Supporting Information:

Sml_{2}-Mediated Coupling of Nitrones and tert-Butanesulfinyl Imines with Allenoates: Synthesis of β-Methylenyl- γ-Lactams and Tetramic Acids

Chu-Pei Xu, ${ }^{[a],[b]}$ Pei-Qiang Huang* ${ }^{[b]}$ and Sandrine Py ${ }^{*[a]}$${ }^{a}$ Département de Chimie Moléculaire (SERCO) UMR 5250, ICMG FR-2607, CNRS-Université Joseph Fourier, BP 53,38041 Grenoble Cedex 09, France
${ }^{b}$ Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
1- General experimental methods S2
2- Preparation of 0.1 M solution of SmI_{2} in THF S2
3- Typical experimental procedures S3-S6
4- Preparation and characterization of new compounds S7-S16
5- Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds S16-S68

1- General experimental methods

All reactions were performed under an atmosphere of dry argon in flame dried glassware equipped with a magnetic stir bar. Schlenk tube technique was used for SmI_{2}-mediated reactions. THF was distilled from sodium/benzophenone, DMF from CaH_{2}. THF, HFIP, t - BuOH and $\mathrm{H}_{2} \mathrm{O}$ used in $\mathrm{SmI}_{2}-$ mediated reactions were degassed by freeze and thaw method. Reactions were monitored by thin layer chromatography (TLC) using commercial aluminum-backed silica gel plates (Merck Kiesegel $60 \mathrm{PF}_{254}$). TLC spots were viewed under UV light at 254 nm and by heating the plate after treatment with a staining agent $\left(\mathrm{KMnO}_{4}\right.$ or triphenyl tetrazolium chloride). Product purification by gravity column chromatography was performed using Merck Silica Gel 60 ($70-230$ mesh). Infrared spectra were obtained on a Nicolet Avatar 330 FT-IR spectrometer (spectrometer A) using KBr pellets or on a Nicolet 'Magna 550' spectrometer (spectrometer B) using an ATR (Attenuated Total Reflexion) module. The data are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, chemical shifts for ${ }^{1} \mathrm{H}$ spectra are values from tetramethylsilane in CDCl_{3} (δ 0.00), chemical shifts for ${ }^{13} \mathrm{C}$ spectra are values from $\mathrm{CDCl}_{3}(\delta 77.16)$. ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (ppm), multiplicity (br: boad; s: singlet; d: doublet; t: triplet; q: quadruplet; m : multiplet, app t : apparent triplet), integration and coupling constants (Hz). Low resolution mass spectra (LRMS) were recorded on a Bruker Esquire 3000+ spectrometer. High resolution mass spectra (HRMS) were recorded on a Thermoquest Orbitrap spectrometer. Optical rotations were determined with a Perkin-Elmer 341 polarimeter. Melting points were measured using a Yanaco MP500 micro melting point apparatus and were not corrected.

2- Preparation of $0.1 \mathbf{M}$ solution of SmI_{2} in THF

Distilled and degassed THF (50 mL) was added to samarium metal (4 g) under inert atmosphere. The resulting suspension was cooled down to $0{ }^{\circ} \mathrm{C}$ then sublimated iodine (5 g) was added. The temperature was allowed to reach room temperature and distilled and degassed THF (150 mL) was added. The suspension was stirred at room temperature until the appearance of typical blue color.

3- Typical experimental procedures

3.1 Screening of conditions for cross coupling of nitrone 1a and allenoate 3a

According to the conditions previously described for the reductive coupling of nitrones with acrylic esters, nitrone 1a and allenoate 3a (1.4 equiv) were first treated with 3 equiv SmI_{2} in the presence of degased water, at $-78{ }^{\circ} \mathrm{C} .{ }^{1}$ Under these conditions, the expected N-hydroxyamine $4 \mathbf{4 a}$ was formed (30%), nitrone 1a was recovered (44%) along with a major side-product ($\mathbf{6 a}$), resulting from the reduction of allenoate 3a by SmI_{2} (see Table, entry 1). Performing the reaction at $-40{ }^{\circ} \mathrm{C}$ did not induce any significant change in the distribution of the products (see Table, entry 2).
In light of the work of Ellman, ${ }^{2}$ who observed that both lithium bromide and water should be used as additives for achieving high yields and good diastereoselectivities in the SmI_{2}-mediated reductive coupling of methyl methacrylate with a N-tert-butanesulfinyl imine, we next introduced 12 equivalents of this salt in the reaction mixture (see Table, entry 3). The yield of 4aa being increased (to 50%) in the presence of LiBr , further optimizations were performed in its presence.

The effect of different proton sources on the cross coupling of nitrone $\mathbf{1 a}$ with allenoate $\mathbf{3 a}$ was next investigated. When water was replaced by hexafluoroisopropanol, ${ }^{3}$ a non-coordinating proton source, the yield in 4aa was significantly improved (see Table, entries 4, 5). Tert-butanol, a less expensive, and also non-coordinating additive, proved to have a similar effect (see table, entry 6).
The competitive conjugate reduction of allenoate 3a by SmI_{2}, being the major side reaction hampering the isolation of the desired products in high yields, it was thus decided to introduce the starting allenoate 3a and SmI_{2}, in several sequential portions (see Table, entries 5-7). When 1.4 equiv of allenoate and the nitrone were reacted first in the presence of 3.5 equiv of tert-butanol, 12 equiv of LiBr and 3 equiv of SmI_{2}, followed by addition of 0.6 equiv of allenoate and 1 equiv of SmI_{2}, then another 0.5 equiv of allenoate and 0.5 equiv of SmI_{2}, the desired product 4 aa was obtained in 80% yield (see Table, entry 7). Progressive introduction of the allenoate by using a syringe-pump did not allow to isolate $\mathbf{4 a a}$ in a better yield (see Table, entry 8).

