Highly Efficient Synthesis of a Class of Novel Chiral-Bridged Atropisomeric Monophosphine Ligands via Simple Desymmetrization and Their Applications in Asymmetric Suzuki-Miyaura Coupling Reaction

Shouliang Wang, ${ }^{\dagger}$ Jinjin Li, ${ }^{\dagger}$ Tingting Miao, ${ }^{\dagger}$ Wenhao Wu, ${ }^{\dagger}$ Qing Li, ${ }^{\dagger}$ Yue Zhuang, ${ }^{\dagger}$ Zhongyuan Zhou, ${ }^{*}$ Liqin Qiu* ${ }^{\boldsymbol{\dagger}}$
School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center of Chiral Drugs, Sun Yat-Sen University, No. 135 Xingangxi Road, Guangzhou 510275, P. R. China, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China

Fax: (+86)20-84110996

E-mail: qiuliqin@mail.sysu.edu.cn

General Considerations: .. 2
Experimental section
. 3
(1) The preparation of ligands 7a-7d ... 3
(2) The preparation of ligands $7 \mathrm{e}-7 \mathrm{~g}:$... 8
(3) General procedure for asymmetric Suzuki coupling.. 10

Referance ... 18
X-ray data of ligand 7a... 19
Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and chiral HPLC Spectra for all products.. 22

General Considerations: Anhydrous toluene, DMF, DME, DMSO, and pyridine were refluxed and distilled from CaH_{2}. Anhydrous THF was fleshly distilled from sodium and benzophenone before used. Acetone was refluxed and distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Aryl boronic acids were purified by passing through a silica gel column before used. If not mentioned, all reagents were purchased from commercial sources and used without further purification. All reactions were carried out under an inert atmosphere of dry nitrogen and were monitored by TLC. Glassware was flame dried before use. Standard syringe techniques were applied to transfer dry solvents and reagents. The preparation of samples was carried out in a nitrogen-filled continuously purge glovebox or using standard Schlenk-type techniques. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Varian Mercury-Plus 300 spectrometer at 300, 75 and 121.4 MHz respectively. Chemical shifts (δ) are given in ppm and are referenced to residual solvent peaks (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) or to an external standard (85% $\mathrm{H}_{3} \mathrm{PO}_{4},{ }^{31} \mathrm{P}$ NMR). HR-MS were carried out on a Bruker APEX 47e ESI FT-ICR mass spectrometer and Thermo MAT95XP EI-FAB-CI mass spectro-meter. Optical rotations were recorded on a Perkin-Elmer Model 341 polarimeter in a $10-\mathrm{cm}$ cell at $20{ }^{\circ} \mathrm{C}$. HPLC analysis was performed on an Agilent 1200 series system using a Daicel Chiralpak OD-H or AD-H column. GC analysis was performed on an Agilent 7890 series system using a DB- 5 column ($30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$).

Experimental section:

(1) The preparation of ligands 7a-7d

(R)-[6,6'-(2S,3S-butadioxy)]-(2,2')-dihydroxy-(1,1')-biphenyl (3)

Under N_{2} atmosphere and at $80{ }^{\circ} \mathrm{C}$, a mixture of $2,2^{\prime}, 6,6{ }^{\prime}$-tetrahydroxybiphenyl ${ }^{[1]}(1.06 \mathrm{~g}, 4.88 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.04 \mathrm{~g}, 9.36 \mathrm{mmol})$ in DMF $(120 \mathrm{~mL})$ was stirred for 1 h , then a solution of compound $2(1.00 \mathrm{~g}, 4.07 \mathrm{mmol})$ in DMF (100 mL) was added dropwise into this mixture over a period of 4 h . The resulting suspension was stirred further for 24 h at this temperature. The resultant solution was concentrated in vacuo to give a crude product. The residue was poured into water and extracted three times with ethyl acetate. The extract was washed successively with 1 N HCl solution, water and brine. The organic layer was separated, dried over MgSO_{4} and concentrated in vacuo. Purification of the residue by flash chromatography (20% ethyl acetate in petroleum ether) gave colorless crystals $3(0.58 \mathrm{~g} 53 \%)$. $[\alpha]_{\mathrm{D}}{ }^{20}-103.5$ ($\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO): $\delta 1.28$ (d, $\mathrm{J}=5.4 \mathrm{~Hz}, 6 \mathrm{H}$), 3.72-3.74 (m, $2 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.15(\mathrm{~s}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO): $\delta 18.70,85.46,111.18,112.33,115.80$, 128.54, 155.19, 159.79 ppm . MS (EI): $[\mathrm{M}]^{+} 271.1 ; \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$.
(R)-[6,6'-(2S,3S-butadioxy)]-2-hydroxy-2'-methoxy-(1,1')-biphenyl (4)

A mixture of $\mathbf{3}(0.70 \mathrm{~g}, 2.57 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.72 \mathrm{~g}, 5.22 \mathrm{mmol})$ in acetone $(50 \mathrm{~mL})$ was stirred at room temperature for 1 h under N_{2} atmosphere, and then a
solution of iodomethane in acetone (50 mL) was added dropwise into this mixture over a period of 4 h . The mixture was stirred at room temperature for 18 h and then was filtered through a pad of celite, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was concentrated under reduced pressure. The residue was purified on silica gel (using 5\% ethyl acetate in petroleum ether as eluent) to give 0.70 $\mathrm{g}(91 \%)$ of 4. $[\alpha]_{\mathrm{D}}{ }^{20}-105.5\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.38(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.86-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $6.74(\mathrm{dd}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.87(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (t, J = 8.1 Hz, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.83,18.92$, 56.45, 85.84, 86.00, 107.07, 107.21, 113.49, 114.06, 116.02, 116.44, 129.64, 129.82, 154.57, 155.80, 159.82, 160.50 ppm . MS (EI): [M] ${ }^{+}$286; HRMS (EI): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ 286.1205 , found 286.1199 .

