Supporting Information

Discovery of a Novel Class of Potent Human Deoxyuridine Triphosphatase Inhibitors Remarkably Enhancing the Antitumor Activity of Thymidylate Synthase Inhibitors

Seiji Miyahara, ^{a,b} Hitoshi Miyakoshi,^{a,c} Tatsushi Yokogawa,^a Khoon Tee Chong,^a Junko Taguchi,^a Toshiharu Muto, ^a Kanji Endoh,^a Wakako Yano,^a Takeshi Wakasa,^a Hiroyuki Ueno,^a Yayoi Takao,^a Akio, Fujioka, ^a Akihiro Hashimoto^a, Kenjirou Itou, ^a Keisuke Yamamura, ^a Makoto Nomura,^a Hideko Nagasawa,^c Satoshi Shuto,^b and Masayoshi Fukuoka^{*,a}

^aTsukuba Research Center, Taiho Pharmaceutical Co. Ltd., Okubo 3, Tsukuba, Ibaraki 300-2611, Japan. ^bFaculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan, ^cLaboratory of Medicinal and Pharmaceutical Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.

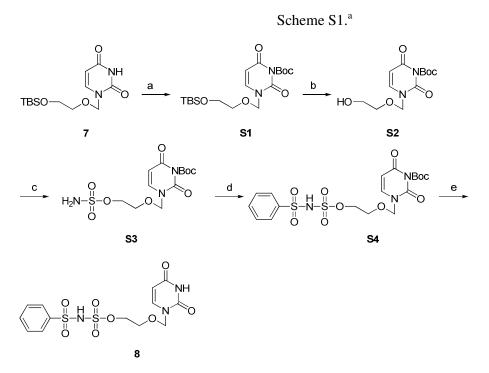
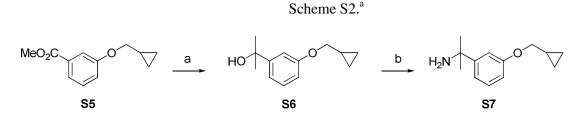
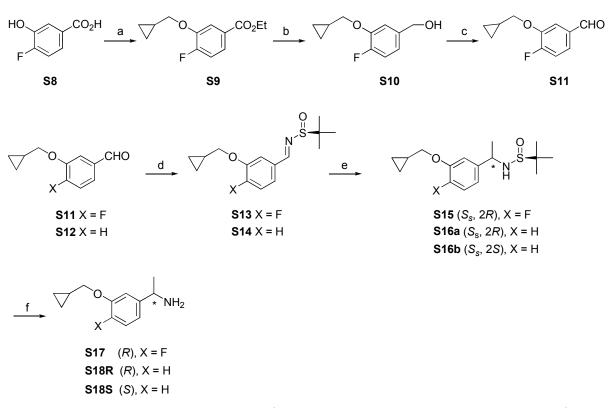

*Corresponding author: Phone: 81-29-865-4527, Fax. 81-29-865-2170, E-mail: <u>m-fukuoka@taiho.co.jp</u>

TABLE OF CONTENTS

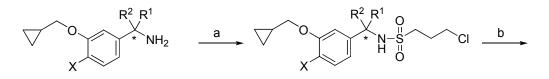
Synthesis of compounds 8, S7, S17, S18R, S18S, 27, 28, 29R, 29S, and 29R/S	S3-S5
Determination of configuration of S18R by modified Mosher's method ¹	S5-S6
Experimental Procedures	S6-S12
REFERENCES	S12


Synthesis of compounds 8, S7, S17, S18R, S18S, 27, 28, 29R, 29S, and 29R/S

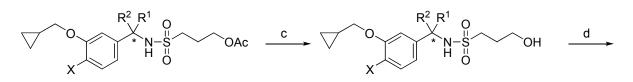
Compound 8 was synthesized using a five-step sequence starting from compound 7^2 as shown in Scheme S1. Briefly, *N*-Boc protection of 7 afforded S1 and subsequent treatment with tetrabutylammonium fluoride (TBAF) afforded S2. The hydroxyl group of S2 was treated with sulfamoyl chloride to afford S3. Sulfonylation of S3 afforded S4, and subsequent removal of the Boc group by trifluoroacetic acid resulted in producing compound 8.


^aReagents and conditions: (a) (Boc)₂O, DMAP, pyridine, room temp., 12 h; (b) 1.0 M TBAF in THF, THF, room temp., 1 h; (c) sulfamoyl chloride, Et₃N, DMF, room temp., 2.5 h; (d) benzenesulfonyl chloride, Et₃N, MeCN, room temp., 12 h; (e) trifluoroacetic acid, room temp., 1 h.

Compounds **S7** was synthesized as shown in Scheme S2. Grignard reaction of ester group of commercially available **S5**, and the subsequent conversion of the tertiary alcohol group to amino group gave amine **S7**.


^aReagents and conditions:(a) 3.0 M MeMgBr in Et₂O, THF, 0°C to room temp., 4 h; (b) (1) NaN₃, trifluoroacetic acid, CHCl₃, 0°C to room temp., 1 h; (2) 2.4 M LiAlH₄ in THF, THF, room temp., 12 h.

Chiral amine **S17** was synthesized from the aldehyde **S11** as shown in Scheme S3. **S11** was prepared from 4-fluoro-3-hydroxybenzoic acid **S8** via the following sequence; esterification of carboxylic acid, alkylation of phenol moiety, reduction of ester group, and oxidation of hydroxyl group. Treatment of the aldehyde **S11** with (S)-2-methyl-2-propanesulfineamide afforded sulfinylimine **S13**. After applying diastereoselective Grignard reaction of **S13**, the obtained **S15** was treated with acidic condition to give chiral amine **S17**. Chiral amines **S18R** and **S18S** were also obtained by the similar procedure starting from commercially available **S12** as shown in Scheme S3.

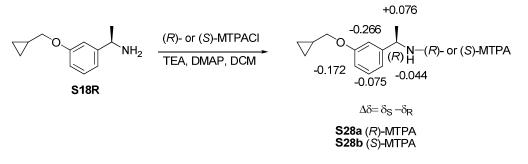

^aReagents and conditions: (a) (1) H_2SO_4 , EtOH, 100°C, 4 h; (2) (bromomethyl)cyclopropane, K_2CO_3 , DMF, 90°C, 6 h; (b) 2.0 M LiBH₄ in THF, THF, 75°C, 16 h; (c) 2,2,6,6-tetramethylpiperidine 1-oxyl, [bis(acetoxy)iodo]benzene, CH₂Cl₂, room temp., 2 h; (d) (*S*)-(-)-2-methyl-2-propanesulfinamide, Ti(O-*i*Pr)₄, toluene, 90°C, 12 h; (e) 3.0 M MeMgBr in Et₂O, THF, 0°C to room temp., 12 h; (f) 4N HCl/dioxane, MeOH, room temp., 0.5 h.

