-Supporting Information for-

Polarity Reversal Catalysis in Radical Reductions of Halides by N-Heterocyclic

Carbene Boranes

Xiangcheng Pan, ${ }^{\text {a }}$ Emmanuel Lacôte, ${ }^{\text {b }}$ Jacques Lalevée ${ }^{\text {c }}$ and Dennis P. Curran ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA${ }^{\mathrm{b}}$ ICSN CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
${ }^{\text {c}}$ Institut de Science des Matériaux de Mulhouse IS2M - LRC CNRS 7228 - ENSCMu-UHA; 15,rue Jean Starcky, 68057 Mulhouse Cedex - Francejacques.lalevee@uha.fr, curran@pitt.edu
Table of Contents
General Remarks 2
Experimental Procedures and Compound Characterization 3
Additional Preparative Experiments 13
Mechanistic Studies 20
Calculations 21
References 29
Copies of Spectra 31

General Remarks: All reagents were purchased commercially and used without further purification unless stated otherwise. Reaction mixtures were stirred with a magnetic stirrer and reaction progress was monitored by TLC with 0.25 mm E. Merck precoated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$) supplied by Sorbent Technologies or by CombiFlash system (Teledyne ISCO). NMR spectra were taken on a Bruker WH-300, a Bruker AvanceTM 400 NMR, and a Bruker AvanceTM 500 NMR spectrometer. Spectra were recorded at room temperature in the indicated deuteriated solvents, and chemical shifts were reported in parts per million (ppm) downfield relative to TMS using the residual solvent proton resonance of $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}=7.27 \mathrm{ppm},{ }^{13} \mathrm{C}=77.0 \mathrm{ppm}\right)$ or $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{1} \mathrm{H}=7.16\right.$ $\mathrm{ppm},{ }^{13} \mathrm{C}=128.0 \mathrm{ppm}$) as the internal standard. The ${ }^{11} \mathrm{~B}$ chemical shift are given relative to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left({ }^{11} \mathrm{~B}=0 \mathrm{ppm}\right)$. In reporting spectral data, the following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=\operatorname{doublet}$ of triplets, $\mathrm{td}=$ triplet of doublets. The resonances of hydrogen atoms connected to the boron atom are not usually observed in ${ }^{1} \mathrm{H}$ NMR spectra because of quadrupole broadening. ${ }^{1}$ Infrared spectra were taken on a Mattson Genesis Series FTIR using thin film on NaCl plate. Peaks are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were obtained on a QTof Ultima API, Micromass UK Limited instrument by electrospray ionization (ESI).

Compounds $\mathbf{1}^{2}, \mathbf{6}^{3}, \mathbf{8 a}^{4}, \mathbf{8 b}^{4}, \mathbf{1 0 a} \mathbf{a}^{5}, \mathbf{1 0 b}^{6}, \mathbf{1 4 a}^{7}, \mathbf{1 9}^{8}, \mathbf{2 1},{ }^{19} \mathbf{2 3 a}^{9}, \mathbf{2 3 b}^{10}$ have been prepared according to the literature procedures. Their spectroscopic data were consistent with those previous reported.

Caution: Radical initiators (AIBN, DTBP, TBHN) are high energy compounds that should be handled with appropriate precautions.

Experimental Procedures and Compound Characterization:

General Procedure for Triethylborane-initiated Free Radical Reactions: Triethylborane (1 M solution in hexane, 0.05 mmol$)$ was added to a solution of diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}(12 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ and the substrate $(0.1 \mathrm{mmol})$ in benzene $(0.45 \mathrm{~mL})$. Thiophenol or tert-dodecanethiol ($11.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ or $20.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in benzene $(1 \mathrm{~mL})$. The diluted thiol solution (0.1 M in benzene, $50 \mu \mathrm{~L}, 0.005 \mathrm{mmol}$) was added to the solution of the substrate and triethylborane. The septum was pierced with a needle to admit ambient air. The colorless solution was stirred for 1-5 h . Then the solvent was evaporated and the crude product was purified by flash column chromatography.

General Procedure for TBHN-initiated Free Radical Reactions: TBHN ($3.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added to a solution of diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}(12 \mathrm{mg}, 0.11 \mathrm{mmol})$ and the substrate $(0.1 \mathrm{mmol})$ in benzene (0.45 mL). Thiophenol or tert-dodecanethiol ($11.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ or $20.2 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in benzene (1 mL). The diluted thiol solution (0.1 M in benzene, $50 \mu \mathrm{~L}, 0.005$ mmol) was added to the solution of the substrate and TBHN. The colorless solution was charged to a sealed tube and heated in oil bath at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature, then the solvent was evaporated and the crude product was purified by flash column chromatography.

General Procedure for DTBP-initiated Free Radical Reactions: DTBP ($2.9 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added to a solution of diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}(12 \mathrm{mg}, 0.11 \mathrm{mmol})$ and the substrate $(0.1 \mathrm{mmol})$ in benzene (0.45 mL). Thiophenol or tert-dodecanethiol ($11.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ or $20.2 \mathrm{mg}, 0.1 \mathrm{mmol}$)
was dissolved in benzene (1 mL). The diluted thiol solution (0.1 M in benzene, $50 \mu \mathrm{~L}, 0.005$ mmol) was added to the solution of the substrate and DTBP. The colorless solution was charged to a NMR tube and irradiated with GE-275W sunlamp at $60^{\circ} \mathrm{C}$ for $1-7 \mathrm{~h}$. The mixture was cooled to room temperature, then the solvent was evaporated and the crude product was purified by flash column chromatography.

