Supporting Information

Construction of the Azocane (Azacyclooctane) Moiety of the Lycopodium Alkaloid Lycopladine H via an Intramolecular Hydroaminomethylation Strategy

Joshua R. Sacher and Steven M. Weinreb
Department of Chemistry, The Pennsylvania State University University Park, Pennsylvania 16802
E-mail: smw@chem.psu.edu

Table of Contents
Title PageS1
Experimental Details of New Compounds S2-S7
ORTEP of Compound $\mathbf{5}$ S8

General Methods. All non-aqueous reactions were carried out under an argon atmosphere in oven- or flame-dried glassware unless otherwise noted. Anhydrous tetrahydrofuran, diethyl ether, dichloromethane, and toluene were obtained from a solvent dispensing system equipped with alumina drying columns. All other solvents and reagents were used as obtained from commercial sources without further purification unless noted. Flash column chromatography was performed using silica gel 60 (230-400 mesh). Preparative thin-layer chromatography was performed using 500 or $1000 \mu \mathrm{~m}$ silica gel PF_{254} plates.

5
5-Bromo-3,3-dimethoxy-6-methyl-7-nitrobicyclo[2.2.2]oct-5-en-2-ol (5). To nitro ketone $4^{5}(3.20 \mathrm{~g}, 10.00 \mathrm{mmol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(415 \mathrm{mg}, 10.97$ mmol). The reaction mixture was stirred for 30 min , and then warmed to rt over 1.5 h . The solvent was partially evaporated to $\sim 20 \mathrm{~mL}$ volume, and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added. The suspension was stirred for 10 min , and then extracted with EtOAc. The combined organics were dried over MgSO_{4} and evaporated. The residue was purified by flash column chromatography (25% EtOAc in hexanes) to give nitro alcohol 5 ($3.03 \mathrm{~g}, 94 \%$) as a white solid as a single diastereomer. X-ray quality crystals were obtained by slow evaporation from hexanes: mp 107-108 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.64$ (ddd, $J=9.4,4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.68(\mathrm{dd}, J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{td}, J=5.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{t}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=14.6,9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=14.6$, 7.7, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.8,115.1,102.0,80.9,71.7$, $51.4,50.4,40.0,47.1,27.8,21.2$; IR (thin film) $3518,1551 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{OAc}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrNO}_{7} 380.0345$, found 380.0357 .

6
5-Bromo-7-(hydroxymethyl)-3,3-dimethoxy-6-methyl-7-nitrobicyclo[2.2.2]oct-5-en-
2-ol (6). To a solution of nitro alcohol $5(15.75 \mathrm{~g}, 48.89 \mathrm{mmol})$ in $\mathrm{MeCN}(250 \mathrm{~mL})$ were added aqueous formaldehyde ($35 \%, 7.75 \mathrm{~mL}, 97.65 \mathrm{mmol}$) and triethylamine ($6.80 \mathrm{~mL}, 48.79 \mathrm{mmol}$). The reaction mixture was stirred at rt for 3 d , and then evaporated. The residue was purified by flash column chromatography ($2: 1$ hexanes/EtOAc) to give nitro diol $6(15.32 \mathrm{~g}, 89 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.70(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91$ (dd, $J=15.0$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{br} \mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=15.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 135.9,116.0,102.5,94.3,69.5,69.0,51.5,50.2,50.1,47.9,28.4,21.2 ;$ HRMS (ESI) $[\mathrm{M}+\mathrm{OAc}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrNO}_{8} 410.0451$, found 410.0449.

7

6-Bromo-3-hydroxy-8-(hydroxymethyl)-5-methyl-8-nitrobicyclo[2.2.2]oct-5-en-2-one

(7). To a solution of ketal $6(1.40 \mathrm{~g}, 3.98 \mathrm{mmol})$ in wet $\mathrm{MeCN}\left(2 \% \mathrm{H}_{2} \mathrm{O}, 35 \mathrm{~mL}\right)$ was added lithium tetrafluoroborate (1.0 M in $\mathrm{MeCN}, 4.40 \mathrm{~mL}, 4.40 \mathrm{mmol}$). The reaction mixture was heated at $85^{\circ} \mathrm{C}$ for 2 h , then cooled to rt . The MeCN was evaporated, and saturated aqueous NaHCO_{3} was added to the residue. The aqueous mixture was extracted with EtOAc, and the combined organics were dried over MgSO_{4} and evaporated to give ketone $7(1.21 \mathrm{~g}, 99 \%)$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{brt}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathbf{O H}\right), 3.40(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=15.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=15.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , acetoned6) d $5.19(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathbf{O H}\right), 3.94(\mathrm{dd}, J=11.9,5.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.81(\mathrm{dd}, J=11.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHOH})$, $2.86(\mathrm{dd}, J=15.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=15.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone-d6) $\delta 204.9,140.8,112.5,95.0,69.1,67.6,57.4,52.2,29.7,21.6$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNO}_{5}$ 305.9977, found 305.9964.

