## **Supporting Information**

## Effect of o-Carborane on the Optoelectronic and Device-Level Properties of Poly(fluorene)s

Andrew R. Davis, Joseph J. Peterson, Kenneth R. Carter\*

Department of Polymer Science and Engineering

University of Massachusetts Amherst

Conte Center for Polymer Research

120 Governors Drive, Amherst, Massachusetts 01003

## Experimental

*Materials*: All reactants, reagents, and solvents were purchased from Aldrich Chemical Co. and used as received unless specified otherwise. All reactions were performed under  $N_2$  atmosphere unless otherwise noted.

*Instrumentation*: Synthesized polymers were analyzed via <sup>1</sup>H NMR on a Bruker AF 300 (300 MHz). Gel permeation chromatography (GPC) was performed in tetrahydrofyran (THF) at 1.0 mL/min using a Knauer K-501 Pump with a K-2301 refractive index detector and a K-2600 UV detector, and a column bank consisting of two Polymer Labs PLGel Mixed D columns at 40 °C Molecular weights are reported relative to poly(styrene) standards. Glass transition temperatures were determined using differential scanning calorimetry (DSC) on a Thermal Analysis (TA) Q-2000 DSC in aluminum pans using a heat-cool-heat cycle at a rate of 10 °C/min. UV-Vis absorbance in CHCl<sub>3</sub> was measured on a Hitachi U-3010 using 1 cm path-length quartz cuvettes. Photoluminescence was measured with a Perkin-Elmer LS-50B fluorescence spectrometer for both spin-coated solid state films on silicon wafers and in dilute CHCl3 solutions in 1 cm path-length quartz cuvettes. Cyclic voltammetry was performed on a CH Instruments potentiostat in an electrolyte solution of 0.1 M Bu4NPF6 in acetonitrile using platinum wires (Bioanalytical System Inc.).

Synthesis of Carborane-Containing Poly(fluorene) Derivatives: Previously unreported copolymer of fluorene and thiophene with *o*-carborane incorporated directly in the conjugated backbone (PFT-*o*-carb) was synthesized by Stille coupling of the dibromo o-carborane monomer [1] (1 equiv.) with 2,5-bis(tributylstannyl)-thiophene (1 equiv.) in the presence of tetrakis(triphenyphosphine) palladium (0.05 equiv) in toluene at 100 °C under N<sub>2</sub> with yields comparable to PF-o-carb. 1H NMR (300 MHz, CDCl3,  $\delta$ ): 7.63-7.23 (m, 14H, Ar H), 4.15-2.00 (bm, 10H, BH), 2.01-1.68 (m, 8H, CH<sub>2</sub>), 1.16-0.8 (m, 52H, alkyl). Number average molecular weight (M<sub>n</sub>) = 8.5 kg/mol via GPC (THF vs. polystyrene standards).

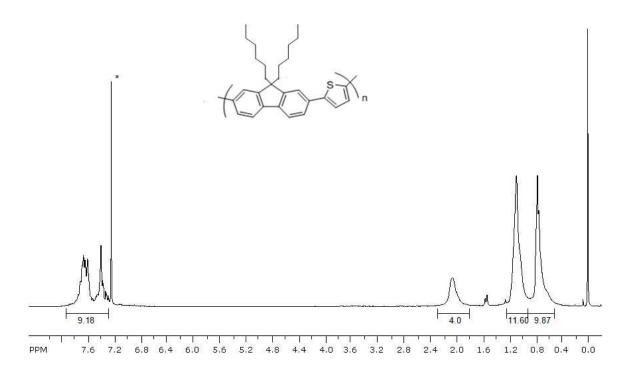
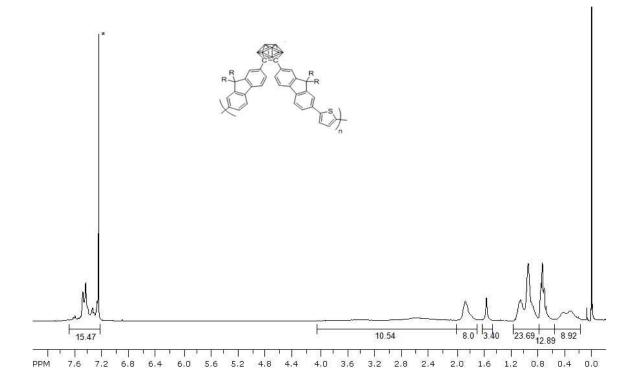
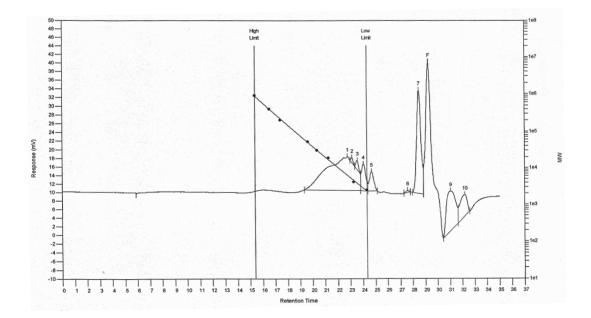
The control copolymer of poly(9,9-dihexyl-fluorene -co-thiophene) (PFT) was synthesized by conventional Stille coupling of 2,7-dibromo-9,9-dihexyl-9H-fluorene (1 equiv.) with 2,5-bis(tributylstannyl)-thiophene (1 equiv) in the presence of tetrakis(triphenyphosphine) palladium (0.05 equiv) in toluene at 100 °C under N<sub>2</sub> (40% yield),  $M_n = 8$  kg/mol via GPC (THF vs. polystyrene standards).

