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In Vitro Binding Assay. The binding affinities (/Csy value) of 1a and 1b for
TSPO were determined in rat brain mitochondrial membranes by competition
experiments against [*H]la. Crude mitochondrial membranes were prepared as
described previously.! Crude preparation (0.8 mL; 0.5 mg protein per/mL) was
incubated with [*H]1a (0.58 nM; 100 uL) and the test compound (added in 100 uL) for
90 min at 4 °C. The incubation was ended by rapid filtration through a glass filter
paper (Whatman GF/B) that had been pre-soaked in poly(ethyleneimine) (0.3 %), after
which the filters were washed three times with ice-cold HEPES buffer (50 mM; 3 mL),
using a multi-cell harvester, M-48R. Aquasol-2 scintillator (5 mL) was added and the
filter bound radioactivity was counted in a liquid scintillation counter (Beckman
Coulter). Non-specific binding was determined in the presence of 1a (10 uM). ICs
values were calculated by non-linear regression (one site competition) on Prism
software (Graph-Pad).

Determination of Energy Barrier with Dynamic '"H-NMR. Energy barriers
to amide bond rotation in 1a were calculated according to the method of Shanan-Atidi
and Bar-Ali* by making use of the relationship:

Py~ Pp=AP=[(X* -2)/31"% 1/X
where P4 and Pj are the population fractions of species A and B and X = 270V, and ov
is the chemical shift difference between the signals at very slow exchange and 7 is
defined by the relation 1/7 = (1/z4) = (1/75) where 74 and g are the lifetimes of species A
and B, respectively.

The rates of exchange are k4 and kg which obey:

ks = (1/27)(1 — AP) and kg = (1/27)(1 + AP)

The free energy of activation can be deduced using Eyring’s equation i.e.

AG 7= RT.In[(k/hn)(T./dV)[X/(1 — AP)] and AGE" = RTIn[(k/hz)(T./dV)[X/1 + AP)]

The difference between these two is given by:

AG = RT.In(P4/Pg) = RT. [(1 + AP)/(1 — AP)]

When the values of the constants are introduced, the free energies of activation

may be calculated in calories per mole as

AG.7=4.575T.[10.62 + log(XA2 (1 —AP)) + log(T./5v)] and
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AGF = 4.575T.[10.62 + log(X/(2 (1 + AP)) + log(T./6)]
Values of log(X/(27(1 + AP)) were obtained for particular values of AP from the
published plot of Shanan-Atidi and Bar-Ali.”
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Tables

Table S1. Assignment of BC-NMR Chemical Shifts for the N-Me, s-Bu and
Carbonyl Carbons of 1a from Theory [(B3LYP/6-311+G(2d,p) in CHCl;] and
Experiment (CDCly).

Signal Chemical shift (0 ppm)
Theory Experimental

CH,CH;(Z;) 13.32 11.12
CH,CH;3(Z;) 13.32 11.04
CH,CH; (E;) 13.14 11.05
CH,CHs (E,) 13.23 10.87
CHCHs; (Z)) 19.01 17.23
CHCH; (22) 19.22 17.31
CHCH;(E;))  20.34 18.58
CHCH; (E;) 2043 18.45
CH,CH;(Z;) 3148 26.30
CH,CHs(Z;) 31.51 26.30
CH,CH3(E;) 32.39 27.38
CH,CH; (E;) 3244 27.41
NCH; (Z)) 32.97 30.50
NCHj; (2>) 32.87 30.39
NCH; (E)) 29.20 26.65
NCH; (E») 29.29 26.65
CH (Z)) 57.11 50.38
CH (Z») 57.14 50.58
CH (E)) 65.28 55.57
CH (E,) 64.30 55.75
CO (Z)) 179.54 168.12
CO (Z») 179.18 168.12
CO (E)) 180.68 168.38
CO (E,) 180.56 168.38
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Table S2. Assignment of BC-NMR Chemical Shifts of the s-Bu Carbons of 1b
from Theory [(B3LYP/6-311+G(2d,p) in CHCl;3] and Experiment (CDCl3).