(R)-[6,6'-(2S,3S-butadioxy)]-2-trifluoromethanesulfonyloxy-2'-methoxy-(1,1')-

biphenyl (5)

Trifluoromethanesulfonic anhydride ($1.38 \mathrm{~g}, 4.90 \mathrm{mmol}$) was added dropwise to a solution of $4(0.70 \mathrm{~g}, 2.45 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Then the mixture was allowed to warm to room temperature and stirred for 12 h . After removal of the solvent in vacuo, the residue was diluted with EtOAc and was then washed successively with aqueous $\mathrm{HCl}(10 \%)$, saturated NaHCO_{3} and brine. The organic layer was dried with MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (using 5\% ethyl acetate in petroleum ether as eluent) to give compound $\mathbf{5}$ as a yellowish solid ($0.94 \mathrm{~g}, 92 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{20}-55.5\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38(\mathrm{~d}, \mathrm{~J}$ $=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.89(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.80(\mathrm{~m}$, $2 \mathrm{H})$, 7.13-7.17 (m, 2H), 7.34-7.41 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.89$,
$55.54,85.72,86.52,106.59,114.13,114.39,116.61,121.42,121.81,122.62,129.16$, 130.78 ppm. MS (EI): [M] ${ }^{+} 418$; HRMS (EI): calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{~S} 418.0698$, found 418.0698.

(R)-[6,6'-(2S,3S-butadioxy)]-2-diphenylphosphoryl-2'-methoxy-(1,1')-biphenyl (6a)

Under N_{2} atmosphere, to a mixture of $5(0.90 \mathrm{~g}, 2.15 \mathrm{mmol})$, diphenylphosphine oxide ($0.87 \mathrm{~g}, 4.30 \mathrm{mmol}$), palladium acetate ($96 \mathrm{mg}, 0.43 \mathrm{mmol}$) and 1,3-bis(diphenylphosphino)propane (dppp) ($184 \mathrm{mg}, 0.43 \mathrm{mmol}$) were added dry dimethyl sulfoxide (10 mL) and diisopropylethylamine (1.5 mL). The mixture was heated with stirring at $110{ }^{\circ} \mathrm{C}$ for 24 h . After being cooled to room temperature, the reaction mixture was concentrated under reduced pressure to give a dark brown residue, which was diluted with EtOAc. The EtOAc solution was washed with aqueous $\mathrm{HCl}(10 \%)$ and dried over anhydrous MgSO_{4}. Removal of the solvent and flash column chromatography on silica gel (petroleum ether: ethyl acetate $=2: 1$) provided 6a as a white solid ($0.96 \mathrm{~g}, 95 \%$). $[\alpha]_{\mathrm{D}}{ }^{20}-117.0 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.35$ (d, J = $8.4 \mathrm{~Hz}, 6 \mathrm{H}$), 3.21 (s, 3H), 3.84-3.86 (m, 2H), $6.20(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}), 7.19-7.38(\mathrm{~m}, 9 \mathrm{H})$, 7.43-7.48 (m, 2H), 7.63-7.70(m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.90$, $19.02,54.10,85.29,86.84,105.10,113.16,117.67,125.39,127.30,127.46,127.65$, $127.81,128.06,128.26,129.85,130.16,130.31,130.48,130.68,131.32,131.39$, $131.44,131.50,131.68,131.77,133.04,133.70,134.10,135.09,135.48,156.88$, 159.05, 159.17, 159.36 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR (121.4 MHz, CDCl_{3}): $\delta 27.28 \mathrm{ppm}$. MS (EI): $[\mathrm{M}]^{+}$470; HRMS (EI): calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P} 470.1647$, found 470.1653 .
$\mathbf{6 b}-\mathbf{6 d}$ was synthesized according to the general procedure of $\mathbf{6 a}$.

(R)-[6,6'-(2S,3S-butadioxy)]-2-di-(3,5-di-tert-butyl-phenyl)phosphoryl-2'-

 methoxy-(1,1')-biphenyl (6d)81% yield, a white solid, $[\alpha]_{\mathrm{D}}{ }^{20}-55.3 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.24(\mathrm{~s}, 18 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H}), 1.31-1.35(\mathrm{~m}, 6 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$, 3.74-3.90 (m, 2H), 6.27 (d, J = 7.8 Hz 1 H$), 6.31$ (d, J = 8.4 Hz 1 H), 6.91 (t, J = 8.4 Hz $1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz} 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz} 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.00,19.07,31.24,31.35,31.41,34.82,35.01$, $54.71,85.36,86.85,105.37,113.03,117.94,124.95,125.54,125.64,125.97,126.10$, $127.94,128.13,129.77,129.85,130.63,130.78,131.04,131.93,132.04,132.42$, $132.57,132.76,133.95,134,11,149.31,149.53,149.94,150.09,157.27,158.90$, 159.06, 159.24 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR (121.4 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.47 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 695$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{O}_{4} \mathrm{P}, 695.4252$, found 695.4224.

(R)-[6,6'-(2S,3S-butadioxy)]-2-diphenylphosphino-2'-methoxy-(1,1')-biphenyl

 (7a)

A 100 mL , two-necked flask equipped with a magnetic stirring bar and a reflux condenser was charged with $\mathbf{6 a}(0.60 \mathrm{~g}, 1.27 \mathrm{mmol})$ and the system was flushed with nitrogen. Dry and degassed toluene (50 mL), diisopropylethylamine ($6.88 \mathrm{~mL}, 38.1$ $\mathrm{mmol})$ and trichlorosilane $(1.70 \mathrm{~g}, 12.8 \mathrm{mmol})$ were added to the flask. The mixture was stirred and refluxed overnight. After the solution was cooled to $0{ }^{\circ} \mathrm{C}$, a 30% aqueous sodium hydroxide solution (17.5 mL) was carefully added. The mixture was then stirred at $60{ }^{\circ} \mathrm{C}$ until the organic and aqueous layers become clear. The organic product was extracted with EtOAc, and the extract was washed successively with water and brine and dried over anhydrous MgSO_{4}. The organic layer was concentrated under reduced pressure to give a crude product. The residue was purified
by silica gel column chromatography (using 5\% ethyl acetate in petroleum ether as eluent) to give compound 7a as a white solid $(0.55 \mathrm{~g}, 95 \%)$. $[\alpha]_{\mathrm{D}}{ }^{20}-128.5$ ($\mathrm{c}=2.0$ $\mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.40(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}$), $3.13(\mathrm{~s}, 3 \mathrm{H})$, 3.87-3.94 (m, 2H), 6.64-6.67 (m, 1H), 6.78-6.81 (m, 1H), 7.05-7.10 (m, 1H), 7.11-7.15 (m, 2H), 7.17-7.21 (m, 4H), 7.27 (d, J=7.5 Hz, 1H), 7.30-7.48(m, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.03,19.09,54.23,85.74,86.45,105.60,114.07$, $119.41,122.72,127.54,127.90,127.99,128.70,129.70,131.42,132.82,133.02$, 133.27, 134.21, 134.66, 137.82, 138.02, 138.20, 140.16, $140.34 \mathrm{ppm} .{ }^{31}$ P NMR (121.4 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-9.68 \mathrm{ppm}$. MS (EI): $[\mathrm{M}]^{+} 454$; HRMS (EI): calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$ 454.1698, found 454.1694.