Synthesis of compound **27** was performed as shown in Scheme S4. Commercially available 3chloropropanesulfonyl chloride was treated with amine **S7** to afford **S19**. Acetoxylation followed by acid hydrolysis afforded **S25**, which were treated with MOMCl to afford **27**. Compounds **28**, **29R**, **29S**, and **29R/S** were similarly synthesized from **S17**, **S18R**, **S18S**, and commercially available **S18R/S** as shown in Scheme S4. Scheme S4.^a

S7 R¹, R² = Me, X = H **S17** (*R*), R¹= H, R² = Me, X = F **S18R** (*R*), R¹= H, R² = Me, X = H **S18S** (*S*), R¹= Me, R² = H, X = H **S18R/S** (*rac*), R¹ = H, R² = Me, X = H

S19 R¹, R² = Me, X = H **S20** (*R*), R¹= H, R² = Me, X = F **S21R** (*R*) R¹= H, R² = Me, X = H **S21S** (*S*), R¹= Me, R² = H, X = H **S21R/S** (*rac*), R¹ = H, R² = Me, X = H

S22 R¹, R² = Me, X = H **S23** (*R*), R¹= H, R² = Me, X = F **S24R** (*R*), R¹= H, R² = Me, X = H **S24S** (*S*), R¹= Me, R² = H, X = H **S24R/S** (*rac*), R¹ = H, R² = Me, X = H **S25** R¹, R² = Me, X = H **S26** (*R*), R¹= H, R² = Me, X = F **S27R** (*R*), R¹= H, R² = Me, X = H **S27S** (S), R¹= Me R² = H, X = H **S27R/S** (*rac*), R¹ = H, R² = Me, X = H



27 \mathbb{R}^1 , $\mathbb{R}^2 = Me$, X = H **28** (*R*), $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$, X = F **29R** (*R*), $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$, X = H **29S** (*S*), $\mathbb{R}^1 = Me$, $\mathbb{R}^2 = H$, X = H**29R/S** (*rac*), $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$, X = H

^aReagents and conditions: (a) 3-chloropropanesulfonyl chloride, Et_3N , CH_2Cl_2 , room temp., 4 h; (b) AcONa, Nal, DMF, 90 °C, 6 h; (c) HCl in MeOH, reflux, 1 h; (d) MOMCl, *N*,*N*-diisopropylethylamine, CH_2Cl_2 , room temp., 2 h.

Determination of the configuration of S18R

(*R*)-MTPA amide **S28a** and (*S*)-MTPA amide **S28b** were prepared as shown in Scheme S5. From their $\Delta\delta$ value, configuration of **S18R** was determined as *R*.

Experimental Procedure

tert-Butyl 3-((2-(tert-butyldimethylsilyloxy)ethoxy)methyl)-2,6-dioxo-2,3-dihydropyrimidine-1(6H)-carboxylate **(S1).** То stirred solution of 1-((2-(*tert*а butyldimethylsilyloxy)ethoxy)methyl)pyrimidine-2,4(1H,3H)-dione 7 (3.82 g, 12.7 mmol) in pyridine (60 mL) was added (Boc)₂O (7.20 g, 33.0 mmol), N, N-dimethyl-4-aminopyridine (150 mg, 1.23 mmol) at room temperature, and the reaction mixture was stirred at room temperature for 12 h. After addition of MeOH, the resulting mixture was concentrated under reduced pressure. The mixture was poured into sat. aq. NaHCO₃ solution, and extracted with CH₂Cl₂ two times. The combined organic layer was washed with brine, dried over Na₂SO₄ filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with $(CHCl_3/MeOH = 19/1)$ to afford the title compound (2.84 g, 7.09 mmol, 56%) as a colorless oil. ¹H NMR (270MHz, CDCl₃) δ 0.07 (6H, s), 0.89 (9H, s), 1.61 (9H, s), 3.65–3.68 (2H, m), 3.75–3.78 (2H, m), 5.20 (2H, s), 5.77 (1H, d, J = 8.1 Hz), 7.32 (1H, d, J = 8.1 Hz). HRMS (FAB) calcd for $C_{18}H_{32}N_2NaO_6Si [M+Na]^+ 423.1927$, found 423.1925.

tert-Butyl 3-((2-hydroxyethoxy)methyl)-2,6-dioxo-2,3-dihydropyrimidine-1(*6H*)-carboxylate (S2). To a stirred solution of S1 (2.84 g, 7.09 mmol) in THF (40 mL) was added TBAF in THF (1.0 M, 10 mL, 10 mmol) at room temperature. After being stirred at room temperature for 1 h, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (CHCl₃/MeOH = 93/7) to afford the title compound (1.62 g, 5.66 mmol, 80%) as a colorless oil. ¹H NMR (270MHz, CDCl₃) δ 1.61 (9H, s), 3.70–3.77 (4H, m), 5.21 (2H, s), 5.79 (1H, d, *J* = 8.1 Hz), 7.31 (1H, d, *J* = 8.1 Hz). HRMS (FAB) calcd for C₁₂H₁₉N₂O₆ [M+H]⁺ 287.1243, found 287.1230.

tert-Butyl 2,6-dioxo-3-((2-(sulfamoyloxy)ethoxy)methyl)-2,3-dihydropyrimidine-1(6*H*)carboxylate (S3). To a stirred solution of S2 (2.40 g, 8.38 mmol) in DMF (35 mL) was added Et₃N (4.67 mL, 33.5 mmol), sulfamoyl chloride (1.94 g, 16.8 mmol) at 0 °C, and the reaction mixture was stirred at room temperature for 2.5 h. After addition of MeOH, the mixture was poured into H₂O, and extracted with EtOAc five times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (EtOAc/MeOH = 9/1) to afford the title compound (1.90 g, 5.20 mmol, 62%) as a colorless oil. ¹H NMR (270MHz, CDCl₃) δ 1.61 (9H, s), 3.92–3.96 (2H, m), 4.30–4.33 (2H, m), 5.14 (2H, brs), 5.21 (2H, s), 5.83 (1H, d, *J* = 8.1 Hz), 7.31 (1H, d, *J* = 8.1 Hz). HRMS (FAB) calcd for C₁₂H₁₈N₃O₈S [M–H]⁻ 364.0815, found 364.0837.