General Procedure for Free Radical Reactions with DiMe-Tri-BH $\mathbf{3}_{\mathbf{3}}$ 2: TBHN ($3.5 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ was added to a solution of diMe-Tri-BH3 $2(12 \mathrm{mg}, 0.11 \mathrm{mmol})$ and the substrate $(0.1$ mmol) in benzene (0.45 mL). Thiophenol ($11.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in benzene (1 mL). The diluted thiol solution (0.1 M in benzene, $50 \mu \mathrm{~L}, 0.005 \mathrm{mmol}$) was added to the solution of the substrate and TBHN. The colorless solution was charged to a sealed tube and heated in oil bath at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature, then ether and water (20 mL , respectively) were added to the mixture, and the organic layer was extracted with water (2×20 mL). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to get the product.

2,4-Dimethyl-1,2,4-triazol-3-ylideneborane (diMe-Tri-BH3, 2): The preparation this compound followed literature procedures ${ }^{11}$ with some revisions: A mixture of 1,2,4-triazole $(10.0 \mathrm{~g}, 0.145 \mathrm{~mol})$, iodomethane $(61.8 \mathrm{~g}, 0.435 \mathrm{~mol})$, and potassium carbonate ($30.0 \mathrm{~g}, 0.217$ $\mathrm{mol})$ in acetonitrile (80 mL) and methanol (20 mL) was heated at $40^{\circ} \mathrm{C}$ for 3 days. The white mixture was filtered with a Buckner funnel, and the white solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated to give 2,4-dimethyl-1,2,4-triazolium iodide (white solid, 32.8 g ,
100%) . A solution of NaHMDS (1 M in THF, $110 \mathrm{~mL}, 0.11 \mathrm{~mol}$) was added to a suspension of an imidazolium salt ($22.5 \mathrm{~g}, 0.1 \mathrm{~mol}$) in THF $(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon. After stirring of the reaction mixture for 1 h at $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{BH}_{3}-\mathrm{THF}(1 \mathrm{M}$ in THF, $110 \mathrm{~mL}, 0.11 \mathrm{~mol}$) was added. The resulting mixture was warmed from $-78^{\circ} \mathrm{C}$ to rt and stirred for 2 days. The residue was dried in vacuo and purified by flash column chromatography (silica gel) to give the title compound ($4.4 \mathrm{~g}, 40 \%$) as a white solid, mp $60-62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.03\left(\mathrm{q}, J_{B-H}=88 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}, 96.3 \mathrm{MHz}\right) \delta-37.8\left(\mathrm{q}, J_{B-H}=88 \mathrm{~Hz}\right)$. These data are consistent with the previously reported characterization. ${ }^{11}$ Crystals of pure diMe-Tri- BH_{3} were obtained by vaporizing the solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the solution of the complex.

Figure S1. ORTEP plot of diMe-Tri- $\mathrm{BH}_{3} \mathbf{3}$.

Di-O-isopropylidene glucofuranose (7): General conditions were used to yield the title compound as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta 5.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.20-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.91-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=4.4,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{12}$

Cholest-5-ene (9): General conditions were used to yield the title compound as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.29-5.27(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.82$ $(\mathrm{m}, 2 \mathrm{H}), 1.75-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.62-0.93(\mathrm{~m}, 26 \mathrm{H}), 0.92,(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{dd}, J=6.8,4.8$ $\mathrm{Hz}, 6 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{13}$

5,6-Epoxycholestane (11): General conditions were used to yield the title compound (two isomers 6:1) as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 5 \alpha, 6 \alpha$-epoxycholestane $\delta 2.88(\mathrm{~d}, J$
$=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.61(\mathrm{~s}, 3 \mathrm{H}) ; 5 \beta, 6 \beta$-epoxycholestane $\delta 3.01(\mathrm{~m}, 1 \mathrm{H}), 0.63(\mathrm{~s}, 3 \mathrm{H})$; overlapping signals: $\delta 2.15-0.85(\mathrm{~m}, 42 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{14}$

1-Bromo-2-((octyloxy)methyl)benzene (14b): Sodium hydride ($60 \%, 0.43 \mathrm{~g}, 10.7 \mathrm{mmol}$) was added to a solution of 1-bromooctane $(2.1 \mathrm{~g}, 10.7 \mathrm{mmol})$ and 2-bromobenzyl alcohol ($1.0 \mathrm{~g}, 5.3$ $\mathrm{mmol})$ in DMF (10 mL). The mixture was heated at $70^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature, then and quenched by water (30 mL) and diethyl ether (70 mL). The organic layer was extracted with water, and washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography to give the title compound ($1.5 \mathrm{~g}, 94 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 10 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.0, 132.4, 128.9, 128.7, 127.3, 122.6, 72.0, 71.0, 31.8, 29.7, 29.4, 29.2, 26.2, 22.6, 14.1; FTIR (thin film, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right) 3065,2926,2855,1570,1466,1357,1104,749 ;$ HRMS (ESI) $m / z\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calculated for $\mathrm{C}_{15} \mathrm{H}_{23}{ }^{79} \mathrm{BrO}$ 299.1011, found 299.1023.