7b-7d was synthesized according to the general procedure of $\mathbf{7 a}$.

(R)-[6,6'-(2S,3S-butadioxy)]-2-di-(4-methy-phenyl)phosphino

-2'-methoxy-(1,1')-biphenyl (7b)

93% yield, a white solid, $[\alpha]_{\mathrm{D}}{ }^{20}-119.5 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.36-1.38(\mathrm{~m}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.88$ $(\mathrm{m}, 2 \mathrm{H}), 6.62-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.77(\mathrm{~m}, 1 \mathrm{H})$, 6.97-7.02 (m, 4H), 7.05-7.09 (m, 1H), 7.11-7.18 (m, 3H), $7.24(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 7.23-7.36(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 18.96,19.07,21.16,21.27,54.24,85.63,86.34,105.57,113.88,119.45$, $119.54,128.53,128.60,129.47,130.99,132.74,132.90,133.00,133.15,134.00$, $134.45,134.73,134.88,136.71,136.88,137.03,137.16,138.76,138.95,157.20$, 158.61, 158.75, 159.80ppm (observed complexity due to P-C splitting). ${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}): $\delta-10.60 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 483$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}, 483.2102$, found 483.2084.

(R)-[6,6'-(2S,3S-butadioxy)]-2-di-(3,5-di-methy-phenyl)phosphino-2'-methoxy-(1,1')-biphenyl (7c)

89% yield, a white solid, $[\alpha]_{\mathrm{D}}{ }^{20}-166.7 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.42-1.43(\mathrm{~m}, 6 \mathrm{H}), 2.24(\mathrm{~m}, 6 \mathrm{H}), 2.37(\mathrm{~m}, 6 \mathrm{H}), 3.92-3.94(\mathrm{~m}, 2 \mathrm{H})$, $6.62(\mathrm{dd}, \mathrm{J}=8.1, \mathrm{~Hz}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$,
7.01-7.07 (m, 3H), $7.11(\mathrm{dd}, \mathrm{J}=8.1, \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.10,21.25,21.45,54.46,85.57,86.44,105.86,113.95$, $119.49,119.58$, 122.27, 128.61, 129.44, 130.60, 130.72, 130.86, 130.98, 131.21, $131.30,133.70,134.13,136.83,136.92,137.05,137.14,137.83,137.99,138.88$, 138.13, 139.30, 157.10, $158.65,158.78,159.85 \mathrm{ppm}$ (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-7.73 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 511$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{P}, 511.2418$, found 511.2397.

(R)-[6,6'-(2S,3S-butadioxy)]-2-di-(3,5-di-tert-butyl-phenyl)phosphino-2'-methoxy -(1,1')-biphenyl (7d)

90% yield, a white solid, $[\alpha]_{D}{ }^{20}-113.2 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.18(\mathrm{~s}, 18 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H}), 1.32-1.37(\mathrm{~m}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$, 3.82-3.84 (m, 2H), $6.20(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz} \mathrm{~J}=0.9 \mathrm{~Hz} 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.94-6.98 (m, 1H), $7.11(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz} \mathrm{~J}=1.2 \mathrm{~Hz} 1 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.36$ ($\mathrm{m}, 3 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.42,31.56,34.78,34.95,54.98$, 85.63, 86.67, 106.09, 113.95, 119.74, 119.81, 121.30, 121.50, 121.98, 127.07, 127.33, 127.62, 127.89, 128.40, 129.42, 130.11, 133.43, 133.84, 137.40, 137.58, 137.95, $138.11,140.33,140.53,149.22,149.29,149.77,149.85,157.02,158.67,158.79$, 160.01 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR (121.4 MHz, CDCl_{3}): $\delta-4.00 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 679$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{P}, 679.4309$, found 679.4275.

(2) The preparation of ligands $7 \mathrm{e}-7 \mathrm{~g}$:

Ligands $\mathbf{7 e - 7 g}$ were prepared according to the synthetic route in Scheme 1.

Scheme 1. Synthetic route to ligands $7 \mathrm{e}-7 \mathrm{~g}$ a) $\mathrm{Tf}_{2} \mathrm{O}$, pyridine, 90%; b) $\mathrm{Pd}(\mathrm{OAc})_{2}$, dppb, $\mathrm{EtN}(\mathrm{i}-\mathrm{Pr})_{2}, \mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}$,

DMSO, $110{ }^{\circ} \mathrm{C}, 95 \%$; c) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, 92 \%$; d) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, EtI ; or i - $\mathrm{Pr}-\mathrm{Br}, \mathrm{Bn}-\mathrm{Br}$, THF, acetone reflux; e) $\mathrm{HSiCl}_{3}, \mathrm{EtN}(\mathrm{i}-\mathrm{Pr})_{2}$, toluene, $110{ }^{\circ} \mathrm{C}$.
(R)-[6,6'-(2S,3S-butadioxy)]-2-diphenylphosphino-2'-ethoxy-(1,1')-biphenyl (7e) 92% yield, a white solid, $[\alpha]_{\mathrm{D}}{ }^{20}-141.83 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.91(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.37(\mathrm{~m}, 6 \mathrm{H}), 3.67-3.89(\mathrm{~m}, 4 \mathrm{H})$, 6.65-6.68 (m, 2H), 6.99-7.06 (m, 3H), 7.09-7.15 (m, 4H), 7.21-7.27 (m, 2H), 7.32-7.38 (m, 3H), 7.40-7.46 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.25, 19.00, 19.09, 66.36, 85.73, 86.45, 107.13, 113.67, 119.78, 119.87, 122.34, 127.42, 127.68, $127.87,127.94,128.50,129.43,130.47,132.57,132.84,133.20,133.45,134.17$, 134.61, 138.00, 138.19, 138.57, 138.75, 139.56, 139.75, 156.55, 158.70, 158.83, 160.00 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR (121.4 MHz, CDCl_{3}): $\delta-8.20 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 469$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}, 469.1925$, found 469.1927.