tert-Butyl 2,6-dioxo-3-((2-(*N*-(phenylsulfonyl)sulfamoyloxy)ethoxy)methyl)-2,3dihydropyrimidine-1(6*H*)-carboxylate (S4). To a stirred solution of S3 (99.1 mg, 0.27 mmol) in MeCN (1.5 mL) was added Et₃N (95 μ L, 0.68 mmol), benzenesulfonyl chloride (53 μ L, 0.42 mmol) at 0 °C, and the reaction mixture was stirred at room temperature for 12 h. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (EtOAc/MeOH = 49/1) to afford the title compound (101 mg, 0.20 mmol, 74%) as a colorless gum. ¹H NMR (270MHz, CDCl₃) δ 1.56 (9H, s), 3.24–3.32 (2H, m), 3.73–3.80 (2H, m), 4.97 (2H, s), 5.66 (1H, d, *J* = 8.1 Hz), 7.29–7.35 (3H, m), 7.40–7.43 (1H, m), 7.85–7.89 (2H, m). HRMS (TOF) calcd for C₁₈H₂₃N₃NaO₁₀S₂ [M+Na]⁺ 528.0723, found 528.0736. 2-((2,4-Dioxo-3,4-dihydropyrimidin-1(2*H*)-yl)methoxy)ethyl phenylsulfonylsulfamate (8). A solution of S4 (232 mg, 0.46 mmol) in trifluoroacetic acid (2.0 mL) was stirred at room temperature for 1 h. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (EtOAc/MeOH = 4/1) to afford the title compound (165 mg, 0.41 mmol, 89%) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ 3.69–3.71 (2H, m), 4.08–4.11 (2H, m), 5.16 (2H, s), 5.68 (1H, d, *J* = 7.8 Hz), 7.45–7.48 (3H, m), 7.65 (1H, d, *J* = 7.8 Hz), 7.88–7.91 (2H, m). ¹³C NMR (100 MHz, CDCl₃) δ 68.5, 69.2, 78.4, 103.1, 127.9 , 129.4, 132.5, 145.3, 146.4, 152.9, 166.5. HRMS (TOF) calcd for C₁₃H₁₆N₃O₈S₂ [M+H]⁺ 406.0379, found 406.0371. HPLC purity: Method A = 98.6%, *t*_R = 4.45 min.

2-(3-(Cyclopropylmethoxy)phenyl)propan-2-ol (S6). To a stirred solution of methyl 3-(cyclopropylmethoxy)benzoate **S5** (20.5 g, 99.4 mmol) in THF (100 mL) was added methylmagnesium bromide (1.0 M, 225 mL, 225 mmol) at 0 °C, and the resulting mixture was stirred at room temperature for 4 h. The mixture was poured into a mixture of ice and sat. aq. NH₄Cl, and extracted with EtOAc two times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 13/7) to afford the title compound (19.4 g, 94.0 mmol, 95%) as a colorless oil. ¹H NMR (270 MHz, CDCl₃) δ 0.32–0.38 (2H, m), 0.61–0.68 (2H, m), 1.23–1.32 (1H, m), 1.57 (6H, s), 3.82 (2H, d, *J* = 6.8 Hz), 6.78 (1H, dd, *J* = 8.1, 2.4 Hz), 7.06–7.09 (2H, m), 7.24–7.28 (1H, m). HRMS (FAB) calcd for C₁₃H₁₈NaO₂ [M+Na]⁺ 229.1204, found 229.1204.

2-(3-(Cyclopropylmethoxy)phenyl)propan-2-amine (S7). To a stirred solution of **S6** (3.75 g, 18.2 mmol) in CHCl₃ (30 mL) was added NaN₃ (3.55 g, 54.6 mmol) and trifluoroacetic acid (6.74 mL 91.0 mmol) at 0 °C, and the resulting mixture was stirred at room temperature for 1 h. The mixture was pored into H₂O, and extracted with CHCl₃. The organic layer was washed with brine, dried over Na₂SO₄ filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 9/1) to afford the crude azide. To a stirred solution of LiAlH₄ (2.0 M in THF, 20 mL, 40.0 mmol) was added dropwise a solution of the crude azide (3.18 g, 13. 7 mmol) in THF (20 mL) at 0 °C. The resulting mixture was stirred at room temperature for 12 h and then quenched by the addition of H₂O. The precipitate was removed by filtration and washed with THF/MeOH (1/1). The combined filtrate was separated and the organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure to give the title compound (1.56 g, 7.60 mmol, 42% from **S6**) as a colorless oil. ¹H NMR (270 MHz, DMSO-*d*₆) δ 0.31–0.37 (2H, m), 0.57–0.62 (2H, m), 1.21–1.32 (1H, m), 1.36 (6H, s), 1.86 (2H, brs), 3.82 (2H, d, *J* = 7.0 Hz), 6.73 (1H, dd, *J* = 8.1, 2.4 Hz), 7.05–7.10 (2H, m), 7.16–7.22 (1H, m). HRMS (FAB) calcd for C₁₃H₂₀NO [M+H]⁺ 206.1545, found 206.1540.

Ethyl 3-(cyclopropylmethoxy)-4-fluorobenzoate (S9). To a stirred solution of 4-fluoro-3hydroxybenzoic acid S8 (12.0 g, 76.9 mmol) in EtOH (175 mL) was added conc. H₂SO₄ (4.1 mL, 76.9 mmol) at room temperature, and the mixture was heated to reflux at 100 °C for 4 h. After cooled to room temperature, the mixture was concentrated under reduced pressure. H₂O and Na₂CO₃ were added to this residue, and the aqueous layer was extracted with EtOAc two times. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The obtained residue was co-evaporated with toluene two times, and then dissolved in DMF (80 mL). To the mixture was added (bromomethyl)cyclopropane (8.58 mL, 88.5 mmol) and K₂CO₃ (21.3 g, 154 mmol) at room temperature, and the resulting mixture was stirred at 90 °C for 6 h. After cooled to room temperature, the mixture was poured into H₂O and extracted with toluene two times. The organic layer was washed with 1N NaOH, brine, dried over Na₂SO₄, and concentrated under reduced pressure to give the title compound (18.2 g, 76.4 mmol, 99%) as a yellow oil. ¹H NMR (270 MHz, CDCl₃) δ 0.35–0.41 (2H, m), 0.61–0.70 (2H, m), 1.24–1.36 (4H, m), 3.93 (2H, d, *J* = 6.8 Hz), 4.37 (2H, q, *J* = 7.0 Hz), 7.07–7.14 (1H, m), 7.60–7.65 (2H, m). HRMS (FAB) calcd for C₁₃H₁₆FO₃ [M+H]⁺ 239.1083, found 239.1084.