((Octyloxy)methyl)benzene (15): General conditions were used to yield the title compound as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=6.7 \mathrm{~Hz}$,
$2 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{7}$

6-(Benzyloxy)hexan-1-ol (16-I): Sodium hydride ($60 \%, 0.96 \mathrm{~g}, 24.0 \mathrm{mmol}$) was added to the gray mixture of 1,6-hexanediol ($2.36 \mathrm{~g}, 20.0 \mathrm{mmol}$), benzyl chloride ($3.04 \mathrm{~g}, 24.0 \mathrm{mmol}$), and tetrabutylammonium bromide $(1.60 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$. The white mixture was refluxed for 2 h . The mixture was cooled to room temperature, and then quenched by water (30 $\mathrm{mL})$ and diethyl ether $(50 \mathrm{~mL})$. The organic layer was extracted with water, and washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash column chromatography to give the title compound $(2.40 \mathrm{~g}, 57 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.3-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.39(\mathrm{~m}, 4 \mathrm{H})$. These ${ }^{1} \mathrm{H}$ NMR data are consistent with the previously reported characterization. ${ }^{15}$

6-(Benzyloxy)hexanal (16-II): $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 mL) of 6-(benzyloxy)hexan-1-ol 16-I (2.37 $\mathrm{g}, 11.4 \mathrm{mmol}$) was added to the organge mixture of PCC (pyridinium chlorochromate, 4.90 g , $22.8 \mathrm{mmol}), 4 \AA \mathrm{MS}(2.40 \mathrm{~g})$, sodium acetate $(0.56 \mathrm{~g}, 6.84 \mathrm{mmol})$, and celite $(2.40 \mathrm{~g})$ in 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The browm mixture was stirred at rt for 2 h , and celite (30 g) and diethyl ether (100 mL) were added. The brown mixture was filtered through a plug of silica gel, and concentrate in vacuo. The crude product was purified by flash column chromatography to give the title compound ($1.55 \mathrm{~g}, 66 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{t}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{td}, J=7.5,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, 1.68-1.61 (m, 4H), 1.45-1.39(m, 2H). These ${ }^{1} \mathrm{H}$ NMR data are consistent with the previously reported characterization. ${ }^{16}$

11-(Benzyloxy)undec-1-en-6-ol (16-III): 1,2-Dibromoethane ($0.36 \mathrm{~g}, 1.9 \mathrm{mmol}$) was added to the mixture of Mg turnings $(0.27 \mathrm{~g}, 10.9 \mathrm{mmol})$ in ethyl ether $(0.8 \mathrm{~mL})$ to activate the Mg turnings. After the generation of bubbles was ceased, the solution of 5-bromo-1-pentene (1.27 g , $8.4 \mathrm{mmol})$ in ethyl ether (13 mL) was added slowly over 30 min . The Grignard reagent was stirred at rt for 2 h , and then the Grignard reagent was added to a solution of 6(benzyloxy)hexanal (16-II, $1.46 \mathrm{~g}, 7.0 \mathrm{mmol})$ in THF (5 mL) at $-78^{\circ} \mathrm{C}$ slowly. The white mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ for 3 h , and then saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})(10 \mathrm{~mL})$ was added to the white mixture to quench the excess Grignard reagent. The biphase system was partitioned between ethyl ether $(70 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})(30 \mathrm{~mL})$. The organic layer was washed with water $(30 \mathrm{~mL})$, brine (30 mL), dried with MgSO_{4}, and concentrated to give title compound $(0.82 \mathrm{~g}, 56 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{ddt}, J=$ $17.2,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$,
2.10-2.05 (m, 2H), 1.67-1.30(m, 12H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 138.7, 138.6, 128.3, $127.6,127.5,114.6,72.8,71.7,70.3,37.4,36.8,33.7,29.7,26.2,25.4,24.9$; FTIR (thin film, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right) 3405,2933,2858,1640,1454,1363,1101,910,736 ;$ HRMS (ESI) $m / z\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}$ 299.1987, found 299.2008.
(((6-Bromoundec-10-en-1-yl)oxy)methyl)benzene (16): Phosphorus tribromide (0.73 g, 2.72 $\mathbf{m m o l}$) was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 11-(benzyloxy)undec-1-en-6-ol (16-III, $0.50 \mathrm{~g}, 1.81$ mmol) at $0{ }^{\circ} \mathrm{C}$. The colorless solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and then diluted with ethyl ether (70 mL) and washed saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})(\mathrm{x} 4)$. The organic layer was dried with MgSO_{4}, and concentrated to give a colorless oil. The crude product was purified by flash column chromatography to give the title compound $(0.13 \mathrm{~g}, 21 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{ddt}, J=17.2,10.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}$, $2 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.25(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,138.2,128.3,127.5,127.4,114.9,72.8,70.2,58.3,39.0,38.4$, 33.0, 29.5, 27.3, 26.7, 25.6; FTIR (thin film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$) 3053, 2937, 2860, 2305, 1640, 1454, 1363, 1265, 1100, 739, 704; HRMS (ESI) m/z (M $\left.{ }^{+}-\mathrm{H}\right)$ calculated for $\mathrm{C}_{18} \mathrm{H}_{26}{ }^{79} \mathrm{BrO}$ 337.1167, found 337.1199.