(R)-[6,6'-(2S,3S-butadioxy)]-2-diphenylphosphino-2'-isopropoxy-(1,1')-biphenyl (7f)

90% yield, a white solid, $[\alpha]_{\mathrm{D}}{ }^{20}-173.83 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.90(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$,
$3 H), 1.36$ (d, J = 6.0 Hz, 3H), 3.75-3.88 (m, 2H), 4.19-4.27 (m, 1H), 6.66 (d, J = 8.1 $\mathrm{Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.46(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.02, 19.12, $21.47,22.25,71.98,85.81,86.55,110.26,113.95,121.56,122.22,127.42,127.59$, $127.68,127.80,127.88,128.52,129.29,130.33,132.59,132.85,133.26,133.51$, 134.44, 134.87, 138.15, 138.34, 138.72, 138.90, 139.47, 139.66, 156.00, 158.71, 158.83, 160.19 ppm (observed complexity due to $\mathrm{P}-\mathrm{C}$ splitting). ${ }^{31} \mathrm{P}$ NMR (121.4 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-8.27 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 483 ; \mathrm{HRMS}(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}, 483.2104$, found 483.2084.

(R)-[6,6'-(2S,3S-butadioxy)]-2-diphenylphosphino-2'-beneyloxy-(1,1')-biphenyl (7g)

88% yield, a white solid, $[\alpha]_{\mathrm{D}}{ }^{20}-148.83 \quad\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.33(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.80-3.88(\mathrm{~m}, 2 \mathrm{H})$, $4.70(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.93(\mathrm{~m}$, $1 \mathrm{H})$, 7.03-7.07 (m, 2H), 7.13-7.27 (m, 16H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.03, 19.14, 70.10, 85.70, 86.48, 108.32, 114.36, 120.21, 120.29, 122.37, 126.54, 126.97, $127.55,127.65,127.74,127.85,127.97,128.70,129.46,130.07$, 132.72, 132.99, 133.11, 133.36, 133.81, 134.24, 137.34, 137.89, 138.07, 138.77, 138.88, 138.95, 139.06, 156.31, $158.74,158.87,160.08 \mathrm{ppm}$ (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-7.21 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 531$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}, 531.2090$, found 531.2084.

(3) General procedure for asymmetric Suzuki coupling

An oven-dried one-necked flask (10 mL) was charged with aryl halide ($1.0 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2 \mathrm{~mol} \%)$, ligand $7 \mathbf{a}-7 \mathrm{~g}(\mathrm{~L}: \mathrm{Pd}=1.2: 1)$, arylboronic acid (2.0 equiv), and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3 equiv) in glovebox, then 5 mL toluene was injected into the flask. The racemic products were prepared by using S-phos as the ligand and all the racemic reactions were performed at $100{ }^{\circ} \mathrm{C}$ for 24 h . For the asymmetric catalytic reaction,
the mixture was stirred vigorously at the indicated temperature $\left(20-70{ }^{\circ} \mathrm{C}\right)$ for $48-120$ h. The reaction was monitored by TLC or GC analysis. After reaction completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate and water, extracted, the combined organic layers was then dried over anhydrous MgSO_{4} and concentrated. The crude product was purified by flash chromatography on silica gel.

(R)-(+)-Diethyl 2-(1,1'-binaphthyl)phosphonate ${ }^{[2]}$ (table 2, entry 1)

The reaction was conducted for 48 h at $40{ }^{\circ} \mathrm{C}$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate(1.0 equiv), 9.1 mg $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.0 \mathrm{~mol} \% \mathrm{Pd}), 16.3 \mathrm{mg}$ ligand $7 \mathrm{~d}(4.8 \mathrm{~mol} \%), 172 \mathrm{mg}$ 1-Naphthylboric acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 122 mg the title compound as a white solid (62% yield). Ee value was determined by Chiral HPLC (AD-H column, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 10 \% i-\mathrm{PrOH}, 90 \%$ hexane, $\mathrm{T}_{\text {major }}=8.5 \mathrm{~min}^{\mathrm{minor}}=$ 10.6 min) (88% ee). $[\alpha]_{\mathrm{D}}{ }^{20}+45.8\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.74(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.54-3.83(\mathrm{~m}, 4 \mathrm{H})$, 7.08-7.25 (m, 4H), 7.40-7.45 (m, 1H), 7.49-7.55 (m, 2H), 7.57-7.62 (m, 1 H$)$, 7.90-8.04 (m, 4H), 8.19-8.26 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.47$, $15.56,15.94,16.03,61.47,61.54,61.65,61.73,124.76,125.42,125.68,126.52$, 127.32, 127.40, 127.64, 127.73, 127.82, 128.07, 128.42, 128.53, 132.95, 133.18, $134.73,135.68,135.74,143.22,143.35 \mathrm{ppm}$ (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.95 \mathrm{ppm}$. MS (EI): $[\mathrm{M}]^{+} 390.1$.

Diethyl 1-(2'-biphenyl)-2-naphthylphosphonate ${ }^{[2]}$ (table 2, entry 2)

The reaction was conducted for 48 h at $60{ }^{\circ} \mathrm{C}$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate(1.0 equiv), 9.1 mg $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.0 \mathrm{~mol} \% \mathrm{Pd}), 16.3 \mathrm{mg}$ ligand 7d ($4.8 \mathrm{~mol} \%$), 254 mg 2-Biphenylboronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 135 mg title product as a colorless oil (65% yield). Ee value was determined by Chiral HPLC (OD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 10 \% i-\mathrm{PrOH}, 90 \%$ hexane, $\mathrm{T}_{\text {minor }}=11.5 \mathrm{~min} \mathrm{~T}_{\text {major }}=12.1 \mathrm{~min}$) (79\% ee). $[\alpha]_{\mathrm{D}}{ }^{20}-10.1$ (c = $\left.2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.16 (t, $\mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.7(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.64-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.96(\mathrm{~m}$, $3 \mathrm{H}), 7.15-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.70-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.94-8.01(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.16,16.25,16.34,61.77,124.39,126.15,126.32$, $126.89,127.15,127.26,127.34,127.54,127.68,128.14,128.92,129.48,131.48$, $132.09,132.31,134.38,136.65,136.71,141.04,141.82,144.47$, 144.61 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.92$ ppm. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$417.1.

