{13} C$ NMR Spectra S25
3-(4-Methoxyphenoxy)propan-1-ol 9 S25
(E)-Ethyl 5-(4-methoxyphenoxy)pent-2-enoate S27
(E)-5-(4-Methoxyphenoxy)pent-2-enoic acid S29
(E)-5-(4-Methoxyphenoxy)pent-2-enoyl chloride 10 S31
Methyl 6-methyl-3-oxoheptanoate 11 S33
Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-oxo-5,6-dihydro-2H-pyran-3-carboxylate 12S35
cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-oxotetrahydro-2H-pyran-3-carboxylateS37
cis-Methyl 4-((diethoxyphosphoryl)oxy)-2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-5,6-dihydro-2H-
pyran-3-carboxylate 13 S39
cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-methyl-5,6-dihydro-2H-pyran-3-carboxylate14S41
(cis-2-Isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-methylenedihydro-2H-pyran-3(4H)-
ylidene)(methoxy)methoxy)trimethylsilane $\mathbf{3}$ S43
cis-5-Hydroxy-6-isopentyl-8-(2-(4-methoxyphenoxy)ethyl)-1-methyl-8,9-dihydro-1 H -
pyrano[3',4':6,7]naphtho[2,3-d]thiazole-2,4,11(6H)-trione 15 S45
cis-5-Hydroxy-8-(2-hydroxyethyl)-6-isopentyl-1-methyl-8,9-dihydro-1H-pyrano[3',4':6,7]naphtho[2,3-
d]thiazole-2,4,11(6H)-trione S47
Mevashuntin 1 S49
Mevashuntin methyl ester 16 S51

General Experimental Details

Commercially available reagents were used throughout without purification unless otherwise stated. Anhydrous solvents were used as supplied unless otherwise stated. Tetrahydrofuran was distilled from sodium benzophenone ketyl under a nitrogen atmosphere. Dichloromethane was distilled from calcium hydride under a nitrogen atmosphere. Light petroleum refers to the fraction with bp $40-60{ }^{\circ} \mathrm{C}$. Ether refers to diethyl ether. Reactions were routinely carried out under a nitrogen or argon atmosphere. Analytical thin layer chromatography was carried out on aluminum backed plates coated with silica gel, and visualized under UV light at 254 and/or 360 nm and/or potassium permanganate or ethanolic vanillin dip. Chromatography was carried out on silica gel. Fully characterized compounds were chromatographically homogeneous. Infrared spectra were recorded in the range $4000-600 \mathrm{~cm}^{-1}$ as solutions in chloroform. NMR spectra were recorded at the frequencies stated. Chemical shifts are quoted in ppm and J values in Hz . Chemical shift values are referenced against residual proton in the deuterated solvents. In the ${ }^{13} \mathrm{C}$ NMR spectra, signals corresponding to $\mathrm{CH}, \mathrm{CH}_{2}$, or CH_{3} are assigned from DEPT-90 and - 135 spectra; all others are quaternary C . High and low resolution mass spectra were recorded on a time-of-flight spectrometer in positive or negative mode.

Experimental Procedures

2,4-Dibromo-3,6-dimethoxyaniline

Bromine ($32.0 \mathrm{~g}, 200.0 \mathrm{mmol}$) was added dropwise to a $-40^{\circ} \mathrm{C}$ solution of 2,5 -dimethoxyaniline $(15.0 \mathrm{~g}, 97.9$ $\mathrm{mmol})$ in dichloromethane $(300 \mathrm{~mL})$. After the addition had completed the purple mixture was warmed to rt , concentrated to around one third of its volume and treated with saturated aqueous sodium carbonate solution $(100 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with dichloromethane (3×100 $\mathrm{mL})$. The combined extracts were washed with water $(200 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Filtration through a short plug of silica gel eluting with ethyl acetate - light petroleum (1:9) gave the title compound as a brown oil $(9.50 \mathrm{~g}, 31 \%)$; (Found: $\left[\mathrm{M}+\mathrm{H}^{+}\right], 311.9041 . \mathrm{C}_{8} \mathrm{H}_{10}{ }^{79} \mathrm{Br}^{81} \mathrm{BrNO}_{2}{ }^{+}$ requires 311.9058); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3496,3397,3008,2941,1606,1483,1397,1039 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 6.89(1 \mathrm{H}, \mathrm{s}), 4.31(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 148.1(\mathrm{C}), 143.9(\mathrm{C})$, 135.6 (C), 112.9 (CH), 104.1 (C), 102.5 (C), 60.6 (Me), 56.2 (Me).

1,3-Dibromo-4-isothiocyanato-2,5-dimethoxybenzene 6

Thiocarbonyl diimidazole ($4.70 \mathrm{~g}, 26.37 \mathrm{mmol}$) was added to 2,4-dibromo-3,6-dimethoxyaniline (4.10 g, $13.18 \mathrm{mmol})$ in 1,2-dichloroethane (25 mL) and the resulting solution heated to $60^{\circ} \mathrm{C}$ and stirred for 50 h . The reaction mixture was adsorbed onto silica gel and purified by flash column chromatography eluting with ethyl acetate - light petroleum (1:19-1:9) to give the title compound as a colorless powder (3.38 g, 73\%); mp $116-117{ }^{\circ} \mathrm{C}$; (Found: C, 30.5; H, 1.9; N, 3.7. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{NO}_{2}$ S requires C, 30.6; H, 2.0; N, 4.0\%); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 375.8473 . \mathrm{C}_{9} \mathrm{H}_{7}{ }^{79} \mathrm{Br}^{81} \mathrm{Br} \mathrm{NNaO}_{2} \mathrm{~S}^{+}$requires 375.8441); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3011,2972,2940,2025$, $1475,1434,1387,1044,977 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.06(1 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 153.4(\mathrm{C}), 148.5(\mathrm{C}), 143.1(\mathrm{C}), 121.9(\mathrm{C}), 115.7(\mathrm{C}), 115.6(\mathrm{C}), 114.6(\mathrm{CH}), 60.8(\mathrm{Me}), 56.8$ (Me).

6-Bromo-4,7-dimethoxybenzo[d]thiazol-2(3H)-one 7

Copper(I) iodide ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) and phenanthroline ($51 \mathrm{mg}, 0.28 \mathrm{mmol}$) were added to potassium carbonate ($783 \mathrm{mg}, 5.66 \mathrm{mmol}$) and 1,3-dibromo-4-isothiocyanato-2,5-dimethoxybenzene $\mathbf{6}(1.0 \mathrm{~g}, 2.83$ $\mathrm{mmol})$ in ethanol $(20 \mathrm{~mL})$ and the suspension heated to reflux and stirred for 14 h . The brown solution was
cooled to rt and the ethanol was removed under reduced pressure. Hydrochloric acid ($6 \mathrm{M} ; 20 \mathrm{~mL}$) was carefully added and the brown solution was heated to $80^{\circ} \mathrm{C}$. After 1 h a heavy white precipitate had formed. Water (20 mL) was added and the suspension was cooled to rt and filtered to give the title compound as a colorless solid that did not require further purification ($789 \mathrm{mg}, 96 \%$); mp $190-191^{\circ} \mathrm{C}$; (Found: C, 37.0 ; H , 2.7; N, 4.6. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrNO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 37.3$; H, 2.8; $\mathrm{N}, 4.8 \%$); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 311.9281$.
$\mathrm{C}_{9} \mathrm{H}_{8}{ }^{79} \mathrm{BrNNaO}_{3} \mathrm{~S}^{+}$requires 311.9306); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3416,3008,2969,1700,1491,1463,1383,1271,1081$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.97(1 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 170.2(\mathrm{C}), 144.7(\mathrm{C}), 141.5(\mathrm{C}), 124.5(\mathrm{C}), 118.3(\mathrm{C}), 112.5(\mathrm{CH}), 108.7(\mathrm{C}), 60.5(\mathrm{Me}), 56.5(\mathrm{Me})$.