(3-(Cyclopropylmethoxy)-4-fluorophenyl)methanol (S10). To a stirred solution of S9 (18.2 g, 76.4 mmol) in THF (100 ml) was added LiBH₄ in THF (2.0 M, 100 mL, 200 mmol) was added dropwise at room temperature, and the resulting mixture was heated to reflux at 75 °C for 16 h. After cooled to 0 °C, H₂O was then added dropwise to the mixture at the same temperature. The aqueous

layer was extracted with EtOAc two times. The combined organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure to give the title compound (14.7 g, 74.9 mmol, 98%) as a white solid. ¹H NMR (270 MHz, CDCl₃) δ 0.33–0.39 (2H, m), 0.61–0.69 (2H, m), 1.22-1.31 (1H, m), 3.88 (2H, d, *J* = 6.8 Hz), 4.63 (2H, s), 6.83–6.88 (1H, m), 6.97–7.08 (2H, m). HRMS (EI) calcd for C₁₁H₁₃FO₂ [M] 196.09, found 196.0894.

3-(Cyclopropylmethoxy)-4-fluorobenzaldehyde (S11). To a stirred solution of **S10** (14.7 g, 74.9 mmol) in CH₂Cl₂ (100 mL) was added [bis(acetoxy)iodo]benzene (26.5 g, 82.3 mmol) and 2,2,6,6-tetramethylpiperidine 1-oxyl (1.72 g, 11.0 mmol) at room temperature, and the resulting mixture was stirred at the same temperature for 2 h. To the mixture was added sat. aq. NaHCO₃ and sat. aq. Na₂S₂O₃, and the aqueous layer was extracted with CHCl₃. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 3/2) to afford the title compound (9.10 g, 46.9 mmol, 63 %) as a light orange solid. ¹H NMR (270 MHz, CDCl₃) δ 0.35–0.39 (2H, m), 0.62–0.67 (2H, m), 1.22–1.32 (1H, m), 3.95 (2H, d, *J* = 7.1 Hz), 7.20–7.27 (1H, m), 7.41–7.51 (2H, m), 9.90 (1H, s). HRMS (EI) calcd for C₁₁H₁₁FO₂ [M] 194.0743, found 194.0771.

(*S*,*E*)-*N*-(**3**-(**Cyclopropylmethoxy**)-**4**-fluorobenzylidene)-**2**-methylpropane-**2**-sulfinamide (S13). S13 was prepared from S11 (6.60 g, 34.0 mmol) as described for the preparation of S14. A colorless oil (9.67 g, 32.5 mmol, 96%). ¹H NMR (270 MHz, CDCl₃) δ 0.38–0.41 (2H, m), 0.64–0.70 (2H, m), 1.26 (9H, s), 1.27–1.33 (1H, m), 3.94 (2H, d, *J* = 6.8 Hz), 7.13–7.18 (1H, m), 7.34–7.38 (1H, m), 7.46–7.49 (1H, m), 8.49 (1H, s). HRMS (FAB) calcd for C₁₅H₂₁FNO₂S [M+H]⁺ 298.1277, found 298.1289.

(*S,E*)-*N*-(**3**-(**Cyclopropylmethoxy**)**benzylidene**)-**2**-**methylpropane**-**2**-**sulfinamide** (**S14**). To a stirred solution of 3-(cyclopropylmethoxy)benzaldehyde **S12** (21.5 g, 122 mmol) in toluene (150 mL) was added (*S*)-(-)-2-methyl-2-propanesulfinamide (15.8 g, 129 mmol), tetraisopropyl orthotitanate (51.0 mL, 172 mmol) at room temperature. The resulting mixture was stirred at 90 °C for 12 h. After cooled to room temperature, the reaction mixture was quenched by the addition of sat. aq. NaHCO₃. The precipitate was removed by filtration through a pad of Celite and washed with EtOAc. The combined filtrate was separated and the organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound (34.1 g, 122 mmol, quant.) as a colorless oil. ¹H NMR (270 MHz, CDCl₃) δ 0.35–0.40 (2H, m), 0.65–0.71 (2H, m), 1.26–1.33 (10H, m), 3.86 (2H, dd, *J* = 7.0 Hz), 7.04–7.09 (1H, m), 7.34–7.40 (3H, m), 8.54 (1H, s). HRMS (FAB) calcd for C₁₅H₂₂NO₂S [M+H]⁺ 280.1371, found 280.1376.

(*S*)-*N*-((*R*)-1-(3-(Cyclopropylmethoxy)-4-fluorophenyl)ethyl)-2-methylpropane-2-sulfinamide (S15). S15 was prepared from S13 (1.45 g, 4.89 mmol) as described for the preparation of S16a. A white solid (1.04 g, 3.32 mmol, 68%). ¹H NMR (270 MHz, CDCl₃) δ 0.32–0.38 (2H, m), 0.61–0.66 (2H, m), 1.20 (9H, s), 1.22–1.32 (1H, m), 1.50 (3H, d, *J* = 6.8 Hz), 3.28 (1H, brs), 3.86 (2H, d, *J* = 6.8 Hz), 4.49–4.53 (1H, m), 6.82–6.88 (1H, m), 6.91–6.99 (1H, m), 7.02–7.06 (1H, m). HRMS (FAB) calcd for C₁₆H₂₅FNO₂S [M+H]⁺ 314.1590, found 314.1615.

(S)-N-((R)-1-(3-(Cyclopropylmethoxy)phenyl)ethyl)-2-methylpropane-2-sulfinamide (S16a) and (S)-N-((S)-1-(3-(Cyclopropylmethoxy)phenyl)ethyl)-2-methylpropane-2-sulfinamide (S16b). To a stirred solution of S14 (7.50 g, 26.8 mmol) in THF (18 mL) was added dropwise methylmagnesium bromide in Et₂O (3.0M, 17.9 mL, 53. 7 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 12 h, and then sat. aq. NH₄Cl was added. The resulting mixture was partitioned between EtOAc and H₂O, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 1/1) to afford S16a (4.78 g, 16.2 mmol, 60%) and S16b (1.02 g, 3.45 mmol, 13%) as a yellow oil.

S16a: ¹H NMR (270 MHz, CDCl₃) δ 0.33–0.36 (2H, m), 0.62–0.66 (2H, m), 1.22 (9H, s), 1.23–1.31 (1H, m), 1.53 (3H, d, *J* = 6.8 Hz), 3.27 (1H, brs), 3.79 (2H, d, *J* = 6.8 Hz), 4.50–4.57 (1H, m), 6.79–6.83 (1H, m), 6.88–6.92 (2H, m), 7.21–7.26 (1H, m). HRMS (FAB) calcd for C₁₆H₂₆NO₂S [M+H]⁺ 296.1684, found 296.1690.