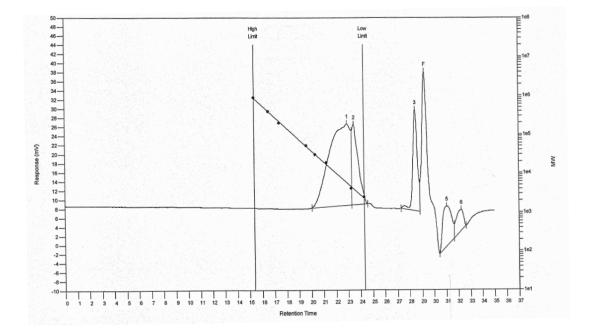
Poly(9,9-hihexyl-fluorene) (PF) and its corresponding  $\neg$ o-carborane-containing copolymer (PF-*o*-carb) were synthesized as described previously [1],  $M_n = 51$  kg/mol and 8.5 kg/mol, respectively, via GPC (THF vs. polystrene standards). Discrete dimers of fluorene and o-carborane-linked fluorene were synthesized as previously reported [1].

*Device Fabrication and Characterization*: Polymer light emitting diodes (PLEDs) were fabricated using PF, PFT, PF-*o*-carb, and PFT-*o*-carb as active emitting layers. ITO-coated glass was first solvent cleaned and subsequently treated with O2 plasma for 3 minutes. Poly(ethylene-dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) (1.3wt% in H2O, Aldrich) was then spin-coated at 4000 RPM and dried under N<sub>2</sub> at 150°C for 30 minutes. Emissive polymer solutions were then spun from chloroform (10 mg/mL) at 3000 RPM. The coated substrates were dried at 150 °C under N<sub>2</sub> for 1 hour, and devices were completed by the thermal evaporation of 40 nm Ba cathodes capped with 100 nm Al at pressure  $<10^{-5}$  Torr with active areas of 0.15 cm<sup>2</sup>. Devices were tested in air using a Kiethley 2602 Sourcemeter and a calibrated Ocean Optics USB4000 UV–vis spectrometer.

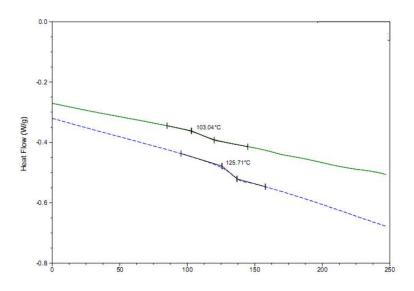
Bottom-contact thin film transistors (TFTs) were fabricated on highly doped Si with 200 nm of thermally grown  $SiO_2$  serving as the gate and gate dielectric (0.01-0.018 ohm-cm, University Wafer). Gold source and drain contacts (thickness = 50 nm; W/L = 30) were deposited on Si substrates using conventional photolithographic techniques. Thin films of PFT and PFT-o-carb were then formed on the substrates using previously reported transfer technique

[2]. TFTs were characterized in air using a Keithley 4200 SCS and a Micromanipulator 6150 probe station.



Figure S1-<sup>1</sup>H NMR spectrum of PFT.