[^0]Table. Screening of conditions for the SmI_{2}-mediated cross-coupling reaction of $\mathbf{1 a}$ and $\mathbf{3 a}$

 1a		 3a	$\xrightarrow[\substack{\text { additives } \\ \mathrm{T}\left({ }^{\circ} \mathrm{C}\right) \\ \mathrm{t}(\mathrm{~h})}]{\mathrm{Sml}_{2}}$		+	 6a	
entry	3a (equiv)	$\mathbf{S m I}_{2}$ (equiv)	additives (equiv)	T (${ }^{\circ} \mathrm{C}$)	t (h)	4aa (\%)	$6 \mathrm{a}^{\mathrm{e}}$ (\%)
$1^{\text {a }}$	1.4	3	$\mathrm{H}_{2} \mathrm{O}$ (8)	-78 to rt	2	30	86
$2^{\text {b }}$	1.4	3.5	$\mathrm{H}_{2} \mathrm{O}$ (8)	-40	16.5	30	82
$3{ }^{\text {b }}$	1.4	3.5	$\mathrm{H}_{2} \mathrm{O}$ (8) $\mathrm{LiBr}(12)$	-40	1	49	50
$4^{\text {b }}$	1.4	3	HFIP (3) $\mathrm{LiBr}(12)$	-40	0.2	60	51
$5^{\text {c }}$	2	4	HFIP (3) $\mathrm{LiBr}(12)$	-40	0.5	65	123
$6^{\text {c }}$	2	3.5	t - BuOH (3) $\mathrm{LiBr}(12)$	-40	2.5	75	94
$7^{\text {c }}$	2.5	4.5	t - $\mathrm{BuOH}(3.5) \mathrm{LiBr}(12)$	-40	3	80	164
8	$1+1^{\text {d }}$	4	t - $\mathrm{BuOH}(3.5) \mathrm{LiBr}(12)$	-40	1.3	60	93

[^1]
3.2 Typical procedure for the optimized cross coupling of nitrones and allenoates (cf. Table, entry 7): conditions A

(Z)- N-(2-methylpropylidene)-1-phenylmethanamine- N-oxide $\mathbf{1 a}^{4}$ ($30.7 \mathrm{mg}, 0.17 \mathrm{mmol}$) and LiBr $(180 \mathrm{mg}, 2.1 \mathrm{mmol})$ was dissolved in THF (2 mL) under Ar, and the distilled t - $\mathrm{BuOH}(57 \mu \mathrm{~L}, 0.60$ mmol) was added, then the solution was cooled to $-40^{\circ} \mathrm{C}$. Then a solution of allenoate $3 \mathrm{a}^{5}(42.1 \mathrm{mg}$, 0.24 mmol) in THF (2.2 mL) was added slowly at $-40{ }^{\circ} \mathrm{C}$. Thereafter SmI_{2} (3 equiv 5.2 mL) was added slowly (in 1.5 min). 30 min later, TLC showed no more starting allene. Then $\mathbf{3 a}(18.1 \mathrm{mg}, 0.10$ mmol) in THF (1.0 mL) was added slowly at $-40^{\circ} \mathrm{C}$. The solution turned yellow, then another 1 equiv $\mathrm{SmI}_{2}(1.8 \mathrm{~mL})$ was added. 30 min later, TLC showed the allene was consumed, and the nitrone was more dilute. Then 0.5 equiv allene in THF $(0.8 \mathrm{~mL})$ was added, followed by the addition of 0.5 equiv $\mathrm{SmI}_{2}(0.9 \mathrm{~mL}) .1 .2 \mathrm{~h}$ later, the saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added. Then the mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Purification by column chromatography

[^2]on silica gel (EtOAC/Pentane $3 / 97 \rightarrow$ EtOAc/Pentane $1 / 6 \rightarrow$ DCM/MeOH 95/5) gave a colorless oil 4aa ($49 \mathrm{mg}, 80 \%$), the recovered $\mathbf{1 a}(4.8 \mathrm{mg}, 16 \%)$ and $\mathbf{6 a}{ }^{6}(50 \mathrm{mg})$.

3.3 Typical procedure for the optimized cross coupling of t-BS-imines and allenoates: conditions B

(E)-2-Methyl- N-(2-methylpropylidene)propane-2-sulfinamide 2a ${ }^{7}$ ($80 \mathrm{mg}, 0.46 \mathrm{mmol}$) and LiBr (476 $\mathrm{mg}, 5.48 \mathrm{mmol})$ were dissolved in THF (2 mL) under Ar , then the solution was cooled to $-40{ }^{\circ} \mathrm{C}$. Then allenoate $3 \mathrm{a}^{5}(198.8 \mathrm{mg}, 1.14 \mathrm{mmol})$ in THF (2.2 mL) was added at $-40{ }^{\circ} \mathrm{C}$, followed by the addition of t - $\mathrm{BuOH}\left(152.0 \mu \mathrm{~L}, 1.60 \mathrm{mmol}\right.$). Thereafter SmI_{2} (3 equiv 13.7 mL) was added dropwise. 30 min later, allenoate 3a($47.7 \mathrm{mg}, 0.27 \mathrm{mmol}$) in THF (1.0 mL) was added slowly at $-40{ }^{\circ} \mathrm{C}$. Then another 1 equiv $\operatorname{SmI}_{2}(4.6 \mathrm{~mL})$ was added. 30 min later, 0.5 equiv allenoate 3a in THF (0.8 mL) was added, followed by the addition of 0.5 equiv $\mathrm{SmI}_{2}(2.3 \mathrm{~mL}) .3 \mathrm{~h}$ later, the saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added. Then the mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification by column chromatography on silica gel (EtOAC/Hexane $1 / 30 \rightarrow 1 / 6 \rightarrow 2 / 3$) gave a yellow oil 11a $(136.5 \mathrm{mg}, 85 \%, \mathrm{dr}=5: 1)$. The diasterereomers could not be separated at this stage.