Diethyl 2-(4'-methoxy-1,1'-binaphthyl)phosphonate ${ }^{[2]}$ (table 2, entry 3)

The reaction was conducted for 120 h at $20{ }^{\circ} \mathrm{C}$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate(1.0 equiv), 9.1 mg $\mathrm{Pd}_{2}(\mathrm{dba})_{3}\left(\begin{array}{llllll}4.0 & \mathrm{~mol} \% & \mathrm{Pd}), \quad 16.3 \mathrm{mg} \text { ligand } & 7 d & (4.8 \mathrm{~mol} \%), 202 \mathrm{mg}\end{array}\right.$ 4-methoxy-1-Naphthylboric acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL
toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 202 mg title product as a colorless oil (96% yield). Ee value was determined by Chiral HPLC (OD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 5 \% i-\mathrm{PrOH}, 95 \%$ hexane, $\mathrm{T}_{\text {minor }}=$ $\left.21.9 \mathrm{~min} \mathrm{~T}_{\text {major }}=26.4 \mathrm{~min}\right)(97 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{20}+13.8\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.79(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $0.93(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.47-3.78(\mathrm{~m}$, $4 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 6.91-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.89-7.99$ $(\mathrm{m}, 2 \mathrm{H}), 8.12-8.19(\mathrm{~m}, 1 \mathrm{H}), 8.31-8.34(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $15.53,15.62,15.84,15.93,55.42,61.41,61.48,61.62,61.70,102.74,121.74,124.61$, $124.99,125.13,126.08,126.24,126.34,127.18,127.37,127.50,127.64,128.30$, $128.43,128.58$, $133.39,133.60,134.00,134.70$, $143.51,143.64,155.23 \mathrm{ppm}$ (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.27$ ppm. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$421.1.

Diethyl 2-(4'-N,N-dimethyl-1,1'-binaphthyl)phosphonate (table 2, entry 4)

The reaction was conducted for 120 h at $20 \square$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate (1.0 equiv), $9.1 \mathrm{mg} \mathrm{Pd} 2(\mathrm{dba})_{3}$ $\left(\begin{array}{lll}4.0 \mathrm{~mol} \% & \mathrm{Pd}\end{array}\right), \quad 16.3 \mathrm{mg}$ ligand $\mathbf{7 d} \quad(4.8 \mathrm{~mol} \%)$, $215 \mathrm{mg} \quad 4-$ dimethylamino-1-Naphthylboronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography gave 201 mg desired product as a colorless oil (93% yield). Ee value was determined by Chiral HPLC (OD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 10 \% i-\mathrm{PrOH}, 90 \%$ hexane, $\left.\mathrm{T}_{\text {minor }}=10.4 \mathrm{~min}^{\text {major }}=12.1 \mathrm{~min}\right)(97 \%$ ee $) .[\alpha]_{\mathrm{D}}{ }^{20}+8.3\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.79(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.00(\mathrm{~s}$, 6H), 3.44-3.79 (m, 4H), 7.05(d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16-7.25 (m, 4H), 7.39-7.53 (m, 3H), $7.91(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-8.01(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.60,15.69,15.92,16.01,45.32,61.52,61.59$,
$61.69,61.77,112.90,124.00,124.59,125.04,125.46,126.43,127.14,127.24,127.44$, $127.59,127.70,127.86,128.19,128.36,128.49,128.58$, 130.17, 130.24, 133.39, 133.60, 134.43, 134.77, 143.77, 143.90, 150.82 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR (121.4 MHz, CDCl_{3}): $\delta 19.16 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+}$434; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{NP}, 434.1880$, found 434.1913 .

Diethyl 1-(2'-methoxyphenyl)-2-naphthylphosphonate (table 2, entry 5)

The reaction was conducted for 120 h at $20 \square$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate (1.0 equiv), $9.1 \mathrm{mg} \mathrm{Pd} 2(\mathrm{dba})_{3}$ ($4.0 \mathrm{~mol} \% \mathrm{Pd}$), 16.3 mg ligand 7 d ($4.8 \mathrm{~mol} \%$), 152 mg 2-methoxyphenyl boronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 181 mg desired product as a white solid (98% yield). Ee value was determined by Chiral HPLC (OD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 10 \% i-\mathrm{PrOH}, 90 \%$ hexane, $\mathrm{T}_{\text {major }}=15.4 \mathrm{~min} \mathrm{~T}_{\text {minor }}=16.7 \mathrm{~min}$) (78% ee). $[\alpha]_{\mathrm{D}}{ }^{20}-42.0\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.19(\mathrm{t}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.81-4.00(\mathrm{~m}, 4 \mathrm{H}), 7.00-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.87-7.94(\mathrm{~m}, 2 \mathrm{H})$, 8.06-8.13 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 16.01, 16.07, 16.09, 16.16, 55.11, 61.35, 61.43, 61.48, 61.55, 109.96, 119.55, 123.58, 126.11, 126.80, 126.86, $126.98,127.05,127.31,127.54,128.13,128.27,129.19,131.85,132.41,132.62$, 134.54, 134.57, 142.10, 142.22, 157.18 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.35 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 371$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}, 371.1407$, found 371.1430.

Diethyl 1-(2'-ethoxy phenyl)-2-naphthylphosphonate (table 2, entry 6)

The reaction was conducted for 120 h at $20 \square$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate (1.0 equiv), $9.1 \mathrm{mg} \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.0 \mathrm{~mol} \% \mathrm{Pd}$), 16.3 mg ligand $7 \mathrm{~d}(4.8 \mathrm{~mol} \%), 166 \mathrm{mg}$ 2-ethoxyphenyl boronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 188 mg desired product as a colorless oil (98% yield). Ee value was determined by Chiral HPLC (AD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 10 \% i-\mathrm{PrOH}, 90 \%$ hexane, $\mathrm{T}_{\text {major }}=12.2 \mathrm{~min} \mathrm{~T}_{\text {minor }}=13.3 \mathrm{~min}$) (92\% ee). 7a $[\alpha]_{\mathrm{D}}{ }^{20}-77.0$ ($\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $1.00(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.23(\mathrm{~m}, 6 \mathrm{H}), 3.82-4.00(\mathrm{~m}, 6 \mathrm{H}), 6.97-7.00(\mathrm{~m}, 1 \mathrm{H})$, 7.02-7.07 (m, 1H), 7.25-7.25 (m, 1H), 7.33-7.45 (m, 3H), 7.50-7.56 (m, 1H), 7.86-7.93 (m, 2H), 8.07-8.13 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.88$, $16.45,16.55,16.65,61.84,61.92,62.01,63.78,111.45,119.89,123.92,126.40$, $127.23,127.42,127.59,127.70,127.95,128.63,128.76,129.58,132.36,132.89$, 133.10, 134.98, $142.87,142.99,157.00 \mathrm{ppm}$ (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.55 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 385$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{P}, 385.1563$, found 385.1582.