Chemical shift ()
Theory Experimental

CH,CH;(Z) 13.54 8.65, 8.73
CH,CH;(E) 13.27

CHCH; (Z) 24.52 18.66, 18.71
CHCH;(E) 24.85

CH,CH; (Z) 35.21 27.98,27.93
CH,CH;(E) 36.39

CH (2) 52.52 44.92

CH (E) 59.20
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Table S3. Binding Affinities (/Csy values) for TSPO of N-Methyl Tertiary Amido
Ligands, their N-Desmethyl-secondary Amido Analogs, and of a Conformationally
Restrained Analog (8).

N—s-Bu

Ligand X Y Z R' R* ICs

(nM)
1a Cl CH N Me s.Bu 0.5
1b? Cl CH N H sBu 1,570
1c H N CMe Me sBu 2.1°
1d H N CMe H sBu 230°
1¢ Me N CMe Me Bn 4.6
1f Me N CMe H Bn 10270°
1g H CH CH Me Bn 64*
1g H CH CH H Bn 2,700*
8 10,000°

4R-enantiomer.
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Figure S1A. Full "H-NMR spectrum of 1a in CDCl; at 24 °C.
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Figure S1B. Expanded 'H-NMR spectrum of 1a in CDCl; at room temperature at high field.
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Figure S1C. Expanded '"H-NMR spectrum of 1a in CDCl; at room temperature at 2.7—3.2 ppm.
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Figure S2. '"H-NMR spectrum of 1a in de~DMSO at 24 °C.
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Figure S3A. Full?C-NMR spectrum of 1a in CDCl; at room temperature.
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Figure S3B. *C-NMR spectrum of 1a in CDCl; at room temperature (9—32 ppm)
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Figure S3C. *C-NMR spectrum of 1a in CDCl; at room temperature (45—57 ppm).
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Figure $4. 'H/">C-COSY NMR spectrum of 1a in CDCl; at room temperature.
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Figure S5. NOE spectroscopy of 1la.  Spectrum A: "H-NMR of 1a in CDClL.
Spectrum B: "H-NMR of 1a in CDCl; after irradiation of Z rotamer s-butyl C-H signal.
Spectrum C: NOE difference spectrum for A and B, showing increase of signals for
chlorophenyl ring protons.
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Figure S6. Full'H-NMR spectrum of 1b in CDCl; at room temperature.
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Figure S7B. BC-NMR spectrum of 1b in CDCl; at room temperature, in the range 8—29 ppm.
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Figure S8. Ln rate of amide bond rotation (k; Hz) in 1a versus inverse of absolute

temperature (K).
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TS; (—92.5 cm™) 7S, (—-101.1 cm™)

Figures S9. Transition states for the amide bond isomerization of the Z; form of 1a.

Geometry was optimized at the B3LYP/6-31G* level in the solvent reaction field of
chloroform. Values in parenthesis represent the imaginary vibrational frequency.
Atoms are colored as follows: white, hydrogen; green, carbon; blue, nitrogen; red,

oxygen; violet, chlorine.
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TS, (—66.1 cm!) TS, (-68.9 cm™)
Figures S10. Transition states for the chlorophenyl group rotation of the Z; isomer of
1a. Geometry was optimized at the B3LYP/6-31G* level in the solvent reaction field of
chloroform. The steric clash between the CI and the isoquinoline nitrogen in TS; and
the Cl and the C8-H atom of the isoqunolinyl moiety in TS, are indicated by the dashed
lines. Atoms are colored as follows: white, hydrogen; green, carbon; blue, nitrogen;

red, oxygen; violet, chlorine.
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Figure S11. Calculated 13C chemical shifts for the additional isomers of 1a Z', 725",
E;’, and E,") at the level of B3LYP/6-311+G(2d,p) in the solvent reaction field of
chloroform. These were obtained by rotating ¢; in the respective Z, Z,, E|, and E;

rotamers.
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