3.4 Typical procedure for cyclisation of N -hydroxyamino esters 4 into lactams 5

To a mixture of $\mathbf{4 a a}(35 \mathrm{mg}, 0.1 \mathrm{mmol})$ and zinc dust ($77 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added glacial acetic acid (2 mL). The solution was heated to $80^{\circ} \mathrm{C}$ and treated with ultrasonic. 1 h later, TLC showed 4aa was consumed. Then, 15 mL of saturated NaHCO_{3} was added to the solution carefully, and the NaHCO_{3} powder was added till the bubble ceased. The mixture was extracted with EtOAc (3×15 mL). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Purification by column chromatography on silica gel (EtOAC/Pentane $1 / 4 \rightarrow$ EtOAc/Pentane $1 / 1$) gave a colorless oil $\mathbf{5 a}$ ($22.6 \mathrm{mg}, 99 \%$).

[^3]
4. Preparation and characterization of new compounds

Benzyl 4-(benzyl(hydroxy)amino)-5-methyl-3-methylenehexanoate (4aa)

4aa
Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 a}^{4}$ and allenoate $\mathbf{3 a}^{5}$ compound $\mathbf{4} \mathbf{a}$ a was obtained in 80% yield, as a colorless oil, accompanied by the recovered $\mathbf{1 a}(16 \%)$. IR (neat, spectrometer B) $v_{\max }: 3478,3063,3031,2958,2933,2870,1733,1641,1603,1496,1454,1423,1375$, $1328,1268,1214,1150,1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.45-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{brs}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.05(\mathrm{~m}$, $1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.7$, $139.1,138.8,135.9,129.0,128.5,128.3,128.2,128.1,126.9,119.4,78.0,66.4,61.1,39.7,27.9,20.6$, 19.3 ppm ; MS (ESI) $m / z: 354\left[(\mathrm{M}+\mathrm{H})^{+}\right], 376\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3}\right]^{+}$: 354.20637; Found: 354.20673.

Benzyl 4-(benzyl(hydroxy)amino)-3-methylenepentanoate (4ba)

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 b}^{8}$ and allenoate $\mathbf{3 a}^{5}$ compound $\mathbf{4} \mathbf{b a}$ was obtained in 68% yield as a colorless oil, accompanied by the recovered 1b (31\%). IR (neat, spectrometer B) $v_{\max }: 3449,3088,3063,3031,2974,2939,2876,1733,1647,1600,1496,1454,1375$, 1328, 1261, 1211, $1150 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.39-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.12$ $(\mathrm{s}, 1 \mathrm{H}), 5.06-5.10(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{q}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.7,143.4,138.5,135.7,129.0,128.5,128.3,128.2,128.1,127.0,116.9,66.7$,

[^4]$65.8,60.0,39.7,12.4 \mathrm{ppm}$; MS (ESI) $m / z: 326\left[(\mathrm{M}+\mathrm{H})^{+}\right], 348\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 348.15701$; Found: 348.15701 .

Benzyl 4-(benzyl(hydroxy)amino)-3-methylenehexanoate (4ca)

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1} \mathbf{c}^{9}$ and allenoate $\mathbf{3 a}{ }^{5}$ compound $\mathbf{4 c a}$ was obtained in 74% yield as a colorless oil, accompanied by the recovered 1c (23%). IR (neat, spectrometer B) $v_{\max }: 3460(\mathrm{br}), 3087,3065,3033,2966,2935,2877,2838,1733,1647,1605,1497$, $1454,1378,1331,1268,1213,1148,1029,1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8: 7.45-7.18 (m, $10 \mathrm{H}), 5.18(\mathrm{brs}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=$ $15.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.60(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.3,140.4,138.6,135.7,129.1,128.5,128.3,128.2,128.1$, $126.9,118.5,74.6,66.7,60.4,38.1,21.3,10.9 \mathrm{ppm}$; MS (ESI) m/z: $340\left[(\mathrm{M}+\mathrm{H})^{+}\right], 362\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, $322\left[\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}\right]^{+}: 340.19072$; Found: 340.19090.

Benzyl 4-(benzyl(hydroxy)amino)-6-methyl-3-methyleneheptanoate (4da)

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 d}^{4}$ and allenoate $\mathbf{3 a}^{5}$ compound $\mathbf{4} \mathbf{d a}$ was obtained in 71% yield as a colorless oil, accompanied by the recovered 1d (29\%). IR (neat, spectrometer B) $v_{\max }: 3459,3088,3063,3028,2952,2866,1730,1496,1451,1382,1366,1328,1258$, $1214,1148,1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.44-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.45(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.4,140.7,138.4,135.7,129.1,128.5,128.3,128.2$, 128.1, 127.0, 118.6, 70.7, 66.7, 60.2, 38.4, 37.2, 25.1, 23.8, 21.7 ppm ; MS (ESI) m/z: 368.2

[^5]$\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, $390.1\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}$: 390.20396; Found: 390.20416.