Diethyl 1-(2'-propoxy phenyl)-2-naphthylphosphonate (table 2, entry 7)

The reaction was conducted for 120 h at $20 \square$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate (1.0 equiv), $9.1 \mathrm{mg} \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.0 \mathrm{~mol} \% \mathrm{Pd}$), 16.3 mg ligand 7 d ($4.8 \mathrm{~mol} \%$), 180 mg 2-propoxyphenyl boronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The
product was purified by flash chromatography to give 185 mg desired product as a colorless oil (93% yield). Ee value was determined by Chiral HPLC (AD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 5 \% i-\mathrm{PrOH}, 95 \%$ hexane, $\mathrm{T}_{\text {major }}=20.4 \mathrm{~min}, \mathrm{~T}_{\text {minor }}=21.7 \mathrm{~min}$) (92% ee). $[\alpha]_{\mathrm{D}}{ }^{20}-105.7$ (c $=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.46(\mathrm{t}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.99(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{dt}, \mathrm{J}=6.3$ $\mathrm{Hz}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.93(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.14(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 10.11,16.03,16.13,16.17,16.26,22.26,61.54,61.62,61.70,69.29,110.89$, $119.50,123.21,125.70,126.02,126.84,127.03,127.14,127.25,127.34,127.53$, 127.91, 128.06, 128.24, 128.38, 128.52, 128.71, 129.22, 131.85, 132.50, 132.71, 134.56, $142.51,142.63,156.72 \mathrm{ppm}$ (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.72 \mathrm{ppm} . \mathrm{MS}(\mathrm{ESI}):[\mathrm{M}+\mathrm{H}]^{+}$399; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}, 339.1720$, found 339.1720.

Diethyl 1-(2'-isopropoxy phenyl)-2-naphthylphosphonate (table 2, entry 8)

The reaction was conducted for 120 h at $20 \square$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate (1.0 equiv), $9.1 \mathrm{mg} \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.0 \mathrm{~mol} \% \mathrm{Pd}$), 16.3 mg ligand $7 \mathrm{~d}(4.8 \mathrm{~mol} \%), 180 \mathrm{mg} 2$-isopropoxyphenyl boronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 183 mg desired product as a colorless oil (92% yield). Ee value was determined by Chiral HPLC (AD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 5 \% i-\mathrm{PrOH}, 95 \%$ hexane, $\mathrm{T}_{\text {major }}=20.4 \mathrm{~min} \mathrm{~T}_{\text {minor }}=24.0 \mathrm{~min}$) (93% ee). $[\alpha]_{\mathrm{D}}{ }^{20}-89.5\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.94$ $(\mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 3.79-4.01(\mathrm{~m}$, 4H), 4.40-4.48 (m, 1H), $6.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}$ J = 1.2 Hz 1 H$)$, 7.24-7.27 (m, 1H), 7.32-7.43 (m, 3H), 7.50-7.55 (m, 1H), 7.86-7.92 (m, 2H),
8.07-8.14 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.45,16.55,16.58,16.68$, $21.92,22.60,61.85,61.97,62.05,70.10,112.58,119.75,123.78,126.23,127.16$, $127.35,127.70,127.89,128.29,128.36,128.73,128.86,129.44,132,56,132.79$, 133.00, 134.94, 143.06, 143.18, 156.08 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR (121.4 MHz, CDCl_{3}): $\delta 19.79 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 399$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}, 339.1698$, found 339.1696 .

Diethyl 1-(2',3'-dimethoxyphenyl)-2-naphthylphosphonate (table 2, entry 9)

The reaction was conducted for 120 h at $20 \square$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate (1.0 equiv), $9.1 \mathrm{mg} \mathrm{Pd} \mathrm{P}_{2}(\mathrm{dba})_{3}$ ($4.0 \mathrm{~mol} \% \mathrm{Pd}$), 16.3 mg ligand 7 a or 7d ($4.8 \mathrm{~mol} \%$), 182 mg 2,3-dimethoxyphenyl boronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 190 mg desired product as a colorless oil (95% yield). Ee value was determined by Chiral HPLC (OD-H column, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 10 \% i-\mathrm{PrOH}, 90 \%$ hexane, $\mathrm{T}_{\text {minor }}=12.5 \mathrm{~min}$ $\left.\mathrm{T}_{\text {major }}=14.1 \mathrm{~min}\right)(78 \%$ ee $) .7 \mathrm{a}[\alpha]_{\mathrm{D}}{ }^{20}-57.5\left(\mathrm{c}=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ; 7 \mathrm{~d}[\alpha]_{\mathrm{D}}{ }^{20}-39.5(\mathrm{c}$ $\left.=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.21(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.96-4.03(\mathrm{~m}, 3 \mathrm{H}), 6.87$ $(\mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.56(\mathrm{~m}),, 7.87-7.94(\mathrm{~m}, 2 \mathrm{H}), 8.53(\mathrm{dd}$, $\mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.82,15.91,15.96,16.04$, $55.47,59.81,61.36,61.44,61.50,61.56,112.14,122.48,123.49,125.91,126.04$, 126.87, 127.06, 127.11, 127.30, 127.37, 127.66, 127.79, 132.05, 132.12, 132.24, $132.45,134.31,134.35,141.71,141.84,146.77,151.87 \mathrm{ppm}$ (observed complexity due to $\mathrm{P}-\mathrm{C}$ splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.95 \mathrm{ppm}$. MS (ESI):
$[\mathrm{M}+\mathrm{H}]^{+} 401$; $\mathrm{HRMS}(\mathrm{ESI})[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}, 401.1512$, found 401.1551 .

