Supporting Information

A Turn-on Fluorescent Sensor for Selective Detection of \mathbf{Zn}^{2+} , \mathbf{Cd}^{2+} , and \mathbf{Hg}^{2+} in Water

Meng Li, a,b Hai-Yan Lu,b,* Rui-Li Liu,b Jun-Dao Chen,a and Chuan-Feng Chena,*

aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of

Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of

Sciences, Beijing 100190, China. Graduate University of Chinese Academy of

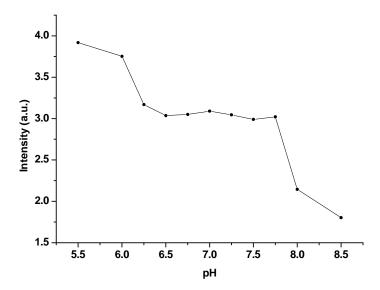
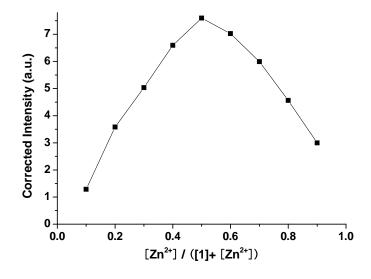
Sciences, Beijing 100049, China.

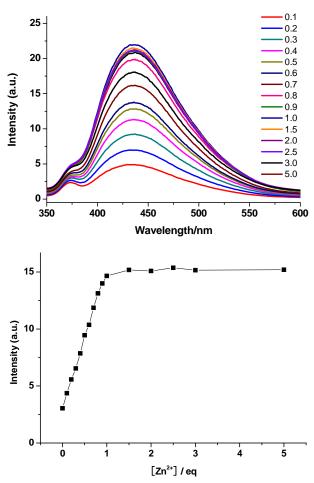
cchen@iccas.ac.cn; haiyanlu@gucas.ac.cn

Contents

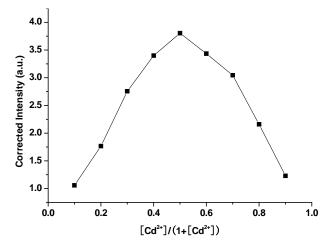
1.	The pH Responses of Receptor 1	·S2
2.	Job's Plot of Receptor 1 and Zn ²⁺	·S2
3.	Fluorescent Titrations of Receptor 1 with Zn ²⁺	S3
4.	Job's Plot of Receptor 1 and Cd ²⁺	·S3
5.	Fluorescent Titrations of Receptor 1 with Cd ²⁺	·S4
6.	Job's Plot of Receptor 1 and Hg ²⁺	·S4
7.	Fluorescent Titrations of Receptor 1 with Hg ²⁺	-S5
8.	Absorption Titrations of Receptor 1 with Metal Ions	·S6
9.	¹ H NMR Titrations of Receptor 1 in the Presence of Zn ²⁺ , Cd ²⁺	-S7
10.	¹ H NMR and ¹³ C NMR Spectra of Compounds 1 and 2	-S8

1. The pH Responses of Receptor 1

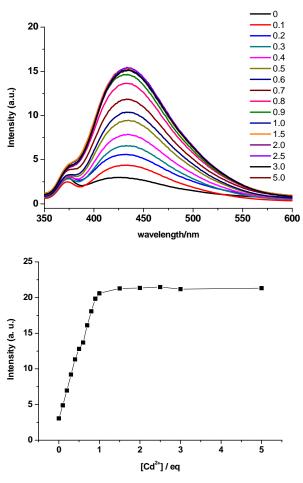




Figure S1. Effect of pH on the fluorescence intensity at 435 nm of receptor 1 (1.0×10⁻⁵ M) in buffer solution. The pH of solution was adjusted by aqueous solution of NaOH (1.0 M) and HCl (1.0 M). $\lambda_{ex} = 330$ nm, $\lambda_{em} = 435$ nm.

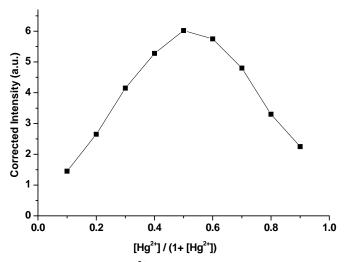
2. Job's Plot of Receptor 1 and Zn²⁺


Figure S2. Job's plot of receptor **1** and Zn²⁺. The total concentration of **1** and Zn²⁺ was kept at 10 μ M in HEPES (10.0 mM, pH = 7.2). λ_{ex} = 330 nm, λ_{em} = 435 nm.

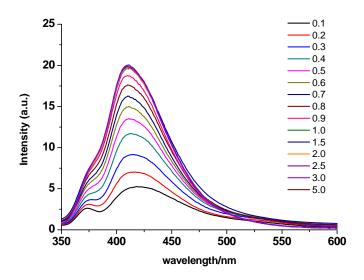
3. Fluorescent Titrations of Receptor 1 with Zn^{2+}


Figure S3. Up: emission spectra ($\lambda_{ex} = 330$ nm) of **1** (1.0×10^{-5} M) in the presence of Zn²⁺ in HEPES (10.0 mM, pH = 7.2) at 25°C. Down: the fluorescence intensity of **1** at 435 nm vs. the number of equivalents of Zn²⁺ added.