Benzyl 3-((benzyl(hydroxy)amino)(cyclohexyl)methyl)but-3-enoate (4ea)

4ea
Following the typical procedure A (see 3.2), from nitrone $\mathbf{1} \mathbf{e}^{8}$ and allenoate $\mathbf{3 a}{ }^{5}$ compound $\mathbf{3 e a}$ was obtained in 62% yield as a colorless oil, accompanied by the recovered $\mathbf{1 e}(31 \%)$. IR (neat, spectrometer B) $v_{\text {max }}: 3477,3085,3063,3031,2920,2851,1730,1635,1492,1451,1375,1331,1214$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.25(\mathrm{brs}, 1 \mathrm{H}), 5.13(\mathrm{brs}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H})$, $4.57(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.34-0.74(\mathrm{~m}, 6 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.7,139.0,138.8,135.9,128.9,128.5,128.2,128.1,128.1$, $126.9,119.4,76.8,66.4,61.0,39.7,37.4,31.0,29.9,26.7,26.3,26.3 \mathrm{ppm}$; MS (ESI) m/z: 394 $\left[(\mathrm{M}+\mathrm{H})^{+}\right], 416\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m/z) calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}$: 416.21962; Found: 416.21937 .

Benzyl 3-((benzyl(hydroxy)amino)(cyclopropyl)methyl)but-3-enoate (4fa)

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1} \mathbf{f}^{10}$ and allenoate $\mathbf{3 a}{ }^{5}$ compound $\mathbf{4 f a}$ was obtained in 56% yield as a colorless oil, accompanied by the recovered $\mathbf{1 f}$ (43%). IR (neat, spectrometer B) $v_{\max }: 3449,3063,3028,3003,2955,2885,2841,1720,1647,1603,1496,1454,1375$, 1334, 1280, 1261, 1214, 1150, $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) §: 7.48-7.17 (m, 10H), 5.42 (brs, 1H), $5.26(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.00(\mathrm{~m}, 1 \mathrm{H})$, $0.84-0.70(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.51(\mathrm{~m}, 1 \mathrm{H}), 0.51-0.38(\mathrm{~m}, 1 \mathrm{H}), 0.16-0.02(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$

[^6]$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.1,142.1,139.1,135.6,128.8,128.5,128.3,128.1,126.8,118.2,77.9,66.8,60.1$, 39.2, 10.1, 7.8. 2.5 ppm ; MS (ESI) $m / z: 352\left[(\mathrm{M}+\mathrm{H})^{+}\right], 374\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for [$\left.\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}$: 374.17266; Found: 374.17290.

Benzyl 4-(benzyl(hydroxy)amino)-5,5-dimethyl-3-methylenehexanoate (4ga)

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 g}^{8}$ and allenoate $\mathbf{3 a}^{5}$ compound $\mathbf{4 g a}$ was obtained in 44% yield as a colorless oil, accompanied by the recovered $\mathbf{1 g}(52 \%)$. IR (neat, spectrometer B) $v_{\max }: 3493$, 3088, 3063, 3031, 2952, 2898, 2866, 1727, 1496, 1454, 1366, 1321, 1306, 1264, 1211, 1179, 1141, $1002 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8: 7.43-7.20 (m, 10H), $5.29(\mathrm{~s}, 1 \mathrm{H})$, $5.22(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}$, $J=15.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}$ apparent d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.6,139.1,138.8,135.9,129.1,128.5,128.3,128.2,127.0,120.6,79.3$, 66.4, 63.1, 41.7, 35.3, 29.1 ppm ; MS (ESI) $m / z: 368\left[(\mathrm{M}+\mathrm{H})^{\dagger}\right], 390\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 390.20396$; Found: 390.20413.

Benzyl 3-(1-(benzyl(hydroxy)amino)cyclohexyl)but-3-enoate (4ha)

4ha
Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 h}{ }^{11}$ and allenoate $\mathbf{3 a}{ }^{5}$ compound $\mathbf{4}$ ha was obtained in 26% yield as a colorless oil, accompanied by the recovered $\mathbf{1 h}(30 \%)$. IR (neat, spectrometer B) $v_{\max }: 3465,3085,3063,3028,2936,2854,1730,1645,1603,1496,1454,1372,1325$, $1290,1261,1211,1163,1141,1068,1030,1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8: 7.49-7.17 (m, $10 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 1.20-2.24(\mathrm{~m}$, $10 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.6,141.9,139.9,135.9,129.1,128.5,128.3,128.2$,

[^7]128.1, 126.7, 119.6, 67.3, 66.6, 55.3, 38.7, 29.9, 26.5, 22.7 ppm ; MS (ESI) $\mathrm{m} / \mathrm{z}: 380\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 402.20396$; Found: 402.20433.