17
$\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{OBn}$

18
$\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{OBn}$

(((5-(2-methylcyclopentyl)pentyl)oxy)methyl)benzene (17) and ((undec-10-en-1-

yloxy)methyl)benzene (18): General conditions were used to yield the title compounds of a 5:1 mixture of (((5-(2-methylcyclopentyl)pentyl)oxy)methyl)benzene (two stereoisomers) and
((undec-10-en-1-yloxy)methyl)benzene as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$: major isomer of (((5-(2-methylcyclopentyl)pentyl)oxy)methyl)benzene: $\delta 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; minor isomer: $\delta 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ((undec-10-en-1-yloxy)methyl)benzene: δ 5.84-5.73 $(\mathrm{m}, 1 \mathrm{H}), 5.07-4.94(\mathrm{~m}, 2 \mathrm{H})$; overlapping signals: $\delta 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.12-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.05(\mathrm{~m}, 16 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{11,17}$

3-Methyl-1-tosylpyrrolidine (20): General conditions were used to yield the title compound as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.45-3.41 (m, 1H), 3.38-3.32(m, 1H), 3.26-3.19(m, 1H), $2.76(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $2.12(\mathrm{dq}, J=9.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{dq}, J=9.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{18}$

5-Ethoxy-3-methyl-2-vinyltetrahydrofuran (22): General conditions were used to yield the title compound (as two diastereoisomers, $9: 1$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ (2S,3R,5R)-5-ethoxy-3-methyl-2-vinyltetrahydrofuran: $\delta 5.77$ (ddd, $J=7.5,10.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.32-5.15(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{dq}, J=7.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dq}, J=7.2$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (ddd, $J=5.7,8.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.22$
$(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{19}$

3-Methyl-2,3-dihydrobenzofuran (24): General conditions were used to yield the title compound as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): ~ \delta 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.86(\mathrm{~m}$, $1 \mathrm{H}), 6.81-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.77(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06-2.96(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{9}$

1-Methylindane (25): General conditions were used to yield the title compound as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.24-7.15(\mathrm{~m} .4 \mathrm{H}), 3.23-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 2 \mathrm{H})$, $2.35-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. These data are consistent with the previously reported characterization. ${ }^{20}$

Additional Preparative Experiments:

Table S1. Reduction of Ad-I 4a with diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}$ with other additives and initiators.

Entry	additive (5 mol\%)	time	conversion of 4a	yield of 5 ${ }^{\text {a }}$
$1^{\text {b }}$	PhSH	1 h	99%	99%
2	PhSeH	2 h	32%	-
3	$2,4,6-$ trimethylphenol $\mathbf{S 1}$	1 h	20%	-
4	$\mathrm{TBC}^{\mathrm{c}} \mathbf{S 2}$	3 h	47%	-
5^{d}	PhSH	3 h	88%	84%

${ }^{\text {a) }}$ NMR yield determined with 1,3,5-trimethoxybenzene as the internal standard; ${ }^{\text {b }}$ data are from entry 8 in Table 1; ${ }^{\text {c) }} 4$-tert-butylcatechol; ${ }^{\text {d) }}$ initiator source: black light (15 W and peak wavelength at 357 nm).

S1

S2

S3

S4

S5

Figure S2. Structure used in Table S1 and S2.

Table S2. Reduction of Ad-I 4a with other borane sources with $5 \% \mathrm{PhSH}$.

	 4a	reagent (1 equiv) $5 \mathrm{~mol} \% \mathrm{PhSH}$ $20 \mathrm{~mol} \%$ DTBP benzene- d_{6}, hv		
Entry	reagent	time	conversion of 4a	yield of $\mathbf{5}^{\text {a }}$
$1^{\text {b }}$	diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}$	1 h	99\%	99\%
2	diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}^{\text {c }}$	1 h	50\%	50\%
3	dipp-Imd- $\mathrm{BH}_{3} \mathbf{S 4}$	1 h	99\%	86\%
$4^{\text {d }}$	diMe-Tri- $\mathrm{BH}_{3} 2$	1 h	99\%	$77 \%{ }^{\text {e }}$
5	Dimer $\mathbf{S 5}$	1 h	0\%	-
6	$\mathrm{Me}_{3} \mathrm{~N}-\mathrm{BH}_{3}$	12 h	17\%	-
7	pyridine- $\mathrm{BH}_{3}{ }^{\text {f }}$	12 h	89\%	75\%
$8^{\text {d }}$	pyridine- $\mathrm{BH}_{3}{ }^{\text {f }}$	12 h	64\%	64\%
9	$\mathrm{Ph}_{3} \mathrm{P}-\mathrm{BH}_{3}$	4 h	0\%	-
$10^{\text {d }}$	$\mathrm{Bu}_{4} \mathrm{NBH}_{3} \mathrm{CN}^{\mathrm{f}}$	2 h	99\%	$\sim 20 \%$
11	$\mathrm{Bu}_{4} \mathrm{NBH}_{3} \mathrm{CN}^{\mathrm{g}}$	3 h	99\%	93\%

[^0]Table S3. Additional reductions with $\mathrm{Bu}_{4} \mathrm{NBH}_{3} \mathrm{CN}$ and pyridine $-\mathrm{BH}_{3}$.

		$\begin{gathered} \mathrm{R}-\mathrm{X} \\ \mathrm{X}=1 \text { or } \mathrm{Br} \end{gathered}$	reagent initiator (hv for DTBP or heat for $5 \mathrm{~mol} \% \mathrm{PhSH}$ benzene	BHN)	R-H	
Entry	R-X	reagent	initiator (20 mol\%)	time	conversion	yield ${ }^{\text {a }}$
1	4b	$\mathrm{Bu}_{4} \mathrm{NBH}_{3} \mathrm{CN}^{\text {b }}$	DTBP	2 h	$\sim 20 \%$	-
2	4b	$\mathrm{Bu}_{4} \mathrm{NBH}_{3} \mathrm{CN}^{\mathrm{c}}$	TBHN	2 h	17\%	-
3	14a	$\mathrm{Bu}_{4} \mathrm{NBH}_{3} \mathrm{CN}^{\text {b }}$	DTBP	7 h	99\%	56\%
4	14a	$\mathrm{Bu}_{4} \mathrm{NBH}_{3} \mathrm{CN}^{\mathrm{c}}$	TBHN	2 h	99\%	$\sim 25 \%$
5	4b	pyridine- $\mathrm{BH}_{3}{ }^{\text {d }}$	DTBP	8 h	0\%	-
6	14a	pyridine- $\mathrm{BH}_{3}{ }^{\text {d }}$	DTBP	8 h	72\%	72\%
7	14b	pyridine- $\mathrm{BH}_{3}{ }^{\text {d }}$	DTBP	8 h	0\%	-
	MR yi equiv.	termined with $1,3,5$	trimethoxybenzene as the in	ernal sta	dard; ${ }^{\text {b }} 5$ equiv	2 equiv;

Table S4. Reduction of aryl iodide $\mathbf{1 4 a}$ with diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}$ with and without thiol sources.