S16b: ¹H NMR (400 MHz, CDCl₃) δ 0.33–0.36 (2H, m), 0.62–0.67 (2H, m), 1.23 (9H, s), 1.23–1.31 (1H, m), 1.51 (3H, d, *J* = 7.2 Hz), 3.40 (1H, brs), 3.80 (2H, d, *J* = 6.8 Hz), 4.49–4.52 (1H, m),

6.80–6.83 (1H, m), 6.90–6.93 (2H, m), 7.22–7.26 (1H, m). HRMS (TOF) calcd for $C_{16}H_{26}NO_2S$ [M+H]⁺ 296.1684 found 296.1676.

(*R*)-1-(3-(Cyclopropylmethoxy)-4-fluorophenyl)ethanamine hydrochloride (S17). S17 was prepared from S15 (1.04 g, 3.32 mmol) as described for the preparation of S18R. A pale yellow solid (815 mg, 3.32 mmol, quant.). ¹H NMR (270 MHz, DMSO- d_6) δ 0.31–0.37 (2H, m), 0.57–0.65 (2H, m), 1.24–1.32 (1H, m), 1.50 (3H, d, J = 6.8 Hz), 3.93 (2H, d, J = 7.3 Hz), 4.33–4.37 (1H, m), 7.02–7.07 (1H, m), 7.21–7.29 (1H, m), 7.43 (1H, dd, J = 8.4, 1.9 Hz), 8.51 (3H, brs). HRMS (FAB) calcd for C₁₂H₁₇FNO [M+H]⁺ 210.1294, found 210.1293.

(*R*)-1-(3-(Cyclopropylmethoxy)phenyl)ethanamine hydrochloride (S18R). To a solution of S16a (4.70 g, 15.9 mmol) in MeOH (20 mL) was added HCl in dioxane (4 M, 9.40 mL, 37.6 mmol) at room temperature, and the resulting mixture was stirred at same temperature for 0.5 h. The mixture was concentrated under reduced pressure. The residue was co-evaporated with toluene tree times to give the title compound (3.60 g, 15.8 mmol, 99%) as a white solid. ¹H NMR (270 MHz, DMSO-*d*₆) δ 0.30–0.35 (2H, m), 0.55–0.62 (2H, m), 1.21–1.27 (1H, m), 1.50 (3H, d, *J* = 6.8 Hz), 3.84 (2H, d, *J* = 7.0 Hz), 4.33 (1H, q, *J* = 6.8 Hz), 6.86–6.94 (1H, m), 7.04 (1H, d, *J* = 7.6 Hz), 7.13 (1H, s), 7.31 (1H, t, *J* = 8.1 Hz), 8.49 (3H, brs). HRMS (FAB) calcd for C₁₂H₁₈NO [M+H]⁺ 192.1388, found 192.1383.

(*S*)-1-(3-(Cyclopropylmethoxy)phenyl)ethanamine hydrochloride (S18S). S18S was prepared from S16b (1.02 g, 3.45 mmol) as described for the preparation of S18R. A white solid (786 mg, 3.40 mmol, quant.). ¹H NMR (400 MHz, DMSO- d_6) δ 0.30–0.34 (2H, m), 0.56–0.60 (2H, m), 1.21–1.27 (1H, m), 1.49 (3H, d, *J* = 7.1 Hz), 3.83 (2H, d, *J* = 7.1 Hz), 4.31–4.38 (1H, m), 6.90–6.93 (1H, m), 7.03 (1H, d, *J* = 7.8 Hz), 7.11 (1H, s), 7.31 (1H, t, *J* = 7.8 Hz), 8.42 (3H, brs). HRMS (TOF) calcd for C₁₂H₁₈NO [M+H]⁺ 192.1388, found 192.1382.

3-Chloro-*N***-(2-(3-(cyclopropylmethoxy)phenyl)propan-2-yl)propane-1-sulfonamide (S19).** To a stirred solution of **S7** (1.54 g, 7.50 mmol) in CH₂Cl₂ (7.5 mL) was added Et₃N (1.36 mL, 9.76 mmol) and 3-chloropropanesulfonyl chloride (1.10 mL, 9.05 mmol) at 0 °C, and the resulting mixture was stirred at room temperature for 4 h. The mixture was poured into H₂O and extracted with EtOAc. The organic layer was washed with 1N HCl, brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 3/2) to afford the title compound (2.41 g, 6.98 mmol, 93%) as an orange oil. ¹H NMR (270 MHz, CDCl₃) δ 0.32–0.38 (2H, m), 0.62–0.68 (2H, m), 1.22–1.31 (1H, m), 1.75 (6H, s), 2.14–2.24 (2H, m), 2.88 (2H, t, *J* = 7.6 Hz), 3.57 (2H, t, *J* = 6.3 Hz), 3.81 (2H, d, *J* = 6.8 Hz), 4.52 (1H, brs), 6.80–6.83 (1H, m), 7.06–7.13 (2H, m), 7.26–7.32 (1H, m). HRMS (FAB) calcd for C₁₆H₂₄ClNNaO₃S [M+Na]⁺ 368.1063, found 368.1053.

(*R*)-3-Chloro-*N*-(1-(3-(cyclopropylmethoxy)-4-fluorophenyl)ethyl)propane-1-sulfonamide (S20). S20 was prepared from S17 (815 mg, 3.32 mmol) as described for the preparation of S19. A yellow oil (976 mg, 2.79 mmol, 84%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.40 (2H, m), 0.63–0.70 (2H, m), 1.22–1.31 (1H, m), 1.53 (3H, d, *J* = 6.2 Hz), 2.08–2.19 (2H, m), 2.83–2.92 (2H, m), 3.54 (2H, t, *J* = 6.2 Hz), 3.89 (2H, d, *J* = 7.3 Hz), 4.43 (1H, brs), 4.56–4.64 (1H, m), 6.87–6.93 (2H, m), 7.03–7.10 (1H, m). HRMS (FAB) calcd for C₁₅H₂₀ClFNO₃S [M–H]⁻ 348.0836, found 348.0857.

(*R*)-3-Chloro-*N*-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)propane-1-sulfonamide (S21R). S21R was prepared from S18R (3.68 g, 16.2 mmol) as described for the preparation of S19. A yellow oil (4.74 g, 14.3 mmol, 88%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.38 (2H, m), 0.62–0.68 (2H, m), 1.24–1.31 (1H, m), 1.54 (3H, d, *J* = 6.8 Hz), 2.08–2.17 (2H, m), 2.79–2.93 (2H, m), 3.48–3,52 (2H, m), 3.81 (2H, d, *J* = 7.0 Hz), 4.44 (1H, brs), 4.58–4.62 (1H, m), 6.82–6.91 (3H, m), 7.26–7.30 (1H, m). HRMS (FAB) calcd for C₁₅H₂₂ClNNaO₃S [M+Na]⁺ 354.0907, found 354.0917.