Diethyl 1-(2'-chlorophenyl)-2-naphthylphosphonate (table 2, entry 10)

The reaction was conducted for 72 h at $50 \square$ according to the general procedure using 171 mg diethyl 1-bromo-2-naphthylphosphonate (1.0 equiv), $9.1 \mathrm{mg} \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($4.0 \mathrm{~mol} \% \mathrm{Pd}$), 16.3 mg ligand $7 \mathbf{7 d}(4.8 \mathrm{~mol} \%), 156 \mathrm{mg} 2$-chlorophenyl boronic acid (2.0 equiv), $318 \mathrm{mg} \mathrm{K} \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) and 5 mL toluene on a 0.5 mmol scale. The product was purified by flash chromatography to give 121 mg the title compound as a colorless oil (65% yield). Ee value was determined by chiral HPLC (OD-H column, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 10 \% i-\mathrm{PrOH}, 90 \%$ hexane, $\mathrm{T}_{\text {minor }}=12.2 \mathrm{~min} \mathrm{~T}_{\text {major }}=15.3 \mathrm{~min}$) (90% ee). $[\alpha]_{\mathrm{D}}{ }^{20}-69.8$ (c $=2.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.18-1.25 (m, 6H), 3.81-4.05 (m, 4H), 7.26-7.32 (m, 1H), 7.36-7.45 (m, 4H), 7.50-7.59 (m, 2H), 7.90-7.99 (m, 2H), 8.06-8.14 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 15.92,16.00,16.09,61.50,61.58,61.87,61.94,123.54,125.61,126.03$, $126.42,126.60,127.55,127.71,127.91,128.51,129.05,131.66,131.86,132.22$, 134.27, 134.53, 136.77, 136.84, 141.80, 141.92 ppm (observed complexity due to P-C splitting). ${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.54 \mathrm{ppm}$. MS (ESI): $[\mathrm{M}+\mathrm{H}]^{+} 375$; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$: calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{PCl}, 375.0911$, found 375.0929.

Referance

[1] Lindsten, G.; Wennerström, O.; Isaksson, R. J. Org. Chem., 1987, 52, 547.
[2] Based on a literature procedure with slight modification: Yin, J.; Buchwald, S. L. J. Am. Chem. Soc., 2000, 122, 12051.

X-ray data of ligand 7a

Table 1. Crystal data and structure refinement for Identification code

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=27.48^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

ZSUQLQ12 (21 July 2011).
qlq12
$\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$
454.48

296(2) K
$0.71073 \AA$
Orthorhombic
P2(1)2(1)2(1)
$a=8.0559(3) \AA \quad \square=90^{\circ}$.
$\mathrm{b}=14.2981(5) \AA \quad \square=90^{\circ}$.
$c=21.0979(7) \AA \quad \square=90^{\circ}$.
2430.14(15) \AA^{3}

4
$1.242 \mathrm{Mg} / \mathrm{m}^{3}$
$0.141 \mathrm{~mm}^{-1}$
960
$0.42 \times 0.38 \times 0.32 \mathrm{~mm}^{3}$
1.72 to 27.48°.
$-10<=\mathrm{h}<=10,-18<=\mathrm{k}<=18,-27<=\mathrm{l}<=27$
31203
$5565[\mathrm{R}(\mathrm{int})=0.0848]$
99.7 \%

Semi-empirical from equivalents
0.7456 and 0.6116

Full-matrix least-squares on F^{2}
5565 / 0 / 298
1.001
$R 1=0.0499, w R 2=0.0992$
$R 1=0.0859, \omega R 2=0.1139$
-0.03(11)
0.202 and $-0.207 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for qlq12. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
$\mathrm{P}(1)$	5333(1)	6238(1)	7878(1)	40(1)
$\mathrm{O}(1)$	3537(2)	5564(1)	5851(1)	45(1)
$\mathrm{O}(2)$	4657(2)	7342(1)	5554(1)	46(1)
$\mathrm{O}(3)$	8226(2)	6667(1)	6962(1)	52(1)
C(1)	5177(3)	5433(2)	6040(1)	44(1)
C(2)	6015(4)	4636(2)	5848(2)	64(1)
C(3)	7635(4)	4518(2)	6051(2)	76(1)
C(4)	8412(4)	5175(2)	6422(1)	61(1)
C(5)	7561(3)	5958(2)	6611(1)	42(1)
C(6)	5890(3)	6081(2)	6440(1)	37(1)
C(7)	4945(3)	6921(2)	6645(1)	35(1)
C(8)	4319(3)	7523(2)	6185(1)	41(1)
C(9)	3475(3)	8325(2)	6350(1)	50(1)
C(10)	3230(3)	8532(2)	6985(1)	52(1)
C(11)	3790(3)	7929(2)	7446(1)	46(1)
C(12)	4649(3)	7110(2)	7286(1)	38(1)
C(13)	3346(3)	5898(2)	5207(1)	49(1)
C(14)	3311(3)	6954(2)	5181(1)	47(1)
C(15)	1719(4)	5478(2)	4956(2)	68(1)
C(16)	3554(4)	7319(2)	4516(1)	65(1)
C(17)	9951(4)	6634(2)	7108(2)	77(1)
C(18)	3325(3)	5875(2)	8213(1)	44(1)
C(19)	2769(4)	4988(2)	8041(1)	59(1)
C(20)	1249(5)	4657(2)	8254(2)	76(1)
C(21)	280(4)	5202(3)	8638(2)	79(1)
C(22)	810(4)	6068(3)	8816(2)	70(1)
C(23)	2329(3)	6405(2)	8610(1)	55(1)
C(24)	6204(3)	6973(2)	8507(1)	42(1)
C(25)	6208(4)	6663(2)	9128(1)	59(1)
C(26)	7033(4)	7147(3)	9599(1)	78(1)
C(27)	7846(5)	7953(3)	9461(2)	79(1)
C(28)	7870(4)	8279(2)	8856(2)	76(1)
C(29)	7062(4)	7789(2)	8373(2)	59(1)

Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and chiral HPLC Spectra for all products
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d_{6}$-DMSO) of 3

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, d_{6}$-DMSO) of $\mathbf{3}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 5

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of $\mathbf{6 a}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{7 a}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 a}$

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of 7a

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 d}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 d}$

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of $\mathbf{6 d}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 d}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $7 \mathbf{d}$

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of 7d

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{7 e}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7e

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of 7e

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 f}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $7 \mathbf{f}$

${ }^{31} \mathrm{P}$ NMR (121.4 MHz, $\left.\mathrm{CDCl}_{3}\right)$ of $\mathbf{7 f}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 g}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{7 g}$

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of $\mathbf{7 g}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product $\mathbf{1}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 1

${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product $\mathbf{1}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 2

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 2

${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 2

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3

${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 4

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 4

${ }^{31} \mathrm{P}$ NMR $\left(121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 4

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 5

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 5

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of product 5

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 6

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 6

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of product 6

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 7

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 7

${ }^{31} \mathrm{P}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 7

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{8}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product $\mathbf{8}$

${ }^{31}$ P NMR (121.4 MHz, CDCl_{3}) of product $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 9

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 9

${ }^{31} \mathrm{P}$ NMR (121.4 MHz, CDCl_{3}) of product 9

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product $\mathbf{1 0}$

${ }^{31} \mathrm{P}$ NMR (121.4 MHz, CDCl_{3}) of product 10

HPLC spectra.