[^1]Table S5. Additional control experiments.

Entry	conditions	conversion of $\mathbf{1 4 a}$	yield of $\mathbf{1 5}^{\text {a }}$
1	$\mathrm{Et}_{3} \mathrm{~B}(0.5$ equiv), $5 \% \mathrm{PhSH}, \mathrm{rt}$	0%	0%
2	$\mathrm{TBHN}\left(0.1\right.$ equiv), $5 \% \mathrm{PhSH}, 80^{\circ} \mathrm{C}$	19%	0%
3	$\mathrm{DTBP}(0.1$ equiv), $5 \% \mathrm{PhSH}, \mathrm{hv}$	4%	4%
4	diMe-Imd- $\mathrm{BH}_{3} \mathbf{1}$ (1 equiv), $5 \% \mathrm{PhSH}, 80^{\circ} \mathrm{C}$	19%	9%

[^2]Table S6. TBHN- or DTBP-initiated reduction of 14a with different thiol sources.

[^3]Table S7. TBHN-initiated reduction of $\mathbf{1 4 a}$ with different amounts of t-dodecanethiol.

[^4]

Reductions of adamantyl chloride under TBHN or DTBP conditions: The TBHN- or DTBPinitiated reactions between 1-chloroadamantane $\mathbf{4 c}(\mathrm{Ad}-\mathrm{Cl})$ and $\mathbf{1}$ (1 equiv) with $5 \mathrm{~mol} \% \mathrm{PhSH}$ gave only 5% conversion of 5 after 6 h .

Mechanistic Studies

Laser Flash Photolysis Experiments: Nanosecond laser flash photolysis (LFP) experiments were carried out using a Q-switched nanosecond $\mathrm{Nd} / \mathrm{YAG}$ laser ($\lambda_{\text {exc }}=355 \mathrm{~nm}, 9 \mathrm{~ns}$ pulses; energy reduced down to 10 mJ) from Continuum (Powerlite 9010) and an analyzing system consisting of a pulsed xenon lamp, a monochromator, a fast photomultiplier and a transient digitizer. ${ }^{21}$

ESR spin trapping experiments: ESR spin trapping experiments were carried out using a XBand spectrometer (MS 200 Magnettech) as presented in reference. ${ }^{22}$ The radicals generated under the light irradiation (Xe-Hg lamp (Hamamatsu, L8252, $150 \mathrm{~W} ; \lambda>310 \mathrm{~nm}$) were trapped by phenyl-N-tbutylnitrone (PBN). The ESR spectra simulations were carried out with the PEST WINSIM program. ${ }^{23}$

Calculations

OPTIMIZED STRUCTURES: UB3LYP/6-31+G* LEVEL (GAUSSIAN 03) ${ }^{\mathbf{1}}$

[1] Gaussian 03, Revision B-2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003. b) J.B. Foresman, A. Frisch, in Exploring Chemistry with Electronic Structure Methods. Second Edition, Gaussian. Inc. 1996.

```
C
C,1,B1
C,1,B2,2,A1
H,1,B3,3,A2,2,D1,0
C,2,B4,1,A3,3,D2,0
C,3,B5,1,A4,2,D3,0
H,2,B6,1,A5,3,D4,0
H,3,B7,1,A6,2,D5,0
C,5,B8,2,A7,1,D6,0
S,6,B9,3,A8,1,D7,0
H,5,B10,2,A9,1,D8,0
H,9,B11,5,A10,2,D9,0
Variables:
B1=1.40297994
B2=1.39004553
B3=1.08692281
B4=1.40297855
B5=1.42209218
B6=1.08697134
B7=1.08591483
B8=1.39004153
B9=1.72846045
B10=1.08692399
B11=1.08591399
```

PhS•

$$
\begin{aligned}
& \mathrm{A} 1=120.10099111 \\
& \mathrm{~A} 2=119.95249864 \\
& \mathrm{~A} 3=120.19165273 \\
& \mathrm{~A} 4=120.6470863 \\
& \mathrm{~A} 5=119.90378352 \\
& \mathrm{~A} 6=120.82189445 \\
& \mathrm{~A} 7=120.101211 \\
& \mathrm{~A} 8=120.84413711 \\
& \mathrm{~A} 9=119.94637921 \\
& A 10=120.82289626 \\
& \text { D1 }=180 . \\
& \text { D2 }=0 . \\
& \text { D3 }=0 . \\
& \text { D } 4=180 . \\
& \text { D5 }=180 . \\
& \text { D } 6=0 . \\
& \text { D7 }=180 . \\
& \text { D8 }=180 . \\
& \text { D } 9=180 .
\end{aligned}
$$