On one occasion the intermediate 6-bromo-2-ethoxy-4,7-dimethoxybenzo[d] thiazole was isolated and purified by flash column chromatography (ethyl acetate - light petroleum 1:9) but the yield was much lower when this was done (57% before hydrolysis on 100 mg scale); (Found: $\left[\mathrm{M}+\mathrm{H}^{+}\right], 317.9784 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}_{3}{ }^{+}$ requires 317.9794$) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) 3008,1586,1537,1484,1428,1318,1111 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.00$ $(1 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{q}, J 6.9), 3.97(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{t}, J 6.9) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.4(\mathrm{C})$, 148.3 (C), $144.3(\mathrm{C}), 139.0(\mathrm{C}), 126.8(\mathrm{C}), 112.1(\mathrm{CH}), 109.3(\mathrm{C}), 68.5\left(\mathrm{CH}_{2}\right), 60.3(\mathrm{Me}), 56.6(\mathrm{Me}), 14.4$ (Me).

6-Bromo-4,7-dimethoxy-3-methylbenzo[d]thiazol-2(3H)-one 8

Iodomethane ($0.40 \mathrm{~mL}, 0.69 \mathrm{mmol}$) was added to 6-bromo-4,7-dimethoxybenzo[d]thiazol-2(3H)-one 7 (100 $\mathrm{mg}, 0.34 \mathrm{mmol})$ and potassium carbonate $(95 \mathrm{mg}, 0.69 \mathrm{mmol})$ in $\mathrm{DMF}(3 \mathrm{~mL})$ and the resulting suspension
was heated to $80^{\circ} \mathrm{C}$ and stirred for 1 h . Water (20 mL) was added was added and the aqueous phase extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined extracts were washed with water $(3 \times 20 \mathrm{~mL})$ and brine $(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the title compound as an off white solid that did not require further purification (101 mg, 98%); mp > $250{ }^{\circ} \mathrm{C}$; (Found: $\left[\mathrm{M}+\mathrm{H}^{+}\right], 303.9623$. $\mathrm{C}_{10} \mathrm{H}_{11}{ }^{79} \mathrm{BrNO}_{3} \mathrm{~S}^{+}$requires 303.9643); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 2943,1668,1487,1445,1266,1002 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 6.97(1 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.6(\mathrm{C}), 144.7(\mathrm{C})$, 143.2 (C), 126.7 (C), 118.3 (C), 113.7 (CH), 108.3 (C), 60.4 (Me), 56.7 (Me), 32.6 (Me).

On a larger scale the aqueous workup could be replaced by addition of water and collection of the precipitated solid by filtration.

6-Bromo-3-methylbenzo[d]thiazole-2,4,7(3H)-trione 4

Cerium(IV) ammonium nitrate ($15.10 \mathrm{~g}, 27.57 \mathrm{mmol}$) in water (100 mL) was added to 6-bromo-4,7-dimethoxy-3-methylbenzo[d]thiazol-2(3H)-one $\mathbf{8}(3.35 \mathrm{~g}, 11.03 \mathrm{mmol})$ in acetonitrile (100 mL), turning the colorless solution deep red. The reaction mixture was stirred for 5 min then acetonitrile was removed under reduced pressure and the remaining aqueous phase was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with water $(3 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the title compound as a dark red solid that did not require further purification ($2.21 \mathrm{~g}, 82 \%$); $\mathrm{mp} 150-$ $152{ }^{\circ} \mathrm{C}$; (Found: C, 34.8; H, 1.5; N, 4.9. $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrNO}_{3}$ S requires C, $35.1 ; \mathrm{H}, 1.5 ; \mathrm{N}, 5.1 \%$); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 295.8974. $\mathrm{C}_{8} \mathrm{H}_{4}{ }^{79} \mathrm{BrNNaO}_{3} \mathrm{~S}^{+}$requires 295.8993); $\lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 226$ (4.09), 306 (4.00), 306 (2.95); $v_{\max }$

3-(4-Methoxyphenoxy)propan-1-ol 9

For gram-scale preparation of the title compound the procedure of Murphy et al., using 3-bromopropanol and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF, ${ }^{1}$ was successfully employed. However, this method was found to be unsuitable for the preparation of large quantities of material so the following, more scalable, procedure was developed:

A solution of sodium ethoxide was freshly prepared by the addition of sodium ($10.0 \mathrm{~g}, 435 \mathrm{mmol}$) to ethanol $(500 \mathrm{~mL})$ followed by stirring overnight at rt . 4-Methoxyphenol (54.4 g .414 mmol) was added, and the solution stirred for 30 min , after which time the phenol had dissolved to give a clear solution. 3-

Chloropropanol ($40 \mathrm{~mL}, 479 \mathrm{mmol}$) was added and the reaction mixture heated to reflux and stirred for 9 h . The solution was cooled to rt and water $(200 \mathrm{~mL})$ was added. Ethanol was removed under reduced pressure and the remaining aqueous phase was extracted with ether $(3 \times 150 \mathrm{~mL})$. The combined ethereal extracts were washed with aqueous sodium hydroxide solution $(2 \mathrm{M} ; 2 \times 100 \mathrm{~mL})$, water (200 mL) and brine (300 $\mathrm{mL})$, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated to a give a brown solid. Recrystallization from toluene - light petroleum (ca. 1:1) gave the title compound as large colorless flakes ($50.75 \mathrm{~g}, 67 \%$); $\mathrm{mp} 58-60{ }^{\circ} \mathrm{C}\left(\mathrm{lit} .,{ }^{1} \mathrm{mp}\right.$ 54-56 ${ }^{\circ} \mathrm{C}$); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 205.0840 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NaO}_{3}{ }^{+}$requires 205.0835); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3625,3009,2955$, 2837, 1509, 1468, 1240, $1053 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.85(4 \mathrm{H}, \mathrm{s}), 4.10(2 \mathrm{H}, \mathrm{t}, J 5.9), 3.87(2 \mathrm{H}$, app.
q, J 5.7), $2.04(2 \mathrm{H}$, app. quin., $J 5.9), 1.95(1 \mathrm{H}, \mathrm{t}, J 5.4) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 154.0(\mathrm{C}), 152.9(\mathrm{C}), 115.5$ $(\mathrm{CH}) 114.6(\mathrm{CH}), 66.6\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{Me}), 32.1\left(\mathrm{CH}_{2}\right)$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data obtained matched those reported. ${ }^{1}$