**Figure S2** - <sup>1</sup>H NMR spectrum of PFT-o-carb. R = hexyl.



**Figure S3** – Analysis of PFT via gel permeation chromatography (THF *vs.* polystyrene standards).



**Figure S4** - Analysis of PFT-*o*-carb via gel permeation chromatography (THF *vs.* polystyrene standards).



**Figure S5** – Glass transition temperatures of PFT (solid green) and PFT-*o*-carb (dashed blued) as determined by differential scanning calorimetry.

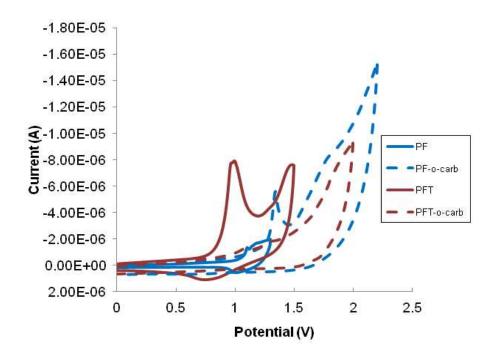
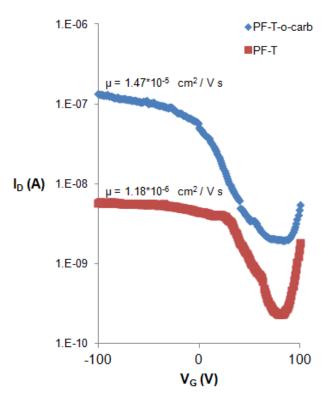



Figure S6 – Cyclic voltammetry (CV) response for poly(fluorene) derivatives measured in dry


CH<sub>3</sub>CN with 0.1M Bu<sub>4</sub>NPF<sub>6</sub> as the electrolyte.

**Table S7.** Summary of absorption onsent wavelength ( $\lambda_{onset}$ ), optical bandgap calculated from  $\lambda_{onset}$ , electrochemical oxidation onset ( $E_{onset}$ ), and HOMO/LUMO levels of poly(fluorene) derivatives. HOMO levels were calculated from the onset of electrochemical oxidation, and LUMO levels were then estimated from the optical band gap.

| Sample          | $\lambda_{onset}$ [nm] | <b>Optical Band</b> | Eonset [V] | HOMO/LUMO   |
|-----------------|------------------------|---------------------|------------|-------------|
|                 |                        | Gap [eV]            |            | [-eV]       |
| Polymers        |                        |                     |            |             |
| PF              | 420                    | 2.96                | 1.06       | 5.42 / 2.46 |
| PF-o-carb       | 384                    | 3.23                | 1.14       | 5.50 / 2.27 |
| PFT             | 481                    | 2.58                | 0.88       | 5.24 / 2.66 |
| PFT-o-carb      | 441                    | 2.81                | 0.91       | 5.27 / 2.46 |
| Dimers          |                        |                     |            |             |
| Fluorene        | 363                    | 3.42                | 1.14       | 5.50 / 2.08 |
| Fluorene-o-carb | 384                    | 3.23                | 1.16       | 5.52 / 2.29 |

**Table S8.** Peak emission wavelengths from poly(fluorene) derivatives for photoluminescence in CHCl<sub>3</sub> solution ( $\lambda_{PL-soln}$ ), photoluminescence in thin film ( $\lambda_{PL-film}$ ), and electroluminescence ( $\lambda_{EL}$ ).

| Sample     | $\lambda_{PL-soln}[nm]$ | $\lambda_{PL-film}[nm]$ | λ <sub>EL</sub> [nm] |
|------------|-------------------------|-------------------------|----------------------|
| PF         | 416                     | 422                     | 423                  |
| PF-o-carb  | 569                     | 563                     | 570                  |
| PFT        | 469                     | 489                     | 517                  |
| PFT-o-carb | 602                     | 570                     | 620                  |
| PFT-o-carb | 602                     | 570                     | 620                  |



**Figure S9.** Transfer curves for PFT and PFT-o-carb thin film transistors. Mobilities shown are field-effect hole mobilities calculated for the saturation regime.

## References

[3] J. J. Peterson, M. Werre, Y. C. Simon, E. B. Coughlin, K. R. Carter, *Macromolecules*. 2009, 42, 8594.
[2] Q. Wei, S. Miyanishi, K. Tajima, K. Hashimoto, *Appl. Mater. Inter.* 2009, 1, 2660.