(S)-3-Chloro-*N*-(1-(3-(cyclopropylmethoxy)phenyl)ethyl)propane-1-sulfonamide (S21S). S21S was prepared from S18S (786 mg, 3.40 mmol) as described for the preparation of S19. A yellow oil (1.10 g, 3.31 mmol, 97%). ¹H NMR (400 MHz, CDCl₃) δ 0.34–0.38 (2H, m), 0.64–0.67 (2H, m), 1.24–1.31 (1H, m), 1.54 (3H, d, *J* = 6.8 Hz), 2.06–2.19 (2H, m), 2.76–2.83 (1H, m), 2.89–2.96 (1H, m), 3.48–3.52 (2H, m), 3.80 (2H, d, *J* = 7.1 Hz), 4.48 (1H, brs), 4.57–4.64 (1H, m), 6.82–6.91 (3H, m), 7.26–7.30 (1H, m). HRMS (TOF) calcd for C₁₅H₂₆ClN₂O₃S [M+NH₄]⁺ 349.1353, found 349.1358.

3-Chloro-*N***-(1-(3-(cyclopropylmethoxy)phenyl)ethyl)propane-1-sulfonamide** (S21R/S). S21R/S was prepared from 1-(3-(cyclopropylmethoxy)phenyl)ethanamine S18R/S (564 mg, 2.95 mmol) as described for the preparation of S19. A light brown oil (630 mg, 1.90 mmol, 64%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.39 (2H, m), 0.62–0.68 (2H, m), 1.21–1.31 (1H, m), 1.54 (3H, d, *J* = 6.8 Hz), 2.08–2.17 (2H, m), 2.75–2.81 (1H, m), 2.87–2.95 (1H, m), 3.47–3.52 (2H, m), 3.81 (2H, d, *J* = 7.0 Hz), 4.54–4.63 (2H, m), 6.81–6.92 (3H, m), 7.24–7.30 (1H, m). HRMS (FAB) calcd for C₁₅H₂₁CINO₃S [M–H]⁻ 330.093, found 330.0920.

3-(*N*-(**2**-(**3**-(**Cyclopropylmethoxy**)**phenyl**)**propan-2**-**y**]**sulfamoyl**)**propyl acetate (S22).** To a stirred solution of **S19** (2.41 g, 6.97 mmol) in DMF (8.0 mL) was added AcONa (1.90 g, 23.2 mmol), and NaI (2.40 g, 16.0 mmol) at room temperature, the resulting mixture was stirred at 90 °C for 6 h. After cooled to room temperature, the mixture was poured into H₂O, and extracted with EtOAc two times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 1/1) to afford the title compound (1.73 g, 4.68 mmol, 67%) as a brown oil. ¹H NMR (270 MHz, CDCl₃) δ 0.33–0.37 (2H, m), 0.62–0.68 (2H, m), 1.22–1.30 (1H, m), 1.75 (6H, s), 1.97–2.08 (5H, m), 2.73–2.79 (2H, m), 3.80–3.82 (2H,m), 4.04–4.08 (2H, m), 4.56 (1H, brs), 6.79–6.83 (1H, m), 7.03–7.09 (2H, m), 7.23–7.29 (1H, m). HRMS (FAB) calcd for C₁₈H₂₆NO₅S [M–H]⁻ 368.1532, found 368.1543.

(*R*)-3-(*N*-(1-(3-(Cyclopropylmethoxy)-4-fluorophenyl)ethyl)sulfamoyl)propyl acetate (S23). S23 was prepared from S20 (976 mg, 2.79 mmol) as described for the preparation of S22. A yellow oil (673 mg, 1.80 mmol, 65%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.38 (2H, m), 0.62–0.68 (2H, m), 1.24–1.31 (1H, m), 1.52 (3H, d, *J* = 6.8 Hz), 1.95–2.04 (5H, m), 2.68–2.86 (2H, m), 3.89 (2H, d, *J* = 7.0 Hz), 4.01–4.07 (2H, m), 4.40 (1H, brs), 4.57–4.62 (1H, m), 6.84–6.91 (2H, m), 7.03–7.10 (1H, m). HRMS (FAB) calcd for C₁₇H₂₃FNO₅S [M–H]⁻ 372.1281, found 372.1263.

(*R*)-3-(*N*-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)sulfamoyl)propyl acetate (S24R). S24R was prepared from S21R (537 mg, 1.62 mmol) as described for the preparation of S22. A dark orange oil (370 mg, 1.04 mmol, 64%). ¹H NMR (270 MHz, CDCl₃) δ 0.32–0.39 (2H, m), 0.62–0.69 (2H, m), 1.22–1.29 (1H, m), 1.53 (3H, d, *J* = 6.8 Hz), 1.90–2.05 (5H, m), 2.63–2.87 (2H, m), 3.80 (2H, d, *J* = 6.8 Hz), 3.96–4.02 (2H, m), 4.55–4.62 (2H, m), 6.81–6.97 (3H, m), 7.24–7.30 (1H, m). HRMS (FAB) calcd for C₁₇H₂₄NO₅S[M–H]⁻ 354.1375, found 354.1409.

(*S*)-3-(*N*-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)sulfamoyl)propyl acetate (S24S). S24S was prepared from S21S (1.10 g, 3.31 mmol) as described for the preparation of S22. A light yellow oil (870 mg, 2.45 mmol, 74%). ¹H NMR (400 MHz, CDCl₃) δ 0.34–0.38 (2H, m), 0.64–0.68 (2H, m), 1.24–1.28 (1H, m), 1.54 (3H, d, *J* = 6.8 Hz), 1.90–2.04 (5H, m), 2.65–2.72 (1H, m), 2.80–2.87 (1H, m), 3.80 (2H, d, *J* = 6.6 Hz), 3.94–4.04 (2H, m), 4.50 (1H, brs), 4.57–4.63 (1H, m), 6.81–6.91 (3H, m), 7.25–7.30 (1H, m). HRMS (TOF) calcd for C₁₇H₂₉N₂O₅S [M+NH₄]⁺ 373.1797, found 373.1794.

3-(*N*-(**1**-(**3**-(**Cyclopropylmethoxy**)**pheny**)**ethy**]**sulfamoy**]**propyl** acetate (S24R/S). S24R/S was prepared from S21R/S (630 mg, 1.90 mmol) as described for the preparation of S22. A light brown oil (470 mg, 1.32 mmol, 69%). ¹H NMR (270 MHz, CDCl₃) δ 0.33–0.39 (2H, m), 0.62–0.69 (2H, m), 1.24–1.30 (1H, m), 1.53 (3H, d, *J* = 6.8 Hz), 1.94–2.05 (5H, m), 2.68–2.72 (1H, m), 2.84–2.88 (1H, m), 3.81 (2H, d, *J* = 6.8 Hz), 3.95–4.01 (2H, m), 4.56–4.62 (1H, m), 4.90 (1H, brs), 6.81–6.92 (3H, m), 7.24–7.30 (1H, m). HRMS (FAB) calcd for C₁₇H₂₄NO₅S [M–H]⁻ 354.1375, found 354.1354.