(E)-Ethyl 5-(4-methoxyphenoxy)pent-2-enoate

Activated manganese dioxide $(4.77 \mathrm{~g}, 54.9 \mathrm{mmol})$ was added in three portions over 1 h to a solution of ethyl (triphenylphosphoranylidene)acetate ($2.29 \mathrm{~g}, 6.58 \mathrm{mmol}$) and 3-(4-methoxyphenoxy)propan-1-ol (1.0 g, 5.49 $\mathrm{mmol})$ in dichloromethane $(140 \mathrm{~mL})$. The resulting black suspension was heated to reflux and stirred for 3 d , cooled to rt , filtered through a short pad of Celite and concentrated under reduced pressure. The residue was purified by flash column chromatography eluting with ethyl acetate - light petroleum (1:19-1:9) to give the title compound as a pale yellow oil ($960 \mathrm{mg}, 70 \%$); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 273.1094. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{4}{ }^{+}$requires 273.1097); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3007,2956,1711,1509,1240,1181,1043 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.04(1 \mathrm{H}$, $\mathrm{dt}, J 15.7,6.5), 6.84(4 \mathrm{H}, \mathrm{s}), 5.96(1 \mathrm{H}, \mathrm{dt}, J 15.7,1.6), 4.21(2 \mathrm{H}, \mathrm{q}, J 7.2), 4.04(2 \mathrm{H}, \mathrm{t}, J 6.5), 3.78(3 \mathrm{H}, \mathrm{s})$, $2.67(2 \mathrm{H}$, app. qd, $J 6.5,1.6), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.2) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.4$ (C), 154.0 (C), 152.7 (C), $144.7(\mathrm{CH}), 123.4(\mathrm{CH}), 115.6(\mathrm{CH}), 114.7(\mathrm{CH}), 66.7\left(\mathrm{CH}_{2}\right), 60.3\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{Me}), 32.2\left(\mathrm{CH}_{2}\right), 14.3(\mathrm{Me})$.

(E)-5-(4-Methoxyphenoxy)pent-2-enoic acid

Aqueous sodium hydroxide solution ($5 \mathrm{M} ; 14 \mathrm{~mL}, 69.9 \mathrm{mmol}$) was added to a $0^{\circ} \mathrm{C}$ solution of (E)-ethyl 5-(4-methoxyphenoxy)pent-2-enoate ($3.5 \mathrm{~g}, 13.98 \mathrm{mmol}$) in dioxane (61 mL) - water (61 mL). The pale brown solution was warmed to rt and stirred for 19 h , diluted with water $(100 \mathrm{~mL})$ and extracted with toluene (100
$\mathrm{mL})$. The toluene was then extracted with water $(2 \times 50 \mathrm{~mL})$ and these aqueous extracts were combined with the remaining aqueous phase from the previous step, then acidified to pH 2 using hydrochloric acid (6 M). The acidified aqueous phase was then extracted with ether $(3 \times 100 \mathrm{~mL})$ and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The brown solid residue obtained was recrystallized from toluene - light petroleum (ca. 3:1) to give the title compound as an off-white powder ($2.23 \mathrm{~g}, 72 \%$); mp $84-85^{\circ} \mathrm{C}$; (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 245.0781 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{4}{ }^{+}$requires 245.0784); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3524,3011,2955,2837,1726,1699$, $1656,1509,1240,1044,980 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.17(1 \mathrm{H}, \mathrm{dt}, J 15.6,6.6), 6.84(4 \mathrm{H}, \mathrm{s}), 5.98(1 \mathrm{H}$, $\mathrm{dt}, J 15.7,1.6), 4.06(1 \mathrm{H}, \mathrm{t}, J 6.3), 3.78(3 \mathrm{H}, \mathrm{s}), 2.70(2 \mathrm{H}$, app. qd, $J 6.6,1.6) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.5$ (C), $154.1(\mathrm{C}), 152.7(\mathrm{C}), 147.9(\mathrm{CH}), 122.6(\mathrm{CH}), 115.6(\mathrm{CH}), 114.7(\mathrm{CH}), 66.5\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{CH}), 32.3$ $\left(\mathrm{CH}_{2}\right)$.

(E)-5-(4-Methoxyphenoxy)pent-2-enoyl chloride 10

Oxalyl chloride $(0.72 \mathrm{~mL}, 8.41 \mathrm{mmol})$ was added dropwise to a $0{ }^{\circ} \mathrm{C}$ solution of $(E)-5-(4-$ methoxyphenoxy)pent-2-enoic acid ($1.70 \mathrm{~g}, 7.65 \mathrm{mmol}$) in dichloromethane (100 mL). After 5 min DMF (2 drops) was added and the reaction mixture was slowly warmed to rt and stirred until gas evolution ceased (ca. 2 h). The yellow solution was concentrated in vacuo to give the title compound as a brown oil that was used without further purification $(1.81 \mathrm{~g}, 98 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) 3009,2955,2837,1785,1756,1740,1647,1509$, $1467,1240 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.31(1 \mathrm{H}, \mathrm{dt}, J 15.3,6.9), 6.85(4 \mathrm{H}, \mathrm{s}), 6.22(1 \mathrm{H}, \mathrm{dt}, J 15.3,1.5)$, $4.09(1 \mathrm{H}, \mathrm{t}, J 6.1), 3.78(3 \mathrm{H}, \mathrm{s}), 2.76(2 \mathrm{H}, \mathrm{dtd}, J 6.9,6.1,1.5) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.7(\mathrm{C}), 154.2(\mathrm{C})$, $152.7(\mathrm{C}), 152.4(\mathrm{C}), 128.2(\mathrm{CH}), 115.7(\mathrm{CH}), 114.7(\mathrm{CH}), 66.0\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{Me}), 32.4\left(\mathrm{CH}_{2}\right)$.

Methyl 6-methyl-3-oxoheptanoate 11

Methyl acetoacetate was added dropwise over 10 mins to a suspension of sodium hydride (3.79 g of a 60% dispersion in mineral oil, 94.7 mmol) in THF (300 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at the same temperature then n-butyllithium was slowly added to give a deep orange-red solution. After 30 min , 1-iodo-2-methyl-propane ($10.9 \mathrm{~mL}, 94.7 \mathrm{mmol}$) was added and the mixture stirred for 23 h at rt , then quenched by addition of saturated aqueous ammonium chloride solution (200 mL). The layers were separated and the aqueous phase was extracted with ether $(3 \times 200 \mathrm{~mL})$. The combined extracts were washed with brine (500 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residual brown oil was purified by fractional distillation under reduced pressure (water aspirator) to give the title compound as a pale brown liquid ($9.02 \mathrm{~g}, 61 \%$); bp 112 $115{ }^{\circ} \mathrm{C}$ at ca. 20 mmHg ; (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 195.0997. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NaO}_{3}{ }^{+}$requires 195.0992); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3012$, 2959, 2935, 2872, 1746, 1716, 1652, 1627, 1438, 1319, 1240, 1156, $1011 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.75$ ($3 \mathrm{H}, \mathrm{s}$), $3.46(2 \mathrm{H}, \mathrm{s}), 2.54(2 \mathrm{H}, \mathrm{t}, J 7.5), 1.56-1.48(3 \mathrm{H}, \mathrm{m}), 0.90(6 \mathrm{H}, \mathrm{d}, J 6.3) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $203.0(\mathrm{C}), 167.7(\mathrm{C}), 52.3(\mathrm{Me}), 49.0\left(\mathrm{CH}_{2}\right), 41.1\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 27.6(\mathrm{CH}), 22.3(\mathrm{Me})$.

Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-oxo-5,6-dihydro-2H-pyran-3-carboxylate 12

Methanol ($1.4 \mathrm{~mL}, 34.9 \mathrm{mmol}$) was added to a stirred suspension of magnesium turnings ($296 \mathrm{mg}, 12.19$ mmol) in toluene (6 mL) that had been activated by addition of a drop of 1,2-dibromoethane and gentle warming. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 5 h , then additional methanol (0.5 mL) was added and
heating was continued for 3 h , after which time all the magnesium turnings had disappeared and a white suspension of magnesium methoxide had formed. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and methyl 6-methyl-3-oxoheptanoate $11(2.00 \mathrm{~g}, 11.61 \mathrm{mmol})$ was added. After stirring for 30 min a clear brown solution had formed and (E)-5-(4-methoxyphenoxy)pent-2-enoyl chloride $12(3.07 \mathrm{~g}, 12.77 \mathrm{mmol})$ in toluene (5 mL) was added. The reaction mixture was allowed to warm to rt and stirred for 16 h then poured into ice cold hydrochloric acid ($0.5 \mathrm{M} ; 25 \mathrm{~mL}$). The layers were separated and the aqueous phase was extracted with ether $(3 \times 20 \mathrm{~mL})$. The combined ethereal extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated, and the residue was purified by flash column chromatography on silica gel eluting with ethyl acetate - light petroleum (1:20-1:2) to give two major products. Eluted first was the intermediate acylated β-ketoester ($1.79 \mathrm{~g} 46 \%$) intermediate that cyclized to the title compound upon standing neat at room temperature for ca. 1 week or heating in toluene in the presence of SiO_{2}. Eluted second was the title compound as a yellow oil ($1.32 \mathrm{~g}, 30 \%$); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 399.1777. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NaO}_{6}{ }^{+}$requires 399.1778); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3692,3607,3012,2958,1726,1672$, $1602,1509,1436,1388,1348,1240,1071 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.84(4 \mathrm{H}, \mathrm{s}), 4.72(1 \mathrm{H}$, dddd, $J 8.3$, 8.3, 8.3, 4.7), 4.16-4.01 (2 H, m), $3.82(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.59-2.56(2 \mathrm{H}, \mathrm{m}), 2.51-2.45(2 \mathrm{H}, \mathrm{m}), 2.30$ $-2.09(2 \mathrm{H}, \mathrm{m}), 1.60-1.43(3 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{d}, J 6.5), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.5) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 188.3(\mathrm{C})$, $180.1(\mathrm{C}), 166.1(\mathrm{C}), 154.1(\mathrm{C}), 152.6(\mathrm{C}), 115.4(\mathrm{CH}), 114.7(\mathrm{CH}), 112.3(\mathrm{C}), 76.2(\mathrm{CH}), 63.5\left(\mathrm{CH}_{2}\right), 55.7$ (Me), $52.2(\mathrm{Me}), 40.9\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 27.9(\mathrm{CH}), 22.20(\mathrm{Me}), 22.19(\mathrm{Me})$.

cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-oxotetrahydro-2H-pyran-3-carboxylate

Palladium-on-carbon ($5 \mathrm{wt} \% \mathrm{Pd} ; 125 \mathrm{mg}$) was added to a solution of methyl 6-isopentyl-2-(2-(4-methoxyphenoxy)ethyl)-4-oxo-3,4-dihydro-2H-pyran-5-carboxylate $\mathbf{1 2}$ ($1.25 \mathrm{~g}, 3.32 \mathrm{mmol}$) in methanol (20
mL) and the resulting suspension was stirred under hydrogen (100 psi) for 12 h . The reaction mixture was then filtered through a pad of Celite, washing with methanol, and concentrated to give the title compound as a pale brown oil that was not purified further $(1.24 \mathrm{~g}, 99 \%)$; (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 401.1931 . \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NaO}_{6}{ }^{+}$ requires 401.1935); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3011,2957,2872,1744,1715,1509,1468,1439,1341,1240,1130,1038$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.83(4 \mathrm{H}, \mathrm{s}), 4.13-4.02(2 \mathrm{H}, \mathrm{m}), 3.98-3.92(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{ddd}, J 10.7$, 8.2, 3.2), $3.77(6 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{d}, J 10.7), 2.53(1 \mathrm{H}, \mathrm{dd}, J 14.3,1.8), 2.34(1 \mathrm{H}, \mathrm{dd}, J 14.0,12.0), 2.05-$ $1.97(2 \mathrm{H}, \mathrm{m}), 1.58-1.47(3 \mathrm{H}, \mathrm{m}), 1.41-1.21(2 \mathrm{H}, \mathrm{m}), 0.84(3 \mathrm{H}, \mathrm{d} J 6.4), 0.83(3 \mathrm{H}, \mathrm{d}, J 6.4) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 202.1 (C), 168.6 (C), 153.9 (C), 152.9 (C), $115.5(\mathrm{CH}), 114.7(\mathrm{CH}), 78.6(\mathrm{CH}), 73.7(\mathrm{CH})$, $64.4\left(\mathrm{CH}_{2}\right), 63.2(\mathrm{CH}), 55.7(\mathrm{Me}), 52.2(\mathrm{Me}), 47.1\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 27.6(\mathrm{CH})$, 22.7 (Me), 22.1 (Me).
cis-Methyl 4-((diethoxyphosphoryl)oxy)-2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-5,6-dihydro-2H-pyran-3-carboxylate 13

cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-oxotetrahydro-2H-pyran-3-carboxylate (1.10 g, 2.91 mmol) in ether (5 mL) was added to a $0^{\circ} \mathrm{C}$ suspension of sodium hydride (60% in mineral oil; 128 mg , $3.20 \mathrm{mmol})$ in ether $(30 \mathrm{~mL})$. The reaction mixture was stirred for 5 min , diethyl chlorophosphate (0.46 mL , 3.20 mmol) was added and the solution warmed to rt and stirred for 5 h . The reaction was quenched by the addition of saturated aqueous ammonium chloride solution (30 mL) and the layers were separated. The aqueous phase was extracted with ether $(3 \times 30 \mathrm{~mL})$ and the combined ethereal extracts were then washed with water $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Filtration through a short plug of silica gel eluting with ethyl acetate - light petroleum (1:2) gave the title compound as a pale brown oil (1.18
g, 79%); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 537.2220. $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NaO}_{9} \mathrm{P}^{+}$requires 537.2248); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3007,2956,1724$, $1509,1468,1437,1276,1240,1108,1037 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.84(4 \mathrm{H}, \mathrm{s}), 4.47(1 \mathrm{H}, \mathrm{m}), 4.23-$ $4.14(4 \mathrm{H}, \mathrm{m}), 4.11-4.00(2 \mathrm{H}, \mathrm{m}), 3.86-3.78(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 2.50-2.44(2 \mathrm{H}, \mathrm{m})$, 2.04-1.94 (2 H, m), 1.69-1.58 (1 H, m), 1.55-1.45 (2 H, m), $1.36(3 \mathrm{H}, \mathrm{dt}, J 7.1,1.1), 1.35(3 \mathrm{H}, \mathrm{dt}, J 7.1$, 1.1), $1.31-1.23(2 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.6), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.6) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 165.5(\mathrm{C}), 153.8(\mathrm{C})$, $153.1(\mathrm{C}), 148.6(\mathrm{C}), 119.1(\mathrm{C}), 115.5(\mathrm{CH}), 114.7(\mathrm{CH}), 74.4(\mathrm{CH}), 70.0(\mathrm{CH}), 64.6\left(\mathrm{CH}_{2}\right), 64.7\left(\mathrm{CH}_{2}\right)$, $55.8(\mathrm{Me}), 51.5(\mathrm{Me}), 35.1\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 27.8(\mathrm{CH}), 22.9(\mathrm{Me}), 22.2(\mathrm{Me}), 16.1$ $(\mathrm{Me}) ; \delta_{\mathrm{P}}\left(121 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.77(1 \mathrm{P}, \mathrm{s})$.

cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-methyl-5,6-dihydro-2H-pyran-3-carboxylate

14

Methyllithium solution (1.6 M in ether; $5.48 \mathrm{~mL}, 8.76 \mathrm{mmol}$) was added dropwise to a $0{ }^{\circ} \mathrm{C}$ suspension of freshly purified copper(I) iodide ($833 \mathrm{mg}, 4.37 \mathrm{mmol}$) in ether (10 mL), initially forming a bright yellow solution that faded to colorless as the addition completed. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of cis-methyl 4-((diethoxyphosphoryl)oxy)-2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-5,6-dihydro-2H-pyran-3-carboxylate $\mathbf{1 3}(1.50 \mathrm{~g}, 2.92 \mathrm{mmol})$ in ether $(20 \mathrm{~mL})$ was added dropwise. The brown solution was then stirred at this temperature for 1 h , followed by 1 h at $0{ }^{\circ} \mathrm{C}$ and 2 h at rt before quenching with saturated aqueous ammonium chloride solution (50 mL). The aqueous phase was extracted with ether (3 $\times 50 \mathrm{~mL}$) and the combined aqueous extracts were washed with saturated aqueous ammonium chloride solution $(100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash column chromatography on silica gel, eluting with ethyl acetate - light petroleum (1:19

- 1:9) to give the title compound as a colorless oil (712 mg, 65%); (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 399.2143$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NaO}_{5}{ }^{+}$requires 399.2142); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3011,2955,2871,1714,1509,1468,1435,1240,1071,1040$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.85(4 \mathrm{H}, \mathrm{s}), 4.39(1 \mathrm{H}, \mathrm{m}), 4.14-4.01(2 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s})$, $3.72-3.66(1 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{m}), 1.99-1.91(5 \mathrm{H}, \mathrm{m}), 1.65-1.53(2 \mathrm{H}, \mathrm{m}), 1.50-1.38(2 \mathrm{H}, \mathrm{m}), 1.32-$ $1.24(2 \mathrm{H}, \mathrm{m}), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.6), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.6) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.4(\mathrm{C}), 153.8(\mathrm{C}), 153.2(\mathrm{C})$, $140.3(\mathrm{C}), 128.6(\mathrm{C}), 115.5(\mathrm{CH}), 114.6(\mathrm{CH}), 75.2(\mathrm{CH}), 69.5(\mathrm{CH}), 64.9\left(\mathrm{CH}_{2}\right), 55.8(\mathrm{Me}), 51.1(\mathrm{Me}), 37.8$ $\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 27.8(\mathrm{CH}), 22.9(\mathrm{Me}), 22.2(\mathrm{Me}), 21.0(\mathrm{Me})$.

(cis-2-Isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-methylenedihydro-2H-pyran-3(4H)-

ylidene)(methoxy)methoxy)trimethylsilane 3

cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-methyl-5,6-dihydro-2H-pyran-3-carboxylate $\mathbf{1 4}$ ($700 \mathrm{mg}, 1.86 \mathrm{mmol}$) in THF (5 mL) was added to a $-78^{\circ} \mathrm{C}$ solution of LDA (2.79 mmol) and TMSCl (710 $\mu \mathrm{L}, 5.58 \mathrm{mmol})$ in THF (5 mL) and the resulting solution was stirred at the same temperature for 1 h then warmed to rt and concentrated without heating. The resulting turbid oil was diluted with dry n-pentane (10 mL) and filtered quickly under nitrogen then again concentrated to give the title compound as a colorless oil that was used without further purification $(1.0 \mathrm{~g}, 100 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.84(4 \mathrm{H}, \mathrm{s}), 5.15(1 \mathrm{H}, \mathrm{q}, J$ 2.1), $5.02(1 \mathrm{H}, \mathrm{q}, J 2.1), 4.46-4.42(1 \mathrm{H}, \mathrm{m}), 4.12-4.00(2 \mathrm{H}, \mathrm{m}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.55(3 \mathrm{H}, \mathrm{s}), 2.53-2.45(1$ $\mathrm{H}, \mathrm{m}), 2.36-2.26(1 \mathrm{H}, \mathrm{m}), 1.99-1.91(4 \mathrm{H}, \mathrm{m}), 1.63-1.44(4 \mathrm{H}, \mathrm{m}), 1.35-1.22(2 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{d}, J$ 6.4), $\left.0.85(3 \mathrm{H}, \mathrm{d}, J 6.4) ; \delta_{\mathrm{C}} 300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 153.7(\mathrm{C}), 153.3$ (C), 149.9 (C), 138.7 (C), $115.5(\mathrm{CH}), 114.7$ $(\mathrm{CH}), 112.8\left(\mathrm{CH}_{2}\right), 100.0(\mathrm{C}), 75.6(\mathrm{CH}), 69.8(\mathrm{CH}), 65.4\left(\mathrm{CH}_{2}\right), 55.6(\mathrm{Me}), 51.1(\mathrm{Me}), 39.0\left(\mathrm{CH}_{2}\right), 35.6$ $\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 28.0(\mathrm{CH}), 22.5(\mathrm{Me}), 22.3(\mathrm{Me}), 0.17(\mathrm{Me})$.
cis-5-Hydroxy-6-isopentyl-8-(2-(4-methoxyphenoxy)ethyl)-1-methyl-8,9-dihydro-1H-pyrano[3',4':6,7]naphtho[2,3-d]thiazole-2,4,11(6H)-trione 15