PhS ${ }^{+}$

C, 1, B1
C,1,B2,2,A1
H,1,B3,3,A2,2,D1,0
C,2,B4,1,A3,3,D2,0
C,3,B5,1,A4,2,D3,0
H,2,B6,1,A5,3,D4,0
H,3,B7,1,A6,2,D5,0
C,5,B8,2,A7,1,D6,0
S,6,B9,3,A8,1,D7,0
H,5,B10,2,A9,1,D8,0
H,9,B11,5,A10,2,D9,0
Variables:
B1 $=1.41756597$
$\mathrm{B} 2=1.37320532$
$\mathrm{B} 3=1.08551158$
$\mathrm{B} 4=1.41756519$
B5 $=1.46058167$
B6=1.08788184
$\mathrm{B} 7=1.08599895$
B8=1.3732066
$\mathrm{B} 9=1.65345567$
B10 $=1.08551171$
B11 $=1.08599912$
A1=119.31379578

$$
\begin{aligned}
& \mathrm{A} 2=120.9361277 \\
& \mathrm{~A} 3=122.56530509 \\
& \mathrm{~A} 4=119.97862258 \\
& \mathrm{~A} 5=118.71727227 \\
& \text { A6 }=121.90823327 \\
& \text { A } 7=119.31402086 \\
& \text { A } 8=120.57467668 \\
& \text { A9 }=119.75009691 \\
& \text { A10 }=121.90771698 \\
& \text { D } 18180 . \\
& \text { D } 2=0 . \\
& \text { D } 3=0 . \\
& \text { D4 }=180 . \\
& \text { D5 }=180 . \\
& \text { D6 }=0 . \\
& \text { D7 }=180 . \\
& \text { D } 8=180 . \\
& \text { D9 }=180 .
\end{aligned}
$$

PhS

C, 1, B1
C,1,B2,2,A1
H,1,B3,3,A2,2,D1,0
C,2,B4,1,A3,3,D2,0
C,3,B5,1,A4,2,D3,0
H,2,B6,1,A5,3,D4,0
H,3,B7,1,A6,2,D5,0
C,5,B8,2,A7,1,D6,0
S,6,B9,3,A8,1,D7,0
H,5,B10,2,A9,1,D8,0
H,9,B11,5,A10,2,D9,0
Variables:
B1 $=1.40349921$
$\mathrm{B} 2=1.39488609$
$\mathrm{B} 3=1.09121816$
B4 $=1.40349855$
B5 $=1.42443711$
B6 $=1.08880879$
B7 $=1.08806346$
B8 $=1.39488539$
$\mathrm{B} 9=1.74961564$
B10 $=1.0912185$
B11 $=1.08806323$
$\mathrm{Al}=121.0683644$

$$
\begin{aligned}
& \mathrm{A} 2=119.19446527 \\
& \text { A3 }=117.9295248 \\
& \text { A } 4=122.31407164 \\
& \text { A5 }=121.03510598 \\
& \text { A } 6=119.87933716 \\
& \text { A } 7=121.06839518 \\
& \text { A } 8=122.34725695 \\
& \text { A } 9=119.73715612 \\
& \text { A10 }=119.87955485 \\
& \text { D } 18180 . \\
& \text { D2 } 2=0 . \\
& \text { D3 }=0 . \\
& \text { D4 }=180 . \\
& \text { D5 }=180 . \\
& \text { D } 6=0 . \\
& \text { D7 }=180 . \\
& \text { D } 8=180 . \\
& \text { D9 }=180 .
\end{aligned}
$$

C
C,1,B1
N,1,B2,2,A1
H,1,B3,2,A2,3,D1,0
C,3,B4,1,A3,2,D2,0
N,2,B5,1,A4,3,D3,0
C,3,B6,1,A5,2,D4,0
H,2,B7,1,A6,3,D5,0
C,6,B8,2,A7,1,D6,0
H,7,B9,3,A8,1,D7,0
H,7,B10,3,A9,1,D8,0
H,7,B11,3,A10,1,D9,0
B,5,B12,3,A11,1,D10,0
H,9,B13,6,A12,2,D11,0
H,9,B14,6,A13,2,D12,0
H,9,B15,6,A14,2,D13,0
H,13,B16,5,A15,3,D14,0
H,13,B17,5,A16,3,D15,0
Variables:
B1 $=1.36176568$
$\mathrm{B} 2=1.38159399$
$\mathrm{B} 3=1.07954644$
$\mathrm{B} 4=1.39315928$
B5 $=1.38159395$
B6=1.44988682
$\mathrm{B} 7=1.07954629$

$$
\begin{aligned}
& \text { B8=1.44988699 } \\
& \mathrm{B} 9=1.09535825 \\
& \text { B10 }=1.09534672 \\
& \text { B11 }=1.09250694 \\
& \text { B12 }=1.50333447 \\
& \text { B13 }=1.09535823 \\
& \text { B14 }=1.09250695 \\
& \text { B15 }=1.09534679 \\
& \text { B16=1.19760658 } \\
& \text { B17 }=1.19760674 \\
& \text { A1 }=107.53367667 \\
& \text { A2 }=130.33475946 \\
& \text { A3 }=110.51379581 \\
& \mathrm{~A} 4=107.53384645 \\
& \text { A5 }=125.68212017 \\
& \text { A6=130.33468208 } \\
& \mathrm{A} 7=125.6821282 \\
& \mathrm{~A} 8=110.41200753 \\
& \mathrm{~A} 9=110.40765825 \\
& \text { A10 }=108.84383589 \\
& \text { A11 }=128.04750591 \\
& \text { A12 }=110.41216334 \\
& \mathrm{~A} 13=108.84383573 \\
& \text { A14 }=110.40761014 \\
& \text { A15=119.64049004 } \\
& \text { A16=119.64053978 } \\
& \text { D1 }=179.99853406 \\
& \text { D2 }=-0.00167638 \\
& \text { D3 }=0.00258347 \\
& \text { D4=179.99942187 } \\
& \text { D5=-179.99912284 } \\
& \text { D6 }=179.99764861 \\
& \text { D7 }=120.02112008 \\
& \text { D8=-120.12077374 } \\
& \text { D9=-0.05106882 } \\
& \text { D10=-179.99497671 } \\
& \text { D11 }=-120.02288514 \\
& \text { D12 }=0.04929655 \\
& \text { D13 }=120.11886014 \\
& \text { D14=-0.00574566 } \\
& \text { D15=179.99958339 }
\end{aligned}
$$