Ethyl 4-(benzyl(hydroxy)amino)-5-methyl-3-methylenehexanoate (4ab)

4ab
Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 a}^{\mathbf{4}}$ and allenoate $\mathbf{3 b}^{\mathbf{5}}$, compound $\mathbf{4} \mathbf{a b}$ was obtained in 64% yield as a colorless oil, accompanied by the recovered 1a (33\%). IR (neat, spectrometer B) $v_{\max }: 3421,3088,3063,3031,2984,2958,2898,2873,2844,1704,1499,1451,1366$, 1302, 1252, 1150, 1125, 1093, 1071, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8: 7.43-7.20 (m, 5H), $5.27(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=15.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.9,139.3,138.9,128.9,128.2,126.9,119.0,77.9,61.1,60.6,39.8$, 27.9, 20.6, 19.3, 14.2 ppm ; MS (ESI) $m / z: 292\left[(\mathrm{M}+\mathrm{H})^{+}\right], 314\left[(\mathrm{M}+\mathrm{Na})^{+}\right], 274\left[\left(\mathrm{M}+\mathrm{H}_{-} \mathrm{H}_{2} \mathrm{O}\right)^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3}\right]^{+}: 292.19072$; Found: 292.19103.

tert-Butyl 4-(benzyl(hydroxy)amino)-5-methyl-3-methylenehexanoate (4ac)

4ac
Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 a}^{4}$ and allenoate $\mathbf{3 c} \mathbf{c}^{\mathbf{1 2}}$ compound $\mathbf{4 a c}$ was obtained in 32% yield as a colorless oil, accompanied by the recovered 1a (52\%). IR (neat, spectrometer B) $v_{\max }: 3474,3066,3028,2974,2930,2870,1723,1638,1603,1492,1454,1391,1363$, 1331, 1280, 1252, 1144, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.27(\mathrm{brs}, 1 \mathrm{H})$, $5.08(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.4,139.8,139.0,129.0$,

[^8]128.2, 126.9, 118.6, 80.6, 78.2, 61.2, 40.8, 28.1, 27.9, 20.6, 19.1 ppm ; MS (ESI) m/z: $320\left[(\mathrm{M}+\mathrm{H})^{+}\right]$, $342\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 342.20396$; Found: 342.20390 .

tert-Butyl 4-(benzyl(hydroxy)amino)-3-methylenehexanoate (4cc)

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1} \mathbf{c}^{9}$ and allenoate $\mathbf{3 c} \mathbf{c}^{12}$ compound $\mathbf{4 c c}$ was obtained in 36% yield as a colorless oil. Recovered 1c was not quantified. IR (neat, spectrometer B) $v_{\max }: 3433,3088,3063,3028,2977,2930,2876,1723,1644,1603,1492,1454,1391,1366,1334$, 1277, 1255, 1144, 1068, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.50-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H})$, 5.25-5.15 (m, 2H), 3.85 ($\mathrm{s}, 2 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.44(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.0,141.0,138.7,129.1$, $128.1,126.9,117.9,80.9,74.9,60.4,39.0,28.0,21.4,10.9 \mathrm{ppm}$; MS (ESI) $m / z: 306\left[(\mathrm{M}+\mathrm{H})^{+}\right], 328$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 328.18831$; Found: 328.18832.

Ethyl 4-(benzyl(hydroxy)amino)-2,5-dimethyl-3-methylenehexanoate (8)

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 a}^{4}$ and allenoate $\mathbf{7}^{13}$ compound $\mathbf{8}$ was obtained in 40% yield as a colorless oil $(\mathrm{dr}=2: 1)$, accompanied by the recovered $\mathbf{1 a}(46 \%)$. IR (neat, spectrometer B) $v_{\max }: 3478$, 3088, 3063, 3031n 2977, 2955, 2936, 2872, 1727, 1635, 1496, 1454, 1366, 1242, 1182, 1093, $1027 \mathrm{~cm}^{-1}$; Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.20-7.50$ $(\mathrm{m}, 5 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.33-$ $1.22(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.9,145.5$, 139.1, 128.9, 128.2, 127.0, 116.6, 77.8, 61.2, 60.6, 44.3, 28.8, 20.4, 19.2, 17.6, 14.1 ppm ; Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.20-7.50(\mathrm{~m}, 5 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}$,

[^9]$1 \mathrm{H}), 4.25-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.06-$ $2.93(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 3 \mathrm{H}), 0.95-0.87$ (m, 3H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 174.8,145.2,139.0,128.9,128.2,126.9,117.0,77.5$, 60.6, 60.5, 43.7, 28.5, 20.7, 19.3, 17.9, 14.2 ppm ; MS (ESI) m/z: $306\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}$: 328.18831 ; Found: 328.18807.

Preparation of benzyl 4-methylpenta-2,3-dienote (9)

To a stirring solution of isobutyryl chloride ($0.81 \mathrm{~mL}, 7.67 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ under Ar , at 0 ${ }^{\circ} \mathrm{C}$, was added $\mathrm{Et} 3 \mathrm{~N}(1.22 \mathrm{~mL}, 8.41 \mathrm{mmol})$ dropwise via cannula. When the addition was complete, the ice bath was removed and the reaction mixture warmed to rt . To the reaction mixture was slowly added a solution of stabilized ylide benzyl 2-(triphenylphosphoranylidene) acetate ($3 \mathrm{~g}, 7.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ dropwise via cannula and the mixture was stirred at rt overnight, then concentrated under reduced pressure to afford a gummy residue. This was treated with pentane/ether ($50 / 8,58 \mathrm{~mL}$) and stirred well, then the solid was filtered and washed with pentane $(2 \times 10 \mathrm{~mL})$. Then the filtrate was concentrated under reduced pressure. Purification by column chromatography on silica gel (eluent: $\mathrm{Et}_{2} \mathrm{O} /$ Pentane $1 / 10$) afforded allenoate $9(500 \mathrm{mg}, 33 \%)$ as a colorless oil. IR (neat, spectrometer B) $v_{\text {max }}: 3063,3034,2984,2942,2911,1964,1717,1496,1451,1404,1245,1147,1021$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.50(\mathrm{sept}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$, $1.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 211.0,166.4,136.2,128.4,128.0,128.0$, 100.3, 85.9, 66.2, 19.2 ppm ; MS (ESI) $m / z: 225\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}\right]^{+}: 225.08860$; Found: 225.08852 .