4. Job's Plot of Receptor 1 and Cd2+


Figure S4. Job's plot of receptor **1** and Cd²⁺. The total concentration of **1** and Cd²⁺ were kept at 10 μ M in HEPES (10.0 mM, pH = 7.2). λ_{ex} = 330 nm, λ_{em} = 435 nm.

5. Fluorescent Titrations of Receptor 1 with Cd^{2+}


Figure S5. Up: emission spectra ($\lambda_{ex} = 330$ nm) of **1** (1.0×10^{-5} M) in the presence of Cd²⁺ in HEPES (10.0 mM, pH = 7.2) at 25°C. Down: the fluorescence intensity of **1** at 435 nm vs. the number of equivalents of Cd²⁺ added.

6. Job's Plot of Receptor 1 and Hg^{2+}

Figure S6. Job's plot of receptor **1** and Hg²⁺ The total concentration of **1** and Hg²⁺ were kept at 10 μ M in HEPES (10.0 mM, pH = 7.2). λ_{ex} = 330 nm, λ_{em} = 435 nm.

7. Fluorescent Titrations of Receptor 1 with ${\rm Hg}^{2+}$

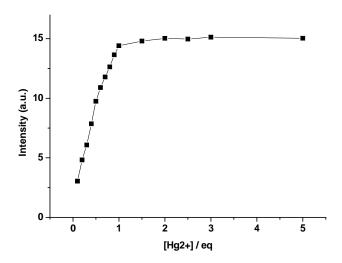
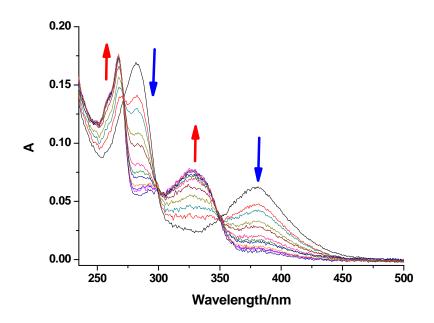
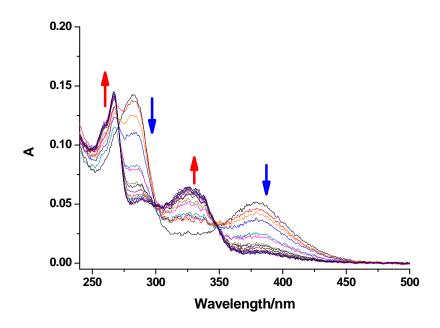




Figure S7. Up: emission spectra ($\lambda_{ex} = 330$ nm) of 1 (1.0×10^{-5} M) in the presence of Hg²⁺ in HEPES (10.0 mM, pH = 7.2) at 25°C. Down: the fluorescence intensity of 1 at 410 nm vs. the number of equivalents of Hg²⁺ added.

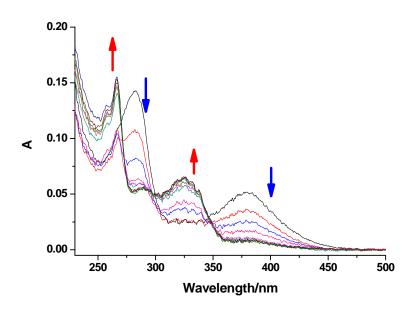

8. Absorption Titrations of Receptor 1 with Metal Ions

Figure S8. Absorption spectra of receptor 1 $(1.0 \times 10^{-5} \text{ M})$ in HEPES (10.0 mM, pH = 7.2) to various concentrations of Zn^{2+} .

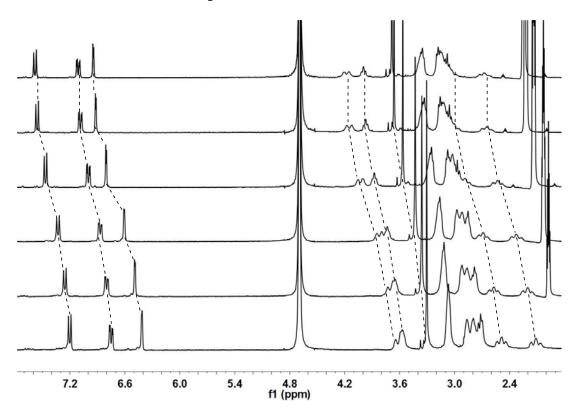


Figure S9. Absorption spectra of receptor 1 (1.0×10^{-5} M) in HEPES (10 mM, pH = 7.2) to various concentrations of Cd²⁺.