C
C,1,R2
N,1,R3,2,A3

```
H,1,R4,2,A4,3,D4,0
C,3,R5,1,A5,2,D5,0
N,2,R6,1,A6,3,D6,0
C,3,R7,1,A7,5,D7,0
H,2,R8,1,A8,6,D8,0
C,6,R9,2,A9,1,D9,0
B,5,R10,3,A10,1,D10,0
H,7,R11,3,A11,1,D11,0
H,7,R12,3,A12,11,D12,0
H,7,R13,3,A13,11,D13,0
H,9,R14,6,A14,2,D14,0
H,9,R15,6,A15,14,D15,0
H,9,R16,6,A16,14,D16,0
H,10,R17,5,A17,3,D17,0
H,10,R18,5,A18,17,D18,0
    Variables:
R2=1.37904686
R3=1.36012347
R4=1.08010404
R5=1.36797111
R6=1.36012418
R7=1.47529048
R8=1.08010383
R9=1.47528158
R10=1.54093325
R11=1.08986181
R12=1.0908224
R13=1.09106828
R14=1.09105646
R15=1.08986272
R16=1.09083548
R17=1.18603863
R18=1.18603894
A3=107.14189869
A4=130.1720748
A5=110.00422498
A6=107.14196998
A7=124.45254267
A8=130.17225099
A9=124.45368597
A10=127.14601117
A11=108.07403542
A12=109.76792672
A13=109.77085267
A14=109.77207549
A15=108.07439795
```

$$
\begin{aligned}
& A 16=109.76775323 \\
& \text { A17 }=119.11720457 \\
& \text { A18 }=119.11742032 \\
& \text { D4 }=179.99482045 \\
& \text { D5 }=0.02289027 \\
& \text { D6 }=-0.02442573 \\
& \text { D7 }=179.7968616 \\
& \text { D } 8=179.97687415 \\
& \text { D } 9=179.84866165 \\
& \text { D10 }=179.98460248 \\
& \text { D11 }=1.49885394 \\
& \text { D12 }=119.42766114 \\
& \text { D13 }=-119.45883546 \\
& \text { D14 }=-118.0852215 \\
& \text { D15 }=119.45828143 \\
& \text { D16 }=-121.11449343 \\
& \text { D17 }=0.14722236 \\
& \text { D18 }=-179.99814467
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R} 8=1.08304963 \\
& \mathrm{R} 9=1.44020033 \\
& \mathrm{R} 10=1.46762799 \\
& \mathrm{R} 11=1.09796597 \\
& \mathrm{R} 12=1.09491765 \\
& \mathrm{R} 13=1.10974092 \\
& \mathrm{R} 14=1.09499363 \\
& \mathrm{R} 15=1.0979538 \\
& \mathrm{R} 16=1.10977305 \\
& \text { R17 }=1.21157542 \\
& \text { R18 }=1.21156424 \\
& \text { A3 }=108.96645199 \\
& \text { A } 4=129.27180849 \\
& \text { A5 }=108.19429488 \\
& \text { A6 }=108.96998953 \\
& \text { A7 }=120.73293724 \\
& \text { A } 8=129.26630296 \\
& \text { A9 }=120.78731533 \\
& \text { A10 }=128.71634482 \\
& \text { A11 }=109.43928349 \\
& \text { A12 }=109.79251193 \\
& \text { A13 }=111.44038749 \\
& \text { A14 }=109.801772 \\
& \text { A15 }=109.44547436 \\
& \text { A16 }=111.43872945 \\
& \text { A17 }=120.743664 \\
& \text { A18 }=120.73130728 \\
& \text { D4 }=-171.50406284 \\
& \text { D5 }=11.12332434 \\
& \text { D6 }=0.00061003 \\
& \text { D7 }=141.68479409 \\
& \text { D } 8=171.49796157 \\
& \text { D9 }=-152.96139198 \\
& \text { D10 }=160.23628311 \\
& \text { D11 }=39.50018969 \\
& \text { D12 }=119.70963849 \\
& \text { D13 }=-121.38287339 \\
& \text { D14 }=-158.99180176 \\
& \text { D15 }=119.72230113 \\
& \text { D16 }=-118.8896345 \\
& \text { D17 }=3.75708321 \\
& \text { D18 }=175.99367061
\end{aligned}
$$

References:

