Supporting Information

Tomáš Katriň̌ák, Lubomír Hnědkovský and Ivan Cibulka: Partial Molar Volumes and Partial Molar Isentropic Compressions of Three Polyhydric Alcohols Derived from Propane at Infinite Dilution in Water at Temperatures $T=(278$ to 318$) \mathrm{K}$ and Atmospheric Pressure.

Experimental standard molar volumes obtained in this work were combined with data measured in the ranges from (298.15 to 573.15$) \mathrm{K}$ and (0.1 to 30) MPa^{1} and the entire set was smoothed using a polynomial function

$$
\begin{equation*}
V_{\mathrm{m}, 2}^{0} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)=\sum_{i=1}^{N_{T}} \sum_{j=1}^{3} a_{i j}(T / \mathrm{K})^{(i-1)}(p / \mathrm{MPa})^{(j-1)} \tag{S1}
\end{equation*}
$$

The adjustable parameters $a_{i j}$ were evaluated using the weighted least squares procedure by minimizing the objective function

$$
\begin{equation*}
\phi\left(\left\{a_{i j}\right\}\right)=\sum_{k=1}^{N}\left\{\frac{\left(V_{\mathrm{m}, 2}^{0(\exp)}\right)_{k}-\sum_{i=1}^{N_{T}} \sum_{j=1}^{3} a_{i j} T_{k}^{(i-1)} p_{k}^{(j-1)}}{\sigma\left(V_{\mathrm{m}, 2}^{0(\exp)}\right)_{k}}\right\}^{2} \tag{S2}
\end{equation*}
$$

Estimated experimental uncertainties were used for the weights $1 /\left[\sigma\left(V_{\mathrm{m}, 2}^{0 \text { (exp) }}\right)_{k}\right]^{2}$. The summation in eq S2 is performed over all experimental data points N measured for a particular solute. Since measurements at three pressures were performed for each isotherm (except for $T<298 \mathrm{~K}$) the resulting fits are interpolations in pressure (isotherms are fitted with the second order polynomials in pressure) while the maximum order of the polynomial with respect to temperature, N_{T}, was chosen according to the significance of respective parameters. A random distribution of deviations between experimental values and those calculated from eq S1 was adopted as a criterion. Values of parameters along with standard deviations and weighted standard deviations of the fits are presented in Table S1. Extrapolations using a polynomial function are not reliable and therefore the calculations of standard molar volumes and derived quantities from the fits for $T<298 \mathrm{~K}$ are not recommended for pressures other than 0.1 MPa .

Table S1. Parameters $a_{i j}$ of Eq S1. Temperature Range of All Fits is from (278.15 to 573.15) K, for the Pressure Range see the text.