N-(2-(3-(Cyclopropylmethoxy)phenyl)propan-2-yl)-3-hydroxypropane-1-sulfonamide (S25). A solution of S22 (1.73 g, 4.68 mmol) in HCl in MeOH (10 mL) was heated to reflux at 85 °C for 1 h. After cooled to rom temperature, the mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 3/7) to afford the title compound (691 mg, 2.11 mmol, 45%) as a light yellow oil. ¹H NMR (270 MHz, CDCl₃) δ 0.33–0.37 (2H, m), 0.62–0.68 (2H, m), 1.22–1.30 (1H, m), 1.75 (6H, s), 1.94–2.03 (2H, m), 2.88 (2H, t, *J* = 7.3 Hz), 3.66–3.70 (2H, m), 3.81 (2H, d, *J* = 7.1 Hz), 4.58 (1H, brs), 6.79–6.83 (1H, m), 7.07–7.11 (2H, m), 7.25–7.31 (1H, m). HRMS (FAB) calcd for C₁₆H₂₅NNaO₄S [M+Na]⁺ 350.1402, found 350.1420.

(*R*)-N-(1-(3-(Cyclopropylmethoxy)-4-fluorophenyl)ethyl)-3-hydroxypropane-1-sulfonamide (S26). S26 was prepared from S23 (673 mg, 1.80 mmol) as described for the preparation of S25. A

light yellow oil (446 mg, 1.35 mmol, 75%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.39 (2H, m), 0.62–0.69 (2H, m), 1.24–1.31 (1H, m), 1.53 (3H, d, *J* = 6.5 Hz), 1.90–1.96 (2H, m), 2.79–2.94 (2H, m), 3.64–3.69 (2H, m), 3.89 (2H, d, *J* = 7.0 Hz), 4.59–4.64 (2H, m), 6.80–7.09 (3H, m). HRMS (FAB) calcd for C₁₅H₂₁FNO₄S [M–H]⁻330.1175, found 330.1176.

(*R*)-*N*-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)-3-hydroxypropane-1-sulfonamide (S27R). S27R was prepared from S24R (370 mg, 1.04 mmol) as described for the preparation of S25. An orange oil (246 mg, 0.78 mmol, 75%). ¹H NMR (270 MHz, CDCl₃) δ 0.32–0.38 (2H, m), 0.62–0.66 (2H, m), 1.22–1.31 (1H, m), 1.54 (3H, d, *J* = 6.6 Hz), 1.88–1.96 (2H, m), 2.78–2.95 (2H, m), 3.58–3.66 (2H, m), 3.81 (2H, d, *J* = 6.9 Hz), 4.57–4.70 (2H, m), 6.81–6.92 (3H, m), 7.24–7.30 (1H, m); HRMS (FAB) calcd for C₁₅H₂₂NO₄S [M–H]⁻ 312.1270, found 312.1272.

(S)-N-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)-3-hydroxypropane-1-sulfonamide (S27S). S27S was prepared from S24S (870 mg, 2.45 mmol) as described for the preparation of S25. A colorless oil (670 mg, 2.14 mmol, 87%). ¹H NMR (400 MHz, CDCl₃) δ 0.34–0.38 (2H, m), 0.63–0.67 (2H, m), 1.22–1.31 (1H, m), 1.54 (3H, d, *J* = 6.8 Hz), 1.87–1.94 (2H, m), 2.76–2.83 (1H, m), 2.88–2.95 (1H, m), 3.59–3.67 (2H, m), 3.81 (2H, d, *J* = 6.6 Hz), 4.57–4.63 (1H, m), 4.64 (1H, brs), 6.81–6.84 (1H, m), 6.88–6.92 (2H, m), 7.24–7.29 (1H, m). HRMS (TOF) calcd for C₁₅H₂₄NO₄S [M+H]⁺ 314.1426, found 314.1430.

N-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)-3-hydroxypropane-1-sulfonamide (S27R/S). S27R/S was prepared from S24R/S (470 mg, 1.32 mmol) as described for the preparation of S25. A colorless oil (242 mg, 0.77 mmol, 58%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.37 (2H, m), 0.62–0.68 (2H, m), 1.22–1.31 (1H, m), 1.54 (3H, d, *J* = 6.8 Hz), 1.86–1.95 (2H, m), 2.77–2.95 (2H, m), 3.58–3.64 (2H, m), 3.81 (2H, d, *J* = 6.8 Hz), 4.56–4.63 (1H, m), 4.80 (1H, brs), 6.81–6.84 (1H, m), 6.89–6.92 (2H, m), 7.24–7.30 (1H, m). HRMS (FAB) calcd for C₁₅H₂₂NO₄S [M–H]⁻ 312.1270, found 312.1257.

N-(2-(3-(Cyclopropylmethoxy)phenyl)propan-2-yl)-3-(methoxymethoxy)propane-1sulfonamide (27). To a stirred solution of S25 (691 mg, 2.11 mmol) in CH₂Cl₂ (10 mL) was added *N*,*N*-diisopropylethylamine (1.20 mL, 6.89 mmol), and MOMC1 (337 µL, 4.44 mmol) at room temperature, the resulting mixture was stirred at the same temperature for 2 h. The mixture was concentrated under reduced pressure, and the residue was poured into sat. aq. NH₄Cl. The aqueous layer was extracted with EtOAc and the organic layer was washed with sat. aq. NH₄Cl, brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 2/3) to afford the title compound (495 mg, 1.33 mmol, 63%) as a colorless oil. ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.39 (2H, m), 0.62–0.69 (2H, m), 1.21–1.33 (1H, m), 1.75 (6H, s), 1.95–2.05 (2H, m), 2.83–2.90 (2H, m), 3.32 (3H, s), 3.53 (2H, t, *J* = 6.2 Hz), 3.81 (2H, d, *J* = 7.0 Hz), 4.57 (2H, s), 4.72 (1H, brs), 6.80 (1H, ddd, *J* = 8.1, 2.7, 1.1 Hz), 7.05–7.10 (2H, m), 7.23–7.30 (1H, m). HRMS (FAB) calcd for C₁₈H₂₈NO₅S [M–H]⁻ 370.1688, found 370.1694.

