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Section 1. Figure for simulated nitrogen uptake 
 

Grand canonical Monte Carlo simulations (Figure SI1) were carried out using the crystallographic 

data file for CD-MCF.  
 

 

 
Figure SI1. a) Simulated adsorption N2 isotherm for CD-MCF at 77 K. (b) BET analysis of the simulated 

isotherm shows that CD-MCF has an accessible surface area of 820 m
2
/g. 

 
 

Section 2. Computation studies for chiral and gas separation 
 

The complex porosity of CD-MCF led us to investigate the possibility of its use as a material for 
chromatographic separations. The use of porous materials for stationary phases for 
chromatographic separations in both the single

1
 and bulk crystalline states

2
 has been investigated 

previously. Specifically, microporous materials that have homochiral components
3 
are of interest 

for chiral separation processes. Here, we investigated the ability of CD-MCF to adsorb left-
handed enantiomers selectively from racemic mixtures of 1,2-dimethylcyclobutane. Using 
multicomponent GCMC simulations, following the approach of Clark

4
 and others

5
 we find 

(Figure SI2a) that CD-MCF is indeed predicted to be enantioselective for (SS)-1,2-
dimethylcyclobutane.  The long helical void spaces of CD-MCF can also be useful for a different 
type of separation. As a result of the exceptionally tortuous and narrow nature of the helical 
cavites of CD-MCF, it is also a potentially useful adsorbent for size-selective separation of gas 
mixtures where the components are of similar size and shape, e.g., separating Xe and Kr 
mixtures.  Using multicomponent GCMC simulations,

6
 we here modeled the selective adsorption 

of Xe in CD-MCF from an industrially relevant mixture of 80/20 Xe/Kr gas. The simulation 
(Figure SI2b) shows that CD-MCF is predicted to be selective for Xe gas over Kr at intermediate 
pressures.  
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Figure SI2. (a) Simulated adsorption isotherms of the (RR) and (SS) enantiomers of 1,2-
dimethylcyclobutane with CD-MCF.  The simulation shows that there is a preference for the adsorption of 
the (SS) enantiomer near atmospheric pressure.  (b) Simulated adsorption isotherms of a Xe/Kr mixture 
within CD-MCF.  The simulation shows that CD-MCF has a preference for Xe over Kr at higher pressures.  
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