6-Bromo-3-((tert-butyldiphenylsilyl)oxy)-8-(((tert-butyldiphenylsilyl)oxy)methyl)-5-methyl-8-nitrobicyclo[2.2.2]oct-5-en-2-one (8). To a solution of diol $7(1.30 \mathrm{~g}, 4.26 \mathrm{mmol})$ in DMF (4.25 mmol) were added tert-butylchlorodiphenylsilane ($2.75 \mathrm{~mL}, 10.57 \mathrm{mmol}$) and imidazole $(1.45 \mathrm{~g}, 21.30 \mathrm{mmol})$. The resulting solution was heated at $40^{\circ} \mathrm{C}$ for 18 h , and then cooled to rt. Water was added, and the resulting heterogeneous mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics were washed with water and brine, dried over MgSO_{4}, and evaporated. The residue was purified by flash column chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give bis-silyl ether $8(2.38 \mathrm{~g}, 71 \%)$ as a foamy white solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~m}, 4 \mathrm{H}), 7.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 14 \mathrm{H}), 3.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75,3.60(\mathrm{ABq}, J=10.9 \mathrm{~Hz}),, 3.54(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=3.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$, (dd, $J=15.6,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.7,140.3$, $136.1,136.0,135.8,135.7,135.6,133.0,132.5,132.2,131.7,131.3,130.4,130.3,130.1,128.1$, 128.1, 127.8 111.5, 93.2, 69.3, 68.0, 56.4, 51.4, 29.4, 27.0, 26.8, 21.5, 19.5, 19.3; HRMS (ESI) $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Si}_{2} 799.2598$, found 799.2567 .

6-Bromo-3-((tert-butyldiphenylsilyl)oxy)-8-(((tert-butyldiphenylsilyl)oxy)methyl)-5-methyl-8-nitro-2-vinylbicyclo[2.2.2]oct-5-en-2-ol (9). $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.30 \mathrm{~g}, 3.50 \mathrm{mmol})$ was heated at $140^{\circ} \mathrm{C}$ under high vacuum for approximately 3 h . The anhydrous CeCl_{3} was cooled to rt under an argon atmosphere, and then suspended in THF (10 mL). The resulting suspension was stirred vigorously overnight, then cooled to $-78^{\circ} \mathrm{C}$. Vinylmagnesium bromide (1 M in THF, $3.00 \mathrm{~mL}, 3.00 \mathrm{mmol}$) was added dropwise, and the resulting mixture was stirred for 30 min . A solution of ketone $8(1.57 \mathrm{~g}, 2.00 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ was added dropwise, and the reaction mixture was stirred for 5 h at $-78^{\circ} \mathrm{C}$. $N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine $(0.52 \mathrm{~mL}, 3.50$ mmol) was added, and the reaction mixture was warmed to rt . The mixture was poured into saturated aqueous NaHCO_{3}, and the aqueous layer was extracted with EtOAc. The combined organics were dried over MgSO_{4} and evaporated, and the resulting residue was purified by flash column chromatography (10% EtOAc in hexanes) through a short column to afford allylic alcohol $9(1.56 \mathrm{~g}, 96 \%)$ as a foamy white solid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~m}, 2 \mathrm{H})$, $7.55-7.35$ (m, 18H), 5.68 (dd, $J=17.0,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (dd, $J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (dd, J $=10.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{3} \mathrm{COH}\right), 3.58,3.43(\mathrm{ABq}, J=10.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.20(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ $(\mathrm{s}, 3 \mathrm{H}), 1.55(\mathrm{dd}, J=15.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,136.1,135.7,135.6,132.8,132.4,132.2,132.0,131.5,130.6,130.4,130.2,130.2,128.2$, $128.0,128.0,127.9,120.1,115.6,94.3,75.6,72.9,69.8,54.1,50.5,28.5,27.2,26.8,21.3,19.4$, 19.3; HRMS (ESI) $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Si}_{2} 827.2911$, found 827.2890.

8-Amino-6-bromo-3-((tert-butyldiphenylsilyl)oxy)-8-(((tert-

 butyldiphenylsilyl)oxy)methyl)-5-methyl-2-vinylbicyclo[2.2.2]oct-5-en-2-ol (10). To nitro compound $9(1.25 \mathrm{~g}, 1.54 \mathrm{mmol})$ partially dissolved in $i-\mathrm{PrOH}(30 \mathrm{~mL})$ at $45^{\circ} \mathrm{C}$ was added activated zinc powder ${ }^{14}(1.00 \mathrm{~g}, 15.30 \mathrm{mmol})$. To the suspension was added dropwise 1 M HCl $(7.60 \mathrm{~mL}, 7.60 \mathrm{mmol})$. The reaction mixture was stirred for 1 h at $45^{\circ} \mathrm{C}$, and then cooled to rt .The reaction mixture was neutralized with saturated aqueous NaHCO_{3}, and filtered through a pad of Celite eluting with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organics were washed with water and brine, dried over MgSO_{4}, and evaporated. The residue was purified by flash column chromatography ($10-20 \%$ EtOAc in hexanes) to give amine $\mathbf{1 0}$ ($1.16 \mathrm{~g}, 96 \%$) as a foamy white solid: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 12 \mathrm{H}), 6.08(\mathrm{dd}, J=17.1,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.50(\mathrm{dd}, J=17.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{3} \mathrm{COH}\right), 3.04,2.87(\mathrm{ABq}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{dd}, J=15.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{dd}, J=15.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}$, 9H), 1.01 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.5,136.4,136.1,135.8,135.7,133.3,130.4$, $130.1,130.0,128.0,127.8,127.7,118.1,114.2,76.4,74.1,72.5,56.8,55.4,53.4,33.3,27.2$, 27.1, 21.3, 19.5, 19.4; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{BrNO}_{3} \mathrm{Si}_{2} 780.2904$, found 780.2855 .

