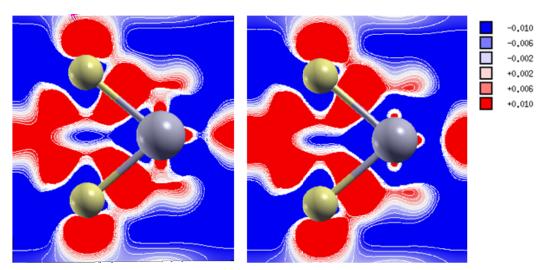
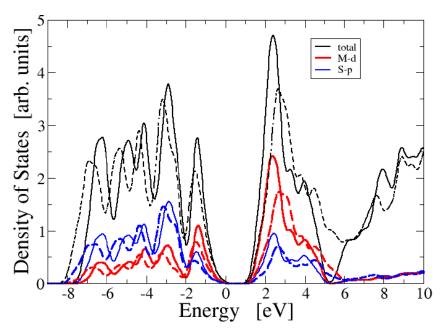
Electronic band structures of molybdenum and tungsten dichalcogenides by the *GW* approach

Hong Jiang


Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare

Earth Material Chemistry and Application, Institute of Theoretical and


Computational Chemistry, College of Chemistry and Molecular Engineering,

Peking University, 100871 Beijing, China

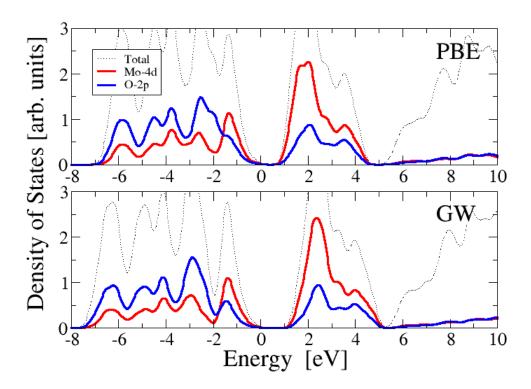

Supporting Information

Figure S1: The 2D contour plot of electron density difference, i.e. the difference between the electron density of MX_2 and the overlap of free-atom density, in MoS_2 (Left) and WS_2 (right). The big balls represent Mo or W atoms, and the small balls represent S atoms. Overall there is a strong depletion (accumulation) of electrons around M (X) atoms, and the charge transfer is more significant in WS_2 than in MoS_2 . Bader's atom-in-molecule analysis indicates that in MoS_2 , Mo and S atoms have effective charges of 1.22 and -0.61, respectively, while in WS_2 , W and S have effective charges of 1.37 and -0.68, implying that the chemical bonding in WS_2 is more ionic than MoS_2 .

Figure S2: Comparison of the density of states of MoS_2 (solid) and WS_2 (dashed) from the GW calculations.

Figure S3: Comparison of projected density of states (PDOS) of MoS₂ obtained from PBE and GW calculations. Note that GW PDOS is calculated by using the GW quasi-particle energies but with PBE wave-functions.