(*R*)-*N*-(1-(3-(Cyclopropylmethoxy)-4-fluorophenyl)ethyl)-3-(methoxymethoxy)propane-1sulfonamide (28). 28 was prepared from S26 (446 mg, 1.35 mmol) as described for the preparation of 27. A yellow oil (262 mg, 0.70 mmol, 52%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.40 (2H, m), 0.62–0.68 (2H, m), 1.24–1.31 (1H, m), 1.52 (3H, d, *J* = 6.8 Hz), 1.89–1.99 (2H, m), 2.73–2.94 (2H, m), 3.30 (3H, s), 3.46–3.52 (2H, m), 3.88 (2H, d, *J* = 6.8 Hz), 4.45 (1H, brs), 4.54–4.62 (3H, m), 6.84–6.94 (2H, m), 7.01–7.09 (1H, m). HRMS (FAB) calcd for C₁₇H₂₅FNO₅S [M–H]⁻ 374.1437, found 374.1461.

(*R*)-*N*-(1-(3-(Cyclopropylmethoxy)Phenyl)ethyl)-3-(methoxymethoxy)propane-1-sulfonamide (29R). 29R was prepared from S27R (246 mg, 0.78 mmol) as described for the preparation of 27. A yellow oil (219 mg, 0.61 mmol, 79%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.38 (2H, m), 0.61–0.68 (2H, m), 1.22–1.31 (1H, m), 1.53 (3H, d, *J* = 6.8 Hz), 1.86–2.00 (2H, m), 2.74–2.95 (2H, m), 3.29 (3H, s), 3.42–3.48 (2H, m), 3.80 (2H, d, *J* = 6.8 Hz), 4.53 (2H, s), 4.55 (1H, brs), 4.56–4.62 (1H, m), 6.80–6.91 (3H, m), 7.23–7.29 (1H, m). HRMS (FAB) calcd for C₁₇H₂₆NO₅S [M–H]⁻ 356.1532, found 356.1526.

(S)-N-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)-3-(methoxymethoxy)propane-1-sulfonamide (29S). Compound 29S was prepared from S27S (670 mg, 2.14 mmol) as described for the preparation of 27. A colorless oil (534 mg, 1.49 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ 0.34–

0.37 (2H, m), 0.63–0.68 (2H, m), 1.22–1.30 (1H, m), 1.54 (3H, d, J = 6.8 Hz), 1.86–2.00 (2H, m), 2.74–2.81 (1H, m), 2.88–2.95 (1H, m), 3.29 (3H, s), 3.43–3.49 (2H, m), 3.80 (2H, d, J = 6.8 Hz), 4.53 (2H, s), 4.53 (1H, brs), 4.57–4.63 (1H, m), 6.80–6.83 (1H, m), 6.86–6.91 (2H, m), 7.23–7.28 (1H, m). HRMS (TOF) calcd for C₁₇H₂₈NO₅S [M+H]⁺ 358.1688, found 358.1694.

N-(1-(3-(Cyclopropylmethoxy)phenyl)ethyl)-3-(methoxymethoxy)propane-1-sulfonamide (29R/S). 29R/S was prepared from S27R/S (242 mg, 0.77 mmol) as described for the preparation of 27. A colorless oil (112 mg, 0.31 mmol, 40%). ¹H NMR (270 MHz, CDCl₃) δ 0.34–0.38 (2H, m), 0.61–0.68 (2H, m), 1.22–1.31 (1H, m), 1.53 (3H, d, *J* = 6.8 Hz), 1.86–2.00 (2H, m), 2.74–2.81 (1H, m), 2.88–2.95 (1H, m), 3.29 (3H, s), 3.42–3.48 (2H, m), 3.80 (2H, d, *J* = 7.0 Hz), 4.52 (2H, s), 4.55–4.62 (1H, m), 4.85 (1H, brs), 6.79–6.92 (3H, m), 7.23–7.28 (1H, m). HRMS (FAB) calcd for C₁₇H₂₆NO₅S [M–H]⁻ 356.1532, found 356.1537.

(*R*)-MTPA amide S28a. To a stirred solution of S18R (26.0 mg, 0.11 mmol) in CH₂Cl₂ (1.25 mL) was added Et₃N (40 µL, 0.29 mmol), DMAP (2.0 mg, 0.016 mmol) and (*S*)-MTPACl (34 µL, 0.18 mmol) at room temperature, and the resulting mixture was stirred at the same temperature for 16h. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 1/1) to afford the title compound (40.3 mg, 0.099 mmol, 90%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.31–0.35 (2H, m), 0.56–0.61 (2H, m), 1.21–1.26 (1H, m), 1.35 (3H, d, *J* = 7.2 Hz), 3.38 (3H, s), 3.81 (2H, d, *J* = 6.8 Hz), 5.04–5.07 (1H, m), 6.80 (1H, dd, *J* = 8.4, 2.8 Hz), 6.94 (1H, d, *J* = 7.6 Hz), 6.98 (1H, s), 7.23 (1H, t, *J* = 8.0 Hz), 7.46–7.50 (3H, m), 7.52–7.57 (2H, m), 8.79 (1H, brs). HRMS (FAB) calcd for C₂₂H₂₅F₃NO₃ [M+H]⁺ 408.1787, found 408.1777.

(*S*)-MTPA amide S28b. To a stirred solution of S18R (26.0 mg, 0.11 mmol) in CH₂Cl₂(1.25 mL) was added Et₃N (40 µL, 0.29 mmol), DMAP (2.0 mg, 0.016 mmol) and (*R*)-MTPACl (34 µL, 0.18 mmol) at room temperature, and the resulting mixture was stirred at the same temperature for 16h. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with (hexane/EtOAc = 1/1) to afford the title compound (41.3 mg, 0.10 mmol, 92%) as a colorless oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 0.28–0.31 (2H, m), 0.55–0.59 (2H, m), 1.16–1.21 (1H, m), 1.43 (3H, d, *J* = 6.8 Hz), 3.53 (3H, s), 3.61–3.70 (2H, m), 5.02–5.07 (1H, m), 6.72 (1H, s), 6.76 (1H, dd, *J* = 8.4, 2.4 Hz), 6.77 (1H, d, *J* = 6.4 Hz), 7.16 (1H, t, *J* = 7.6 Hz), 7.37–7.45 (5H, m), 8.79 (1H, brs). HRMS (FAB) calcd for C₂₂H₂₅F₃NO₃ [M+H]⁺ 408.1787, found 408.1777.

REFERENCES

1. Ohtani, I. K., T.; Kashman, Y.; Kakisawa, H. High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. *J. Am. Chem. Soc.* **1991**, *113*, 4092–4096.

2. Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker, R. T.; Balzarini, J.; De Clercq, E. A novel lead for specific anti-HIV-1 agents: 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine. *J. Med. Chem.* **1989**, *32*, 2507–2509.