Diene $\mathbf{3}$ ($700 \mathrm{mg}, 1.56 \mathrm{mmol}$) in dichloromethane (10 mL) was added dropwise to a solution of the quinone 4 ($306 \mathrm{mg}, 1.12 \mathrm{mmol}$) and triethylamine $(163 \mu \mathrm{~L}, 1.18 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The dark purple solution was stirred for 1 h then poured into hydrochloric acid ($1 \mathrm{M} ; 30 \mathrm{~mL}$). The layers were separated and the organic phase was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined extracts were then stood over magnesium sulfate for 1 h , filtered and concentrated to give a red oil that was purified by flash column chromatography on silica gel eluting with ethyl acetate - light petroleum (7:93) to give the title compound as a red tar that solidified on standing ($410 \mathrm{mg}, 68 \%$); mp $138-140{ }^{\circ} \mathrm{C}$; (Found: $\left[\mathrm{M}-\mathrm{H}^{+}\right]$, 536.1780. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{7} \mathrm{~S}^{-}$requires 536.1748); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3008,2957,2932,2871,1683,1584,1509,1445$, 1340, $1249 \mathrm{~cm}^{-1}, \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 210$ (4.34), 265 (4.10), 297 (3.72), 313 (3.70), 434 (3.21); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 12.33(1 \mathrm{H}, \mathrm{s}), 7.40(1 \mathrm{H}, \mathrm{s}), 6.83(4 \mathrm{H}, \mathrm{m}), 4.99(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.5), 4.12(2 \mathrm{H}, \mathrm{m}), 3.762(3 \mathrm{H}, \mathrm{s})$, $3.759(3 \mathrm{H}, \mathrm{s}), 2.750(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}, \mathrm{ddd}, J 16.6,10.2,1.2), 2.17(1 \mathrm{H}$, dddd, $J 13.8,11.3,5.2,2.9), 2.11$ - $2.05(2 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{dddd}, J 13.8,11.5,6.9,4.7), 1.54(1 \mathrm{H}, \mathrm{tt}, J 6.7,13.4), 1.39-1.30(1 \mathrm{H}, \mathrm{m}), 1.17-$ $1.08(1 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.85(3 \mathrm{H}, \mathrm{d}, J 6.9) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 181.9(\mathrm{C}), 174.1(\mathrm{C}), 169.8$ (C), 158.9 (C), 153.8 (C), 153.1 (C), 145.2 (C), 137.9 (C), 135.8 (C), 129.0 (C), 125.8 (C), 121.2 (CH), 115.5 $(\mathrm{CH}), 114.7(\mathrm{CH}), 111.5(\mathrm{C}), 74.4(\mathrm{CH}), 69.6(\mathrm{CH}), 64.7\left(\mathrm{CH}_{2}\right), 55.7(\mathrm{Me}), 36.5\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 34.0$ $\left(\mathrm{CH}_{2}\right), 32.2(\mathrm{Me}), 31.9\left(\mathrm{CH}_{2}\right), 28.0(\mathrm{CH}), 22.9(\mathrm{Me}), 22.4(\mathrm{Me})$.

Eluted second was a small amount of the corresponding 5-methyl ether, obtained as a yellow solid (84 mg , 14%); 158-160 ${ }^{\circ} \mathrm{C}$; (Found: $\left[\mathrm{M}+\mathrm{H}^{+}\right]$, 552.2038. $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NO}_{7} \mathrm{~S}^{+}$requires 552.2050); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3008,2957$, 2932, 2871, 1683, 1584, 1509, 1445, 1340, $1249 \mathrm{~cm}^{-1}, \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 267$ (4.49), 301 (3.90), 317 (3.91), 376 (3.68); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.71(1 \mathrm{H}, \mathrm{s}), 6.87-6.85(4 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{m}), 4.21-4.09(2 \mathrm{H}, \mathrm{m})$, $3.86(3 \mathrm{H}, \mathrm{s}), 3.79-3.76(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 2.85(1 \mathrm{H}, \mathrm{dd}, J 16.4,10.0), 2.79(1 \mathrm{H}, \mathrm{dd}, J$ 15.5, 2.5), $2.18-2.06(3 \mathrm{H}, \mathrm{m}), 1.81(1 \mathrm{H}$, dddd $J 13.6,11.0,7.0,4.8), 1.53(1 \mathrm{H}, \mathrm{m}), 1.37-1.26(1 \mathrm{H}, \mathrm{m})$, 1.17-1.08 (1 H, m), $0.87(3 \mathrm{H}, \mathrm{d}, J 6.7), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.7) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.9$ (C), 174.4 (C), 170.0 (C), 158.2 (C), 153.9 (C), 153.1 (C), 144.2 (C), 141.5 (C), 136.1 (C), 131.6 (C), 129.3 (C), 124.1 (CH), $121.0(\mathrm{C}), 114.7(\mathrm{CH}), 115.5(\mathrm{CH}), 74.7(\mathrm{CH}), 69.7(\mathrm{CH}), 64.7\left(\mathrm{CH}_{2}\right), 62.0(\mathrm{Me}), 55.8(\mathrm{Me}), 36.5\left(\mathrm{CH}_{2}\right)$, $35.4\left(\mathrm{CH}_{2}\right), 34.3\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 32.0(\mathrm{Me}), 27.9(\mathrm{CH}), 22.9(\mathrm{Me}), 22.4(\mathrm{Me})$

cis-5-Hydroxy-8-(2-hydroxyethyl)-6-isopentyl-1-methyl-8,9-dihydro-1H-pyrano[3',4':6,7]naphtho[2,3-d]thiazole-2,4,11(6H)-trione

Silver(II) oxide ($115 \mathrm{mg}, 0.93 \mathrm{mmol}$) and nitric acid ($6 \mathrm{M} ; 186 \mu \mathrm{~L}, 1.12 \mathrm{mmol}$) were added to a solution of cis-5-hydroxy-6-isopentyl-8-(2-(4-methoxyphenoxy)ethyl)-1-methyl-8,9-dihydro-1 H -pyrano[3',4':6,7]naphtho[2,3- d]thiazole-2,4,11(6H)-trione $15(100 \mathrm{mg}, 0.186 \mathrm{mmol})$ in dioxane (2 mL) and the suspension was stirred for 30 min , after which time almost all of the silver(II) oxide had dissolved. The reaction mixture was diluted with water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated and the residue was purified by flash column chromatography on silica gel, eluting with ethyl acetate - light petroleum (2:8-2:3) to give the title compound as a red solid (67 mg, 84\%); $140-142{ }^{\circ} \mathrm{C}$ (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, 454.1292. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NNaO}_{6} \mathrm{~S}^{+}$requires 454.1295); $v_{\max }$
$\left(\mathrm{CHCl}_{3}\right) 3627,3524,3013,2960,2931,2872,1690,1624,1565,1444,1383,1276,1039 \mathrm{~cm}^{-1} ; \lambda_{\max }$ $(\mathrm{MeOH}) / \mathrm{nm} 215$ (4.74), 246 (4.60), 266 (4.78), 327 (4.22), 437 (4.05); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.37(1 \mathrm{H}, \mathrm{s})$, $7.43(1 \mathrm{H}, \mathrm{s}), 5.07(1 \mathrm{H}, \mathrm{dd}, J 6.4,1.7) .3 .89(2 \mathrm{H}, \mathrm{t}, J 5.7), 3.82-3.77(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 2.87(1 \mathrm{H}, \mathrm{ddd}$, $J 16.6,10.6,1.2), 2.68(1 \mathrm{H}, \mathrm{dt}, J 16.4,1.6), 2.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.17(1 \mathrm{H}$, dddd, $J 13.9,11.3,5.1,2.7), 1.96$ $1.85(3 \mathrm{H}, \mathrm{m}), 1.57-1.49(1 \mathrm{H}, \mathrm{m}), 1.40-1.30(1 \mathrm{H}, \mathrm{m}), 1.15-1.05(1 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{d}, J 6.6), 0.86(3 \mathrm{H}$, d, $J 6.6$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 182.0(\mathrm{C}), 174.1$ (C), 169.8 (C), 158.8 (C), 144.6 (C). 137.9 (C), 135.1 (C), $129.1(\mathrm{C}), 125.9(\mathrm{C}), 125.9(\mathrm{C}), 121.1(\mathrm{CH}), 111.7(\mathrm{C}), 74.5(\mathrm{CH}), 73.0(\mathrm{CH}), 61.1\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 36.3$ $\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 32.2(\mathrm{Me}), 32.0\left(\mathrm{CH}_{2}\right), 28.0(\mathrm{CH}), 22.8(\mathrm{Me}), 22.3(\mathrm{Me})$.