Benzyl 4-(benzyl(hydroxy)amino)-5-methyl-3-(propan-2-ylidene)hexanoate (10)

10

Following the typical procedure A (see 3.2), from nitrone $\mathbf{1 a}^{4}$ and allenoate $\mathbf{9}$, compound $\mathbf{1 0}$ was obtained in 22% yield as a colorless oil, accompanied by the recovered 1a (70\%). IR (neat, spectrometer B) $v_{\max }: 3474,3088,3063,3031,2958,2933,2866,1730,1499,1451,1372,1331,1258$, $1214,1147,1030,1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.44-7.18(\mathrm{~m}, 10 \mathrm{H}), 5.14(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{brs}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52-3.24(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.0,139.4,136.1,136.0,128.9,128.5$, 128.3, 128.1, 128.0, 126.7, 72.2, 66.4, 60.7, 35.4, 28.8, 21.6, 21.2, 20.9, 19.2 ppm; MS (ESI) $m / z: 382$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; HRMS $(\mathrm{ESI}, m / z)$ calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 404.21962$; Found: 404.21970.

1-Benzyl-5-isopropyl-4-methylenepyrrolidin-2-one (5a)

Following the typical procedure for cyclisation of N-hydroxyamino esters into lactams (see 3.4), from compound 4aa compound $\mathbf{5 a}$ was obtained in 99% yield. IR (neat, spectrometer B) $v_{\max }: 3086,3063$, 3031, 2962, 2931, 2874, 1689, 1663, 1495, 1431, 1401, 1386, 1360, 1318, 1284, 1227, 1170, 1081, $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-7.18(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (brs, $1 \mathrm{H}), 4.93(\mathrm{brs}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{brs}, 1 \mathrm{H}), 3.18(\mathrm{brd}, J=22.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{brd}$, $J=21.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.8,138.9,136.2,128.6,128.0,127.5,110.8,66.7,43.7,38.5,29.1$, 18.2, 15.2 ppm ; MS (ESI) $m / z: 230\left[(\mathrm{M}+\mathrm{H})^{+}\right], 252\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NONa}\right]^{+}: 252.13589$; Found: [(M+Na) $\left.{ }^{+}\right]: 252.13598$.

1-Benzyl-5-methyl-4-methylenepyrrolidin-2-one (5b)

Following the typical procedure for cyclisation of N-hydroxyamino esters into lactams (see 3.4), from compound $\mathbf{4 b a}$ compound $\mathbf{5 b}$ was obtained in 75% yield. IR (neat, spectrometer B) $v_{\max }: 3088,3060$, 3028, 2974, 2923, 2870, 1689, 1666, 1600, 1492, 1423, 1397, 1359, 1274, 1233, 1176, $1084 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.36-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.95(\mathrm{~m}$, 2 H), 3.31-3.10 (m, 2H), $1.26(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.3,143.3$, $136.3,128.7,128.0,127.5,108.6,57.3,43.8,36.8,19.4 \mathrm{ppm}$; MS (ESI) $m / z: 202\left[(\mathrm{M}+\mathrm{H})^{+}\right], 224$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS $(\mathrm{ESI}, m / z)$ calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NONa}\right]^{+}: 224.10459$; Found: 224.10454.

1-Benzyl-5-ethyl-4-methylenepyrrolidin-2-one (5c)

Following the typical procedure for cyclisation of N-hydroxyamino esters into lactams (see 3.4), from compound 4ca compound $\mathbf{5 c}$ was obtained in 91% yield. IR (neat, spectrometer B) $v_{\max }: 3088,3063$, 3028, 2965, 2930, 2876, 1689, 1663, 1496, 1439, 1426, 1401, 1359, 1283, 1226, 1173, 1068, 1024 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.37-7.21(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (brs, 1 H), 4.97 (brs, 1H), 4.00 (brs, 1H), $3.84(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.8,140.9,136.2,128.7$, 128.1, 127.6, 109.0, 61.9, 43.7, 37.5, 24.5, 6.7 ppm ; MS (ESI) m/z: $216\left[(\mathrm{M}+\mathrm{H})^{+}\right], 238\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NONa}\right]^{+}: 238.12024$; Found: $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 238.11993$.

1-Benzyl-5-(tert-butyl)-4-methylenepyrrolidin-2-one (5g)

$5 g$
Following the typical procedure for cyclisation of N-hydroxyamino esters into lactams (see 3.4), from compound $\mathbf{4 g a}$ compound $\mathbf{5 g}$ was obtained in 88% yield.. IR (neat, spectrometer B) $v_{\text {max }}: 3082,3060$, 3028, 2961, 2904, 2866, 1695, 1663, 1480, 1426, 1397, 1359, 1312, 1268, 1223, 1201, 1160, 1084, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 3 \mathrm{H}), 5.41(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{brs}, 1 \mathrm{H}), 4.87(\mathrm{brs}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{dt}, J=20.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.9,140.9,136.4$, 128.7, 127.7, 127.4, 111.5, 71.3, 47.4, 38.8, 37.0, 27.1 ppm ; MS (ESI) $\mathrm{m} / \mathrm{z}: 244\left[(\mathrm{M}+\mathrm{H})^{+}\right], 266$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS $(\mathrm{ESI}, m / z)$ calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NONa}\right]^{+}$: 266.15154; Found: 266.15203.