1. Hermanek, S. Chem. Rev. 1992, 92, 325-362.
2. Walton, J. C.; Brahmi, M. M.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Chu, Q.; Ueng, S.-H.; Solovyev, A.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 2350-2358.
3. Kunz, H.; Schmidt, P. Annalen der Chemie 1982, 1245-1260.
4. Sun, Q.; Cai, S.; Peterson, B. R. Org. Lett. 2009, 11, 567-570.
5. Medeiros, M. R.; Schacherer, L. N.; Spiegel, D. A.; Wood, J. L. Org. Lett. 2007, 9, 44274429.
6. Linskeseder, M.; Zbiral, E. Annalen der Chemie 1978, 1076-1088.
7. Chu, Q.; Makhlouf Brahmi, M.; Solovyev, A.; Ueng, S.-H.; Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacôte, E. Chem. Eur. J. 2009, 15, 12937-12940.
8. Ohmiya, H.; Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Tetrahedron 2006, 62, 22072213.
9. Kurono, N.; Honda, E.; Komatsu, F.; Orito, K.; Tokuda, M. Tetrahedron 2004, 60, 17911801.
10. Trivedi, R.; Tunge, J. A. Org. Lett. 2009, 11, 5650-5652.
11. Ueng, S. H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Lett. 2010, 12 (13), 3002-3005.
12. Ueng, S.-H.; Makhlouf Brahmi, M.; Derat, E. t.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082-10083.
13. Yasuda, H.; Uenoyama, Y.; Nobuta, O.; Kobayashi, S.; Ryu, I. Tetrahedron Lett. 2008, 49, 367-370.
14. Yates, P.; Stiver, S. Can. J. Chem. 1987, 65, 2203-2216.
15. Shimojo, M.; Matsumoto, K.; Hatanaka, M. Tetrahedron 2000, 56, 9281-9288.
16. Narayan, R. S.; Borhan, B. J. Org. Chem. 2006, 71, 1416-1429.
17. Cryle, M. J.; Matovic, N. J.; De Voss, J. J. Org. Lett. 2003, 5, 3341-3344.
18. Tang, J.; Shinokubo, H.; Oshima, K. Tetrahedron 1999, 55, 1893-1904.
19. Villar, F.; Equey, O.; Renaud, P. Org. Lett. 2000, 2, 1061-1064.
20. Bailey, W. F.; Mealy, M. J. J. Am. Chem. Soc. 2000, 122, 6787-6788.
21. Lalevée, J.; Allonas, X.; Fouassier, J. P. J. Am. Chem. Soc. 2002, 124, 9613-9621.
22. Criqui, A.; Lalevée, J.; Allonas, X.; Fouassier, J. P. Macromol. Chem. Phys. 2008, 2009, 2223-2231.
23. Duling, D. R. J. Magn. Reson., Ser. B 1994, 104, 105-112.

Typical Results for Reactions Followed by NMR Spectroscopy

${ }^{1} \mathrm{H}$ spectra for the DTBP-initiated reduction of Ad-I:

${ }^{11}$ B NMR spectra for the DTBP-initiated reduction of Ad-I:

${ }^{1} \mathrm{H}$ spectra for the DTBP-initiated reduction of Ad-Br:

XP-72-92, part I, wash, 1H, CDCl3, 301B, 4/18/2011


```
XP-72-92, part I, wash, 11B, CDCl3, 301B, 4/18/2011
    N-N+
    #TZ.6\varepsilon-
    |
    2
70 60 50 40 30 20 10 10 0
```


XP octyl 1-bromobenzyl ether, 400B, CDCl3, 5/14/2011

14b

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

15

XP－80－65，1H，pdt，CDCl3，301B，11／14／2011

$\bullet_{\bullet} \bullet \bullet \cap \cap \cap \infty \infty \infty$

ゼッ	$\stackrel{\infty}{\infty} \text { tr }$
$\infty \infty^{\circ}$	$\infty \stackrel{\text { c }}{ } \times$
\cdots	－${ }^{\text {a }}$
$1 /$	

mo ${ }_{4}$	$\underset{\infty}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{-}{m}$	Nor	$\stackrel{-1}{0}$	
$\stackrel{\text { ® }}{\wedge}$	N	\bigcirc	∞	$\dot{\sim} \times 0$	$\stackrel{m}{m}$	$\dot{\sim}$
				$1 /$		$1 / 1$

XP 11-(benzyloxy) undec-1-en-6-ol, CDCl3, 301B, 5/12/20:

16-III

S44

XP 11-(benzyloxy) undec-1-en-6-ol, 400B, CDCl3, 5/14/2011

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- |

XP-66-64, 13-14, 1H, C6D6, 400A, 1/6/2010 PROTON C6D6 C:\Bruker\TOPSPIN wipf 21

$+$

$\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{OBn}$
 ふゥ

8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	ppm
						\mid	\|					¢	-	(1)		

XP-98-58, 1H, CDCl3, m1, 301B, 2/22/2012

 M ন ○ ∞ N

26

8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	ppm
										$\left\|\frac{m}{\dot{N}}\right\|$						

[^0]: ${ }^{\text {a) }}$ NMR yield determined with 1,3,5-trimethoxybenzene as the internal standard; ${ }^{\text {b }}$ data are from entry 8 in Table $1 ;{ }^{\text {c) }} 0.5$ equiv used; ${ }^{\text {d) }} 20 \mathrm{~mol} \% \mathrm{TBHN}$ under thermal conditions; ${ }^{\text {e }}$) isolated yield after aqueous extraction; ${ }^{\text {f) }} 2$ equiv; ${ }^{\text {g) }} 5$ equiv.

[^1]: ${ }^{\text {a) }}$ NMR yield determined with 1,3,5-trimethoxybenzene as the internal standard; ${ }^{\text {b) }}$ data are from Table 2 .

[^2]: ${ }^{\text {a) }}$ NMR yield determined with 1,3,5-trimethoxybenzene as the internal standard.

[^3]: ${ }^{\text {a) }}$ NMR yield determined with 1,3,5-trimethoxybenzene as the internal standard.

[^4]: ${ }^{\text {a) }}$ NMR yield determined with 1,3,5-trimethoxybenzene as the internal standard.