Mevashuntin 1

Jones reagent was added to a solution of cis-5-hydroxy-8-(2-hydroxyethyl)-6-isopentyl-1-methyl-8,9-dihydro- $1 H$-pyrano $\left[3^{\prime}, 4^{\prime}: 6,7\right]$ naphtho $[2,3-d]$ thiazole-2,4,11($6 H$)-trione ($5 \mathrm{mg}, 11.6 \mu \mathrm{~mol}$) in acetone (3 mL) until a deep orange color persisted (2 drops). The mixture was stirred for 15 min , diluted with water (10 mL) and extracted with ethyl acetate ($3 \times 8 \mathrm{~mL}$). The combined extracts were washed with water (20 mL) and brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash column chromatography through a short plug of silica gel eluting with ethyl acetate - light petroleum (2:3) to give the title compound as an orange-red solid ($3.5 \mathrm{mg}, 68 \%$); mp $169-170{ }^{\circ} \mathrm{C}$ (lit., ${ }^{2} \mathrm{mp} 166-167^{\circ} \mathrm{C}$); (Found: $\left[\mathrm{M}-\mathrm{H}^{+}\right]$, 444.1143 . $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{7} \mathrm{~S}^{-}$requires 444.1122), $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3690,3513,2958,2929,2871,1749,1689,1622,1563,1381$, $1273 \mathrm{~cm}^{-1} ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 215$ (4.12), 246 (3.98), 266 (3.64), 330 (3.64), 429 (3.45); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; 30 \mathrm{mg} / \mathrm{mL}\right) 12.33(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{OH}), 7.30(1 \mathrm{H}, \mathrm{H}-5), 5.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.2, \mathrm{H}-9), 4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7)$, 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19$), 2.81 ($3 \mathrm{H}, \mathrm{dd}, J 13.5,7.0, \mathrm{H}-12 \mathrm{a}$), 2.69 ($1 \mathrm{H}, \mathrm{dd}, J 15.7,5.8, \mathrm{H}-12 \mathrm{~b}$), 2.13 (1 H , dddd, J
16.6, 8.2, 5.2, 3.2, H-14a), 1.92 (1 H, dddd, $J 13.8,11.2,6.3,4.8, \mathrm{H}-14 \mathrm{~b}), 1.57-1.47$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), $1.36-$ $1.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a}), 1.06(1 \mathrm{H}, \mathrm{dddd}, J 12.5,11.9,7.2,4.8, \mathrm{H}-15 \mathrm{~b}), 0.86(3 \mathrm{H}, \mathrm{d} J 6.7), 0.84$ ($3 \mathrm{H}, \mathrm{d}, J 6.7$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; 30 \mathrm{mg} / \mathrm{mL}\right) 181.9(\mathrm{C}), 176.0(\mathrm{C}), 174.0(\mathrm{C}), 169.8(\mathrm{C}), 158.7(\mathrm{C}), 144.1(\mathrm{C}), 137.9(\mathrm{C})$, $135.2(\mathrm{C}), 129.1(\mathrm{C}), 125.9(\mathrm{C}), 121.1(\mathrm{CH}), 111.7(\mathrm{C}), 74.6(\mathrm{CH}), 69.0(\mathrm{CH}), 40.3\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 33.8$ $\left(\mathrm{CH}_{2}\right), 32.2(\mathrm{Me}), 31.7\left(\mathrm{CH}_{2}\right), 28.0(\mathrm{CH}), 22.8(\mathrm{Me}), 22.4(\mathrm{Me})$.

Mevashuntin methyl ester 16

Trimethylsilyldiazomethane solution (2 M in ether; 5 drops) was added to a solution of mevashuntin (9 mg , $0.0021 \mathrm{mmol})$ in toluene $(0.8 \mathrm{~mL})-\mathrm{MeOH}(0.2 \mathrm{~mL})$. The mixture was stirred at rt for 1 h then acetic acid (5 drops) was added and the solution stirred until nitrogen was no longer evolved. The reaction mixture was concentrated in vacuo and the residue purified by flash column chromatography on silica gel eluting with ethyl acetate - light petroleum (1:99-1:9) to give the title compound as an orange powder ($8 \mathrm{mg}, 83 \%$); 158$160{ }^{\circ} \mathrm{C}$, (Found: $\left[\mathrm{M}+\mathrm{Na}^{+}\right], 482.1231 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NNaO}_{7} \mathrm{~S}^{+}$requires 482.1244); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3693,3013,2958$, 2872, 1737, 1690, 1624, 1565, 1442, 1383, $1275 \mathrm{~cm}^{-1} ; \lambda_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{nm} 214$ (4.59), 246 (4.42), 266 (4.61), 326 (1.01), 432 (3.90); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.35(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.43(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.06-5.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 9), $4.01-3.95$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 3.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19$), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-13$), 2.80 (2 H, dd, J 5.4, 1.4, H-6), 2.75 (1 H, dd, J 15.7, 6.9, H-12a), $2.62(1 \mathrm{H}, \mathrm{dd}, J 15.7,5.6, \mathrm{H}-12 \mathrm{~b}), 2.14(1 \mathrm{H}, \mathrm{dddd}, J 13.7,11.4,5.2,2.9, \mathrm{H}-14 \mathrm{a})$, 1.91 (1 H, dddd J 13.7, 11.2, 6.7, 4.7, H-14b), $1.56-1.47$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), 1.31 (1 H , dddd, J 12.8, 11.2, 7.3, $5.5, \mathrm{H}-15 \mathrm{a}), 1.06(1 \mathrm{H}$, dddd, $J 12.8,11.7,7.3,4.7, \mathrm{H}-15 \mathrm{~b}), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.7), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.7) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 182.0 (C), 174.1 (C), 171.2 (C), 169.8 (C), 158.8 (C), 144.4 (C), 137.9 (C), 135.4 (C), 128.8
(C), $125.9(\mathrm{C}), 121.1(\mathrm{CH}), 111.7(\mathrm{C}), 74.5(\mathrm{CH}), 69.2(\mathrm{CH}), 51.8(\mathrm{Me}), 40.4\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right)$, $32.2(\mathrm{Me}), 31.8\left(\mathrm{CH}_{2}\right), 28.0(\mathrm{CH}), 22.9(\mathrm{Me}), 22.3(\mathrm{Me})$;

Comparison of Natural and Synthetic Mevashuntin 1

${ }^{13} \mathrm{C}$ NMR data for natural $v s$. synthetic mevashuntin					
Atom	Natural	Synthetic $(3 \mathrm{mg} / \mathrm{mL})$	Synthetic $(30 \mathrm{mg} / \mathrm{mL})$	$\delta \mathrm{C}$ $(3 \mathrm{mg} / \mathrm{mL})$	$\delta \mathrm{C}$ $(30 \mathrm{mg} / \mathrm{mL})$
2	169.8	169.8	169.8	0.0	0.0
3 a	137.9	138.0	137.9	0.1	0.0
4	174.1	173.8	174.0	-0.3	-0.1
4 a	129.3	129.2	129.1	-0.1	-0.2
5	121	121.0	121.1	0.0	0.0
5 a	144	143.9	144.1	-0.1	0.1
6	35.7	35.7	35.8	0.0	0.1
7	69	69.1	69.0	0.1	0.0
9	74.6	74.7	74.6	0.1	0.0
9 a	135	134.9	135.2	-0.1	0.2
10	158.7	158.8	158.7	0.1	0.0
10 a	111.7	111.8	111.7	0.1	0.0
11	182	182.0	181.9	0.0	-0.1
11 a	125.9	125.9	125.9	0.0	0.0
12	40.1	40.0	40.3	-0.1	0.2
13	175	174.1	176.0	-0.9	1.0
14	31.7	31.8	31.7	0.1	0.0
15	33.7	33.8	33.8	0.1	0.1
16	27.9	28.0	28.0	0.1	0.1
17	22.8	22.8	22.8	0.0	0.0
18	22.3	22.4	22.4	0.1	0.1
19	32	32.2	32.2	0.2	0.2