Ozonolysis of 5a

To a solution of $\mathbf{5 a}(18 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{DCM}(4.0 \mathrm{~mL})$ at $-95^{\circ} \mathrm{C}$ (melting acetone bath), was bubbled ozone until a persistent blue color appeared (20 min). The mixture was purged with argon to remove the excess of ozone and then dimethyl sulfide (1 mL) was added. Then the solution was warmed natually without removing the bath. 2 h later, 10 mL water was added, then it was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Purification by column chromatography on silica gel (EtOAC/Pentane $1 / 4 \rightarrow$ EtOAc/Pentane 1/1) gave 1-benzyl-5-isopropylpyrrolidine-2,4-dione ${ }^{14}$ as a yellow oil ($13.4 \mathrm{mg}, 74 \%$). IR (neat, spectrometer B) $v_{\max }$: 3091, 3063, 3031, 2958, 2933, 2873, 1768, 1689, 1492, 1416, 1388, $1366,1318,1264,1239,1071,1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.39-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~d}$, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 2 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 206.2,169.2$, $135.2,128.9,128.3,128.0,70.2,43.7,42.3,28.5,17.9,16.0 \mathrm{ppm}$; MS (ESI) $m / z: 232\left[(\mathrm{M}+\mathrm{H})^{+}\right], 254$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS $(\mathrm{ESI}, m / z)$ calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 254.11515$; Found: $\left[(\mathrm{M}+\mathrm{Na})^{+}\right]: 254.11544$.

(S)-Benzyl 4-((R)-1,1-dimethylethylsulfinamido)-5-methyl-3-methylenehexanoate (11a)

11a
Following the typical procedure A (see 3.2), from t-BS-imine $\mathbf{2 a}{ }^{7}$ and allenoate $\mathbf{3 a}^{5}$ compound 11a was obtained in 64% yield as a colorless oil (unseparable mixture, d.r $=7: 1$), accompanied by the recovered 2a (35\%). Following the typical procedure B (see 3.3) compound 11a was obtained in 85% yield as a yellow oil (unseparable mixture, d.r $=5: 1$) $[\alpha]^{20}{ }_{\mathrm{D}}-20.8(c 0.83, \mathrm{EtOH}$); IR (neat, spectrometer B) $v_{\text {max }}: 3436,3237,2955,2870,1730,1644,1499,1454,1363,1271,1223,1150,1049$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.32-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{brs}, 1 \mathrm{H}), 5.12(\mathrm{brs}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$,

[^10]$3.46(\mathrm{dd}, J=8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.1,140.1,135.7,128.5,128.3,128.2,118.2, .66 .8,66.6,55.3,36.9$, 30.3, 22.5, 19.8, 18.9 ppm ; MS (ESI) $m / z: 352\left[(\mathrm{M}+\mathrm{H})^{+}\right], 374\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SNa}\right]^{+}$: 374.17604 ; Found: 374.17660.

(S)-Benzyl 4-((R)-1,1-dimethylethylsulfinamido)-6-methyl-3-methyleneheptanoate (11b)

Following the typical procedure A (see 3.2), from t-BS-imine $\mathbf{2 b}^{15}$ and allenoate $\mathbf{3 a}{ }^{5}$ compound 11b was obtained in 55% yield as a colorless oil ($\mathrm{dr}=10: 1$) , accompanied by the recovered $\mathbf{2 b}(35 \%)$. Following the typical procedure B (see 3.3) compound 11b was obtained in 87% yield as a colorless oil $(\mathrm{dr}=5: 1) .[\alpha]^{20}{ }_{\mathrm{D}}-41.8(c 1.46, \mathrm{EtOH})$; IR (neat, spectrometer B) $v_{\max }: 3436,3218,3091,3066$, 3034, 2958, 2930, 2870, 1733, 1647, 1496, 1454, 1366, 1264, 1211, 1147, 1052, $1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: \delta 7.46-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.08-3.90(\mathrm{~m}, 1 \mathrm{H})$, 3.19-3.03 (m, 2H), 1.70-1.32 (m, 3H), 1.18 (s, 9H), $0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.3,141.1,135.7,128.5,128.3,117.5,66.6,58.7,55.4,43.5$, 36.6, 24.6, 22.7, 22.5, 22.2 ppm ; MS (ESI) $m / z: 366\left[(\mathrm{M}+\mathrm{H})^{+}\right], 388\left[(\mathrm{M}+\mathrm{Na})^{+}\right] ;$HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SNa}\right]^{+}: 388.19169$; Found: 388.19232.

Benzyl 3-((S)-cyclohexyl((R)-1,1-dimethylethylsulfinamido)methyl)but-3-enoate (11c)

Following the the typical procedure B (see 3.3), from t-BS-imine $2 \mathbf{c}^{16}$ and allenoate $\mathbf{3 a}^{5}$ compound 11c was obtained in 85% yield as a yellow oil $(\mathrm{dr}=4.5: 1) .[\alpha]^{20}{ }_{\mathrm{D}}-26.4(c 0.68, \mathrm{EtOH})$; IR $(\mathrm{KBr}$,

[^11]spectrometer A) $v_{\max }: 3330,2919,2849,1731,1644,1600,1451,1384,1262,1151,1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=8.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=15.0,1 \mathrm{H}), 2.99(\mathrm{~d}, J=15.0,1 \mathrm{H}), 1.90-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.44-$ $1.31(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 1.04-1.86(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 171.1,139.8,135.6,128.4,128.2,128.2,118.1,66.5,65.9,55.3,39.5,36.2,30.1,29.4,26.1,25.8$, 25.8, $22.4 \mathrm{ppm} ; \mathrm{MS}$ (ESI) $\mathrm{m} / \mathrm{z} 414$ ($\mathrm{M}+\mathrm{Na}^{+}, 100 \%$); HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{Na}\right]^{+}$: 414.20734; found: 414.20724.