The top one is racemic, the bottom one is the sample catalyzed by $\mathbf{7 d}$.
Conditions: column, AD-H, n-hexane : isopropanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}$

信号 1：DAD1 B，Sig $=220,8 \operatorname{Ref}=360,100$

峰	保留时间 ［min］	类型	峰宽 [min]	$\begin{aligned} & \text { 峰面积 } \\ & {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{aligned}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	$\begin{gathered} \text { 峰而积 } \\ \text { \% } \end{gathered}$
1	8.561		0.1914	3266.39624	265.82068	49.8705
2	10.986	VB	0.2581	3283.35986	197.30727	50.1295
总星	：			6549.75610	463.12794	

信号 1：DAD1 D，Sig＝220，16 $\operatorname{Ref}=360,100$

峰 $\#$	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
	8.765		0.1937	7856.33838	624.6842	3.7472
	11.046		0.2648	524.00439	30.14	6． 2528

The top one is racemic，the bottom one is the sample catalyzed by $\mathbf{7 d}$ ．
Conditions：column，OD－H，n－hexane ：isopropanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}$

面积百分比报告

总量 ：$\quad 2.50167 e 4 \quad 1253.08887$

The top one is racemic，the bottom one is the sample catalyzed by $\mathbf{7 d}$ ．
Conditions：column，OD－H，n－hexane ：isopropanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}$
面积百分比报告

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
\＃	［min］		［min］	［mAU＊s］	［mAU］	\％
1	21.880	BB	0.6502	$3.26266 e 4$	761.02710	49.8291
2	26.363	BB	0.7605	3.28504 e 4	659.06409	50.1709
总量				6.54770 e 4	1420.09119	

DAD1 A，Sig＝210，16 Ref＝360，100（MIAOTINGIGUO 2012－03－10 13－10－591001－0101．D）

面积百分比报台
排序
：信号
乘积因子：： 1.0000
稀释因子：
.$\quad 1.0000$
内标使用乘积因子和稀释因子
信号 1：DAD1 A，Sig＝210，16 Ref＝360，100

峰 \＃	保留时问 ［min］	类型	峰宽 ${ }_{\text {［ }}^{\text {cin］}}$	峰面积 $[m A U * s]$	$\begin{gathered} \text { 峰高 } \\ \text { [mAU] } \end{gathered}$	峰面积 \％
1	19.958	BV	0.4840	705.60571	20.02951	1.5158
2	25.687	BB	0.8407	4.58459 e 4	848.05408	98.4842
总量	：			$4.65515 e 4$	868.08359	

The top one is racemic, the bottom one is the sample catalyzed by $\mathbf{7 d}$. Conditions: column, OD-H, n-hexane : isopropanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}$

面积百分比报告
－

The top one is racemic，the bottom one is the sample catalyzed by $\mathbf{7 d}$ ．
Conditions：column，OD－H，n－hexane ：isopropanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}$

面积百分比报告

排序	信号	
乘积因子：	：	1.0000
稀释因子：	：	1.0000

内标使用乘积因子和稀释因子
信号 1：DAD1 B，Sig＝220，8 $\operatorname{Ref}=360,100$

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
\＃	［min］		［min］	［mAU＊s］	［mAU］	－
1	16.557		0.2747	2.80259 e 4	1566.43872	88.9090
2	17.914	VB	0.2962	3496.10718	180.33018	11.0910

The top one is racemic，the bottom one is the sample catalyzed by $\mathbf{7 d}$ ． Conditions：column，AD－H，n－hexane ：isopropanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}$

\footnotetext{

内标使用乘积因子和稀释因子

峰 \#	$\begin{gathered} \text { 保留时间 } \\ {[\mathrm{min}]} \end{gathered}$	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	112.151		0.2469	7630.65820	486.79492	49.9247
	213.290	VB	0.2470	7653.67041	482.53772	50.0753
总量				1.52843 e 4	969.33264	

面积百分比报告

排序	$:$	信号	
乘积因子：	$:$	1.0000	
稀释因子：		：	1.0000

稀释因子：

信号 1：DAD1 B，Sig $=220,8$ Ref $=360,100$

峰	保留时间 ［min］	类型	峰宽 ［min］	$\begin{gathered} \text { 峰面积 } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { 峰高 } \\ & \text { [mAU] } \end{aligned}$	峰面积 응
	13.873	BB	0.2388	8790.99609	555.06305	95.7227
	15.102	BB	0.2558	392.81958	23.89570	4.2773

The top one is racemic, the bottom one is the sample catalyzed by $\mathbf{7 d}$. Conditions: column, AD-H, n -hexane : isopropanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}$

DAD1 B，Sig＝220，8 Ref＝360，100（LIJINJIN）配．．．－O－NPR－3，5－DITBU－BU－PH－CLEAR 2011－12－16 18－38－191001－0101

面积百分比报告

非序	$:$	信号	
乘积因子：	：	1.0000	
稀秚因子：		1.0000	

内标使用乘积因子和稀释因子
信号 1：DAD1 B，Sig＝220，8 $\operatorname{Ref}=360,100$

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积 $[\mathrm{mAU} * \mathrm{~s}]$	$\begin{gathered} \text { 峰高 } \\ {[\mathrm{mAU}]} \end{gathered}$	峰面积 \％
1	20.370		0.4639	3.33438 e 4	1099.07324	95.8565
	21.706		0.4634	1441.30823	46.79234	4.1435

The top one is racemic, the bottom one is the sample catalyzed by $\mathbf{7 d}$. Conditions: column, AD-H, n-hexane : isopropanol $=95: 5,0.5 \mathrm{~mL} / \mathrm{min}$

The top one is racemic, the bottom one is the sample catalyzed by $\mathbf{7 d}$.
Conditions: column, OD-H, n-hexane : isopropanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}$

排序 ：信号
－
内标使用乘积因子和稀释因子

信号 1：DAD1 B，Sig＝220，8 $\operatorname{Ref}=360,100$

The top one is racemic, the bottom one is the sample catalyzed by $\mathbf{7 d}$. Conditions: column, OD-H, n-hexane : isopropanol $=90: 10,0.5 \mathrm{~mL} / \mathrm{min}$

DAD1 D, Sig=220,16 Ref=360,100 (MIAOTINGIWANGYANGJIGAIBIANIGUO 2012-03-10 10-34-001001-0101.D)