${ }^{1}$ H NMR data for natural vs. synthetic mevashuntin					
Atom	Natural	Synthetic $(30 \mathrm{mg} / \mathrm{mL})$	Synthetic $(30 \mathrm{mg} / \mathrm{mL})$	$\delta \mathrm{H}$ $(3 \mathrm{mg} / \mathrm{mL})$	$\delta \mathrm{H}$ $(30 \mathrm{mg} / \mathrm{mL})$
5	7.4	7.44	7.39	0.04	0.01
6	2.81	2.83	2.81	0.02	0.00
7	3.97	3.8	4.00	-0.17	0.03
9	5.07	5.11	5.07	0.04	0.00
12 a	2.78	2.8	2.81	0.02	0.03
12 b	2.67	2.71	2.69	0.04	0.02
14 a	1.91	1.93	1.92	0.02	0.01
14 b	2.12	2.16	2.13	0.04	0.03
15 a	1.3	1.32	1.30	0.02	0.00
15 b	1.05	1.08	1.06	0.03	0.01
16	1.51	1.54	1.52	0.03	0.01
17	0.85	0.87	0.86	0.02	0.01
18	0.83	0.85	0.84	0.02	0.01
19	3.77	3.79	3.77	0.02	0.00
$10-\mathrm{OH}$	12.33	12.37	12.33	0.04	0

Comparison of Natural and Synthetic Mevashuntin Methyl Ester 16

${ }^{13} \mathrm{C}$ NMR data for synthetic mevashuntin methyl ester $v s$. reported			
Atom	Reported	Synthetic	¢C
2	169.8	169.80	0.00
3a	137.9	137.91	0.01
4	174.2	174.14	-0.06
4 a	129.1	129.07	-0.03
5	121.1	121.10	0.00
5a	144.4	144.35	-0.05
6	35.9	35.84	-0.06
7	69.3	69.24	-0.06
9	74.5	74.46	-0.04
9 a	135.4	135.40	0.00
10	158.8	158.78	-0.02
10a	111.7	111.65	-0.05
11	182	181.97	-0.03
11a	125.9	125.88	-0.02
12	40.4	40.38	-0.02
13	171.2	171.20	0.00
14	31.7	31.71	0.01
15	33.8	33.76	-0.04
16	27.9	27.92	0.02
17	22.8	22.92	0.12
18	22.4	22.34	-0.06
19	32.2	32.17	-0.03
13-OMe	51.8	51.78	-0.02

${ }^{1}$ H NMR data for synthetic mevashuntin methyl ester vs. reported			
Atom	Reported	Synthetic	$\delta \mathrm{H}$
5	7.41	7.43	0.02
6	2.78	2.8	0.02
7	3.96	3.98	0.02
9	5.03	5.05	0.02
12 a	2.73	2.75	0.02
12 b	2.6	2.62	0.02
14 a	1.89	1.91	0.02
14 b	1.29	1.31	0.02
16	1.5	1.52	0.02
17	0.84	0.86	0.02
18	0.82	0.84	0.02
19	3.77	3.79	0.02
$10-\mathrm{OH}$	12.34	12.35	0.01
$13-\mathrm{OMe}$	3.72	3.74	0.02

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

3-(4-Methoxyphenoxy)propan-1-ol 9

${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

(E)-Ethyl 5-(4-methoxyphenoxy)pent-2-enoate

${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

$\stackrel{\rightharpoonup}{\dot{N}}$

(\boldsymbol{E})-5-(4-Methoxyphenoxy)pent-2-enoic acid
${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C} \mathrm{NMR}$ at 75 MHz in CDCl_{3}

¢	べす	® \％\％
자N		ヘู่
I	く11	－

Nicce

\％171T1719	160	140	120	100	80	60	40	20	1
				Shift					

(E)-5-(4-Methoxyphenoxy)pent-2-enoyl chloride 10
${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

$\stackrel{\text { in }}{\substack{\infty \\ \sim}}$

$\stackrel{\sim}{\infty}$

Methyl 6-methyl-3-oxoheptanoate 11
${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-oxo-5,6-dihydro-2H-pyran-3-carboxylate 12
${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-oxotetrahydro-2H-pyran-3-carboxylate
${ }^{1} \mathrm{H}$ NMR at 400 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 100 MHz in CDCl_{3}

cis-Methyl 4-((diethoxyphosphoryl)oxy)-2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-5,6-dihydro-2H-pyran-3-carboxylate 13
${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

ก	N®®ON	으8988
$\stackrel{\text { ¢ }}{6}$		
	「「近	－

$\begin{array}{llllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ \text { Chemical }\end{array} & 90 & 80 \\ \text { Shift（ppm }\end{array}$
cis-Methyl 2-isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-methyl-5,6-dihydro-2H-pyran-3-carboxylate 14
${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

(cis-2-Isopentyl-6-(2-(4-methoxyphenoxy)ethyl)-4-methylenedihydro-2H-pyran-3(4H)-ylidene)(methoxy)methoxy)trimethylsilane 3
${ }^{1} \mathrm{H}$ NMR at 300 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 75 MHz in CDCl_{3}

cis-5-Hydroxy-6-isopentyl-8-(2-(4-methoxyphenoxy)ethyl)-1-methyl-8,9-dihydro-1H-pyrano[3',4':6,7]naphtho[2,3-d]thiazole-2,4,11(6H)-trione 15
${ }^{1} \mathrm{H}$ NMR at 400 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 100 MHz in CDCl_{3}

cis-5-Hydroxy-8-(2-hydroxyethyl)-6-isopentyl-1-methyl-8,9-dihydro-1H-pyrano[3',4':6,7]naphtho[2,3-d]thiazole-2,4,11(6H)-trione
${ }^{1} \mathrm{H}$ NMR at 400 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 100 MHz in CDCl_{3}

Mevashuntin 1

${ }^{1} \mathrm{H} \mathrm{NMR}$ at 400 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 100 MHz in CDCl_{3}

Mevashuntin methyl ester 16
${ }^{1} \mathrm{H}$ NMR at 400 MHz in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR at 100 MHz in CDCl_{3}

References

(1) Murphy, J. A.; Schoenebeck, F.; Findlay, N. J.; Thomson, D. W.; Zhou, S.-z.; Garnier, J. J. Am. Chem. Soc. 2009, 131, 6475.
(2) Shin-ya, K.; Umeda, K.; Chijiwa, S.; Furihata, K.; Hayakawa, Y.; Seto, H. Tetrahedron Lett. 2005, 46, 1273.

