Supplementary Information

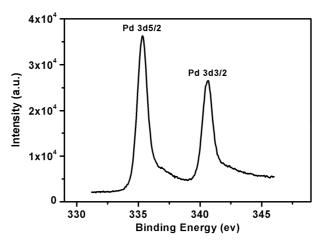
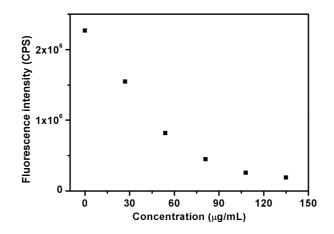
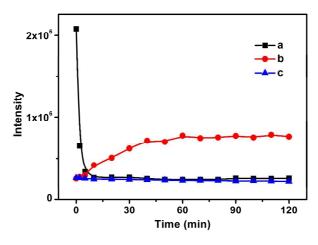
Pd nanowires as new biosensing materials for magnified fluorescent detection of nucleic acid

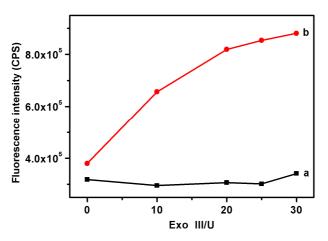
Libing Zhang,¹ Shaojun Guo,¹ Shaojun Dong, and Erkang Wang*

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China; [‡]Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China.

* Corresponding author: Prof. Erkang Wang, Fax: +86-431-85689711, Tel: +86-431-85262003, Email: ekwang@ciac.jl.cn

Supplementary Figures


Figure S1 XPS spectroscopy of Pd nanowires.

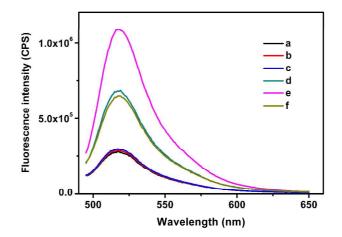

Figure S2 The relationship between the fluorescence intensity of P1 (20 nM) and the concentration of Pd NWs.

Figure S3 (a) Fluorescence quenching of P1 (20 nM) by Pd NWs, (b) fluorescence recovery of P1-Pd by T1 (1.0 μ M) and (c) fluorescence signal of P1-Pd in the absence of T1 as a function of incubation time.

Figure S4 Fluorescent intensity at 520 nm with different amounts of Exo III; curve a: 0 nM target DNA present, curve b: 100 nM target DNA present.

Figure S5 Fluorescence emission spectra of P1 (20 nM) at different conditions: (a) P1 Pd NWs; (b) P1 + Pd NWs + 20 U Exo III; (c) P1 + Pd NWs + 20 U Exo III (heat deactivated); (d) P1 + Pd NWs + 1.0 μ M T1 ; (e) P1 + Pd NWs + 1.0 μ M T1 + 20 U Exo III; (f) P1 + Pd NWs + 1.0 μ M T1 + 20 U Exo III (heat deactivated).