Evidence for Patchy Lipid Layers on Gold Nanoparticle Surfaces

Jie An Yang and Catherine J. Murphy*
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
\section*{Supporting Information}

Figure S1. A photograph illustrating the distribution of Au NPs in water /chloroform mixtures in the presence of lipids. The top solvent layer is water; the bottom is chloroform. The red color indicates the phase in which the gold nanoparticles, originally coated with PAH, reside. Lipid identity in 1:1 ratios or as single components is indicated under each vial.

Figure S2. Stained TEM images of 20 nm PAH coated Au NPs with an organic layer of LPC and POPS (2-20nm). The difference in organic layer thickness could possibly indicate the presence bilayer or multilayer lipids.

Figure S3. Cryo TEM images of Au NPs with an LPC coating. Scale bars $=20 \mathrm{~nm}$.

Scheme S1. Calculations for 1 monolayer of alkanethiol.
We assume that the nanoparticles take up a truncated cuboctahedral geometry.
$\mathrm{N}=283.7 \mathrm{R}^{3}$
where R is the radius of the particle. The percentage of surface atoms is given as
\% surface atom $=\frac{R^{3}-(R-d)^{3}}{R^{3}}$
where $\mathrm{d}=0.28 \mathrm{~nm}$, the lattice spacing between two gold atoms.
From the total number of Au atoms, the amount of $\mathrm{C}_{18} \mathrm{SH}$ to be added can be calculated.

Figure S4. Histograms of the counts of 12 nm Au NP label angles on 90 nm Au NPs with respect with the total angles measured. Left: PAH coated Au NPs with lipid layer, from top to bottom, POPS:biotin PE, POPS:LPC:biotin PE and LPC:biotin PE. Right: Hybrid Au NPs with lipid layer, from top to bottom, POPS:biotin PE, POPS:LPC:biotin PE and LPC:biotin PE.

