Electronic Supplementary Material

Simultaneous Quantification of Four Major Metabolites of Embryotoxic N-Methyl- and N-Ethyl-2-Pyrrolidone in Human Urine by Cooled-Injection Gas Chromatography and Isotope Dilution Mass Spectrometry

Birgit K. Schindler,^{1*} Stephan Koslitz,¹ Swetlana Meier,¹ Vladimir N. Belov,² Holger M. Koch,¹ Tobias Weiss,¹ Thomas Brüning,¹ Heiko U. Käfferlein¹

¹ Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany ² Max Planck Institute for Biophysical Chemistry, Facility for Synthetic Chemistry, Am Fassberg 11, 37077 Göttingen, Germany

Homepage: www.ipa-dguv.de

* correspondent author: **Dr. Birgit K. Schindler**Institute for Prevention and Occupational Medicine
of the German Social Accident Insurance (IPA)
Bürkle-de-la-Camp Platz 1
44789 Bochum

Phone: +49-234-3024592 Fax: +49-234-3024505

E-mail: schindler@ipa-dguv.de

NMR and mass-spectra of 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI), two newly identified presumed metabolites of NEP, and their deuterium-labeled analogues with N-C₂D₅ groups (5-HNEP-d₅ and 2-HESI-d₅)

Figure S-1. ¹H-NMR spectrum of 5-HNEP in MeOH-d₄ (400 MHz). Assignments of the signals and coupling constants are given in the experimental part of the main text.

Figure S-2. 13 C-NMR spectrum of 5-HNEP in MeOH-d₄ (400 MHz). Assignments of the signals are given in the experimental part of the main text.

Figure S-3. EI-MS of compounds 5-HNEP and 5-HNEP-d₅. Fragmentation patterns are given in the experimental part of the main text.

Figure S-4. ¹H-NMR spectrum of 2-HESI in MeOH-d₄ (400 MHz). Assignments of the signals and coupling constants are given in the experimental part of the main text.

Figure S-5. ¹³C-NMR spectrum of 2-HESI in MeOH-d₄ (400 MHz). Assignments of the signals and coupling constants are given in the experimental part of the main text.

Figure S-6. APT mode of 13 C-NMR spectrum of 2-HESI in MeOH-d₄ (400 MHz). (signals of CH₃ and CH groups have negative intensity, and signals of CH₂ groups, as well as quaternary carbons – positive intensity). Assignments of the signals are given in the experimental part of the main text.

Figure S-7. EI-MS of compounds 5-HESI and 5-HESI-d₅. Fragmentation patterns are given in the experimental part of the main text.

Figure S-8. 1 H-NMR spectrum of 5-HNEP-d₅ in MeOH-d₄ (400 MHz). Note the complete absence of the signals attributed to *N*-ethyl group (*cf.* Fig. 1). Assignments of the other signals and coupling constants are given in the experimental part of the main text.

Figure S-9. 13 C-NMR spectrum of 5-HNEP-d₅ in MeOH-d₄ (400 MHz). Note the complete absence of the signals attributed to *N*-ethyl group (*cf.* Fig. 2). Assignments of the other signals are given in the experimental part of the main text.

Figure S-10. 1 H-NMR spectrum of 2-HESI-d $_{5}$ in MeOH-d $_{4}$ (400 MHz). Note that the signals of N-ethyl group are absent (*cf.* Fig. 5). Assignments of the other signals and coupling constants are given in the experimental part of the main text.

Figure S-11. 13 C-NMR spectrum of 2-HESI-d₅ in MeOH-d₄ (400 MHz). Note that the signals of N-ethyl group are absent (*cf.* Fig. 6). Assignments of the signals are given in the experimental part of the main text.

Figure S-12. APT mode of 13 C-NMR spectrum of 2-HESI-d₅ in MeOH-d₄ (400 MHz) (signals of CH₃ and CH groups have negative intensity, and signals of CH₂ groups, as well as quaternary carbons – negative intensity). Note that the signals of N-ethyl group are absent (*cf.* Figures 6 and 9). Assignments of the signals are given in the experimental part of the main text.