13

12-Bromo-9-((tert-butyldiphenylsilyl)oxy)-3-(((tert-butyldiphenylsilyl)oxy)methyl)-11-methyl-4-azatricyclo[6.4.0.0 ${ }^{3,10}$ ddodec-11-en-8-ol (13). To a solution of amino alkene 10 ($500 \mathrm{mg}, 0.640 \mathrm{mmol}$) in $\mathrm{PhMe}(6.4 \mathrm{~mL})$ and $1,1,1,3,3,3$-hexafluoroisopropanol (6.4 mL) in a pressure reactor were added di- μ-chlorido-bis $\left[\eta^{2}, \eta^{2}\right.$-(cycloocta-1,5-diene)rhodium (3.2 mg , 0.0065 mmol) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (Xantphos, $9.3 \mathrm{mg}, 0.016$ mmol). The reactor was sealed and pressurized with carbon monoxide (10 bar) and hydrogen (40 bar). The pressure reactor was heated at $125-135{ }^{\circ} \mathrm{C}$ for 18 h , and then cooled to rt. The gasses were vented, and the solvent was evaporated. The residue was purified by flash column chromatography ($10-20 \%$ EtOAc in hexanes) to give cyclic amine 13 ($384 \mathrm{mg}, 75 \%$) as a foamy white solid: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35$ $(\mathrm{m}, 12 \mathrm{H}), 4.74(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.05,3.02(\mathrm{ABq}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H})$,
$2.59(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=14.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}$, $9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{dd}, J=13.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.3,136.2$, $136.1,135.8,135.8,134.9,133.5,133.4,133.4,133.2,130.2,130.0,129.9,129.8,129.7,127.9$, $127.8,127.8,127.7,118.0,75.4,70.7,57.8,56.7,55.2,42.8,37.4,28.2,27.3,27.1,26.2,21.5$, 19.5, 19.4; IR (thin film) 3515, 1472, $1428 \mathrm{~cm}^{-1}$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{45} \mathrm{H}_{57} \mathrm{BrNO}_{3} \mathrm{Si}_{2} 794.3060$, found 794.3051.

14
12-Bromo-9-((tert-butyldiphenylsilyl)oxy)-3-(((tert-butyldiphenylsilyl)oxy)methyl)-5-methoxy-11-methyl-4-azatricyclo[6.4.0.0 $\left.{ }^{3,10}\right]$ dodec-11-en-8-ol (14, $\left.\mathrm{R}=\mathrm{Me}\right)$. The reaction was run according to the above procedure for $\mathbf{1 3}$ in a $1: 1$ mixture of PhMe and MeOH using 100 mg (0.128 mmol) of amino alkene 10. Purification of the crude product mixture by preparative TLC (15% EtOAc in hexanes) gave azocane $13(28 \mathrm{mg}, 28 \%)$, and N, O-acetal $14(\mathrm{R}=\mathrm{Me})(46 \mathrm{mg}$, 41%) as a foamy white solid: Data for $14:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~m}, 2 \mathrm{H}), 7.70-$ $7.50(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 12 \mathrm{H}), 4.53(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.27,3.04(\mathrm{ABq}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.95(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{dd}, J=14.3,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.45-1.18 (m, 4H), $1.12(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4$, $136.0,135.8,135.8,135.0,134.8,133.5,133.4,130.0,130.0,129.7,129.4,127.9,127.9,127.8$, $127.7,127.3,117.1,105.5,87.7,77.0,72.5,56.2,55.6,54.8$ (2C), 35.1, 34.8, 31.7, 27.3, 27.2, 21.6, 19.9, 19.6; LRMS (EI) $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{59} \mathrm{BrNO}_{4} \mathrm{Si}_{2}$ 824.3, found 824.3.

X-ray Structure of 5-Bromo-3,3-dimethoxy-6-methyl-7-nitrobicyclo[2.2.2]oct-5-en-2-ol (5).

wdd

$066^{\circ} \triangleright 6 \longrightarrow$
0Gカ・ごレー
OこB ${ }^{\circ}$ Oャレ

cose
LEL'202
wdd

L\＆G．टL

しロで・8！ とโ［ $\llcorner\llcorner\downarrow$
$028^{\circ} \mathrm{L己「} \downarrow$

$986.62 \downarrow$
จ80．0EI
してヵ。Oとっー

［60＇seปー
S89．GE！－
Gટए•9E！－｜
29E．9E！－

wdd

wdd

wdd