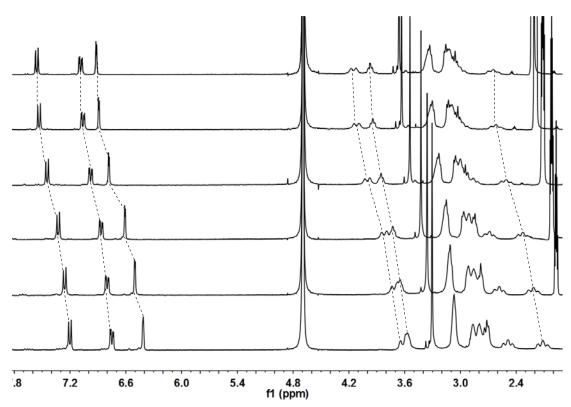


Figure S10. Absorption spectra of receptor 1 $(1.0 \times 10^{-5} \text{ M})$ in HEPES (10 mM, pH = 7.2) to various concentrations of Hg²⁺.

9. 1 H NMR Titration of Receptor 1 in the Presence of Metal Ions

Figure S11. Partial ¹H NMR spectra of **1** in the presence of Cd^{2+} (from down to up: 0, 0.25, 0.5, 0.75, 1.0, and 2.0 equiv.) in D_2O .

Figure S12. Partial ^{1}H NMR spectra of **1** in the presence of Zn^{2+} (from down to up: 0, 0.25, 0.5, 0.75, 1.0, and 2.0 equiv.) in $D_{2}O$.

10. Copies of ¹H NMR and ¹³C NMR Spectra of New Compounds

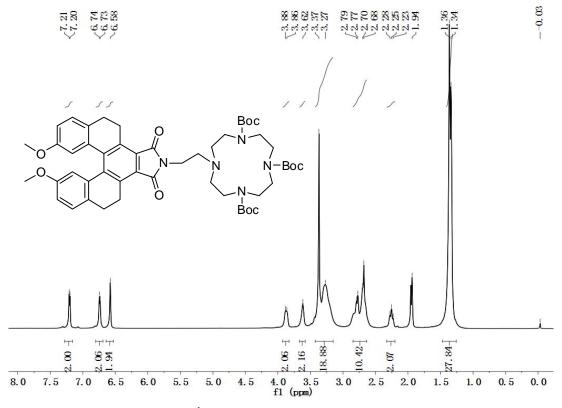


Figure S13. ¹H NMR spectrum (CD₃CN, 300 MHz) of 2.

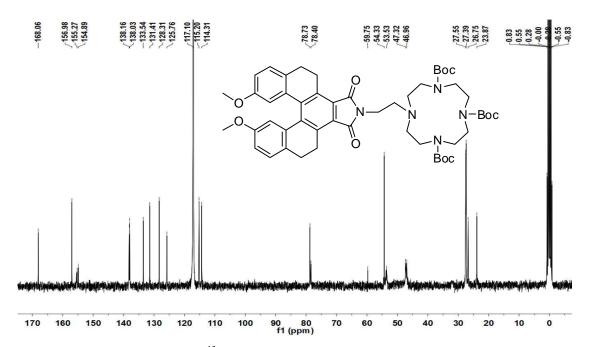


Figure S14. ¹³C NMR spectrum (CD₃CN, 75 MHz) of 2.

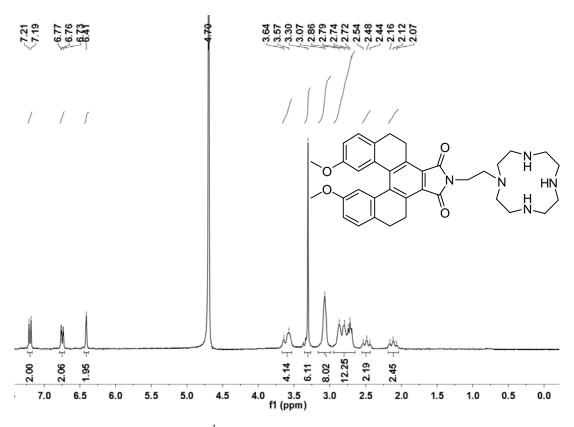


Figure S15. ¹H NMR spectrum (D₂O, 300 MHz) of 1.

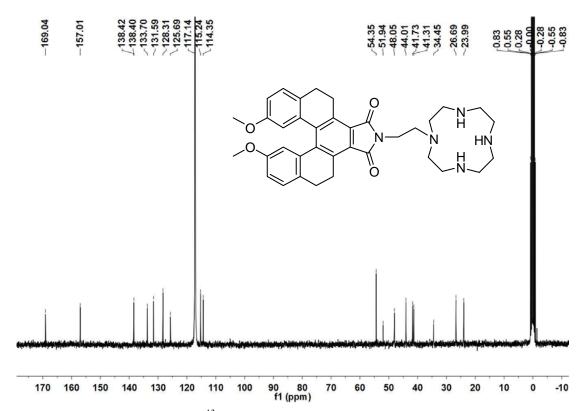


Figure S16. ¹³C NMR spectrum (CD₃CN, 75 MHz) of 1.