EVALUATING RARE EARTH ELEMENT AVAILABILITY: A CASE WITH REVOLUTIONARY DEMAND FROM CLEAN TECHNOLOGIES

Elisa Alonso, Andrew M. Sherman, Timothy J. Wallington, Mark P. Everson, Frank R. Field, Richard Roth and Randolph E. Kirchain*

*Massachusetts Institute of Technology MIT / Room E38-432 77 Massachusetts Ave. Cambridge, MA 02139-4307 Tel: (617) 253-4258

Fax: (617) 258-7471 E-mail: <u>kirchain@mit.edu</u>

SUPPORTING INFORMATION

Table S1: Estimated RE mass fraction in rare earth oxide (REO) based on typical REO chemical form ¹
Figure S2: Global REO usage percent breakdown by application in 2008 ² .
Figure S3: Global production of REO with exponential fit for 1970 to 2010 ³ .
Figure S4: Typical distribution of individual Rare Earth (RE) used for each application (percentages based on REC
by mass). Based on information on Rare Earth Elements (REE) used by application ⁴ and REO molecular formulas ¹ .4
Figure S5: REE Use Profile: (Left) Calculated in the present work for 2008 based on Total RE demand by
application and REE distribution used in each application; (Right) Materials Flow Analysis results reported by Do
and Graedel for 2007 ⁵ 4
Table S6: Ree Per Vehicle Content (grams of REE) ^{6,7}
Figure S7: Scenario D: Automobile and Wind Turbine RE demand projections ^{8,9}
Figure S 8: Distribution of REO in mines expected to be producing in next 5 years ¹⁰
Supporting Information References6

TABLE S1: ESTIMATED RE MASS FRACTION IN RARE EARTH OXIDE (REO) BASED ON TYPICAL REO CHEMICAL $FORM^1$.

Name	Abbreviated Name	Oxide Form	Mass Fraction Rare Earth Element	
Cerium	Ce	CeO₂	81.4%	
Dysprosium	Dy	Dy ₂ O ₃	87.1%	
Erbium	Er	Er ₂ O ₃	87.5%	
Europium	Eu	Eu ₂ O ₃	86.4%	
Gadolinium	Gd	Gd ₂ O ₃	86.8%	
Holmium	Но	Ho₂O₃	87.3%	
Lanthanum	La	La₂O₃	85.3%	
Lutetium	Lu	Lu₂O₃	87.9%	
Neodymium	Nd	Nd ₂ O ₃	85.7%	
Praseodymium	Pr	Pr ₆ O ₁₁	82.8%	
Samarium	Sa	Sm ₂ O ₃	86.2%	
Terbium	Tb	Tb ₄ O ₇	85.0%	
Thulium	Th	Tm ₂ O ₃	87.6%	
Yttrium	Υ	Y ₂ O ₃	78.7%	
Ytterbium	Yt	Yb ₂ O ₃	87.8%	

FIGURE S2: GLOBAL REO USAGE PERCENT BREAKDOWN BY APPLICATION IN 2008².

FIGURE S3: GLOBAL PRODUCTION OF REO WITH EXPONENTIAL FIT FOR 1970 TO 2010³.

FIGURE S4: TYPICAL DISTRIBUTION OF INDIVIDUAL RARE EARTH (RE) USED FOR EACH APPLICATION (PERCENTAGES BASED ON REO BY MASS). BASED ON INFORMATION ON RARE EARTH ELEMENTS (REE) USED BY APPLICATION⁴ AND REO MOLECULAR FORMULAS¹.

FIGURE S5: REE USE PROFILE: (LEFT) CALCULATED IN THE PRESENT WORK FOR 2008 BASED ON TOTAL RE DEMAND BY APPLICATION AND REE DISTRIBUTION USED IN EACH APPLICATION; (RIGHT) MATERIALS FLOW ANALYSIS RESULTS REPORTED BY DU AND GRAEDEL FOR 2007⁵.

TABLE S6: REE PER VEHICLE CONTENT (GRAMS OF REE)^{6,7}.

REE	Conventional	HEV with NiMH	HEV with Li-ion	PHEV	BEV	FCEV
Ce	Base Vehicle	+1021	-8.9	-8.9	-82.0	-82.0
Dy	Base Vehicle	+231	+231	+231	+347	+231
Eu	Base Vehicle					
Gd	Base Vehicle					
La	Base Vehicle	+730				
Nd	Base Vehicle	+684	+374	+374	+561	+374
Pr	Base Vehicle					
Sm	Base Vehicle					
Tb	Base Vehicle					
Υ	Base Vehicle					
Other	Base Vehicle					
Total	Base Vehicle	+2667	+597	+597	+826	+524

World Energy Outlook Scenarios

FIGURE S7: SCENARIO D: AUTOMOBILE AND WIND TURBINE RE DEMAND PROJECTIONS^{8,9}.

FIGURE S 8: DISTRIBUTION OF REO IN MINES EXPECTED TO BE PRODUCING IN NEXT 5 YEARS¹⁰.

SUPPORTING INFORMATION REFERENCES

- 1. Geoscience Australia Rare Earths. http://www.australianminesatlas.gov.au/aimr/commodity/rare_earths_10.jsp#3 (May 2011),
- 2. Hocquard, C. Rare Earths; BRGM: Brussels, Belgium, May 20, 2010, 2010; p 85.
- 3. U.S.G.S. Minerals information. Data gathered from Mineral Yearbook and Mineral Commodity Summary found online at http://minerals.usgs.gov/minerals/ (January 2011),
- 4. Long, K. R.; Gosen, B. S. V.; Foley, N. K.; Cordier, D., The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective. In U.S. Department of the Interior, U.S.G.S.: 2010; p 104.
- 5. Du, X.; Graedel, T. E., Global In-Use Stocks of the Rare Earth Elements: A First Estimate. *Environ. Sci. Technol.* **2011**.
- 6. Alonso, E.; Sherman, A. M.; Wallington, T. J.; Everson, M. P.; Field, F. R.; Roth, R.; Kirchain, R. E., Rare earth elements in conventional and electric vehicles. In *SAE 2012 World Congress & Exhibition*, 2010; Vol. SDP111, "Sustainable Materials and Components", pp Paper Offer Number: 12SDP-0007.
- 7. Bauer, D.; Diamond, D.; Li, J.; Telleen, P.; Wanner, B.; Sandalow, D., Critical Materials Strategy. In U.S. Department of Energy: 2010; p 166. http://www.energy.gov/news/documents/criticalmaterialsstrategy.pdf
- 8. International Energy Agency *World Energy Outlook*; 978 92 64 06130 9; OECD: Paris, France, 2009; p 698.
- 9. International Energy Agency World Energy Outlook; 978 92 64 08624 1; OECD: Paris, France, 2010; p 738.
- 10. EWI Joining Innovation Rare Earth Roundtable; 2011.