(S)-Benzyl 4-((R)-1,1-dimethylethylsulfinamido)-3-methyleneheptanoate (11d)

Following the the typical procedure B (see 3.3), from t-BS-imine $\mathbf{2 d}{ }^{17}$ and allenoate $\mathbf{3 a}^{5}$ compound 11d was obtained in 78% yield as a yellow oil $(\mathrm{dr}=5.5: 1) .[\alpha]^{20}{ }_{\mathrm{D}}-43.8(c 0.88, \mathrm{EtOH})$; IR $(\mathrm{KBr}$, spectrometer A) $\nu_{\text {max }}: 3271,2954,2930,2869,1735,1452,1382,1363,1263,1211,1150,1058 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.91-3.84$ $(\mathrm{m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $171.2,140.9,135.7,128.5,128.3,117.5,66.6,60.4,55.4,36.7,36.5,22.5,19.1,13.7 \mathrm{ppm}$; MS (ESI) $m / z 374\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right) ;$ HRMS calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{Na}\right]^{+}: 374.17604$; found: 374.17558.

(S)-Benzyl 4-((R)-1,1-dimethylethylsulfinamido)-3-methylene-5-phenylpentanoate (11e)

11e
Following the the typical procedure B (see 3.3), from t-BS-imine $\mathbf{2} \mathbf{e}^{18}$ and allenoate $\mathbf{3 a}^{5}$ compound 11e was obtained in 61% yield as a yellow oil $(\mathrm{dr}=8: 1) .[\alpha]_{\mathrm{D}}^{20}-53.1(c 1.20, \mathrm{EtOH})$; $\mathrm{IR}(\mathrm{KBr}$, spectrometer A) $v_{\max }: 3284,3211,3061,3028,2957,1732,1497,1455,1366,1260,1147,1068 \mathrm{~cm}^{-1}$;

[^12]${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-7.12(\mathrm{~m}, 10 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{dd}, J=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=14.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.11$ (s, 9H) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 171.1,140.3,136.6,135.7,129.3$, 128.7, 128.5, 128.3, 128.3, 126.9, 118.4, 66.7, 60.2, 55.4, 41.1, 37.3, 22.5 ppm ; MS (ESI) $\mathrm{m} / \mathrm{z} 400$ (M $\left.+\mathrm{H}^{+}, 100 \%\right)$; HRMS calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{Na}\right]^{+}: 422.17604$; found: 422.17520 .

Preparation of 5-isopropyl-4-methylenepyrrolidin-2-one (12a)

12a
To a solution of compound $\mathbf{1 1 a}(95 \mathrm{mg}, 0.27 \mathrm{mmol}, \mathrm{dr}=5: 1)$ in methanol (5 mL) was added 0.4 mL of 12 N HCl aqueous solution at room temperature. The mixture was then stirred at rt for 25 h . Then the MeOH was removed under reduced pressure, and the $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added carefully to the resultant residue. It was extracted with DCM $(3 \times 8 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. Purification by column chromatography on silica gel (EtOAC/Hexane $1 / 4 \rightarrow 1 / 1$) gave a yellow solid 12a ($29 \mathrm{mg}, 77 \%$). M.p. $79-80^{\circ} \mathrm{C}$ (EtOAc/Hexane); $[\alpha]_{\mathrm{D}}^{20}-61.9$ (c 1.00, CHCl_{3}); IR (neat, spectrometer B) $v_{\text {max }}: 3189,3091$, 2958, 2927, 2892, 2870, 1695, 1660, 1454, 1375, 1340, 1315, 1287, 1230, 1150, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.63(\mathrm{brs}, 1 \mathrm{H}), 5.30-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{brs}, 1 \mathrm{H}), 3.20-2.93(\mathrm{~m}$, $2 \mathrm{H}), 2.05-1.75(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 176.1,142.7,109.6,64.8,37.2,33.6,18.9,15.9 \mathrm{ppm} . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / z: 162\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI, m / z) calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NONa}\right]^{+}$: 162.08894; Found: 162.08884.

Preparation of 5-isopropylpyrrolidine-2,4-dione (13a)

To a solution of 12a ($48 \mathrm{mg}, 0.36 \mathrm{mmol}$) in $\mathrm{DCM}(7 \mathrm{~mL})$ at $-95^{\circ} \mathrm{C}$ (melting acetone bath), was bubbled ozone until a persistent blue color appeared (20 min). The mixture was purged with argon to remove the excess of ozone and then dimethyl sulfide $(0.5 \mathrm{~mL})$ was added. Then the solution was
warmed to rt over 1 h . The solution was concentrated under reduced pressure, then the residue was purified by column chromatography on silica gel (EtOAC/Pentane $1 / 4 \rightarrow 2 / 1$) to give a white solid 13a ($29.2 \mathrm{mg}, 60 \%$), which was recrystallized to give enantionpure 13a. M.p. $137-138{ }^{\circ} \mathrm{C}$ (EtOAc/Hexane); $[\alpha]^{20}{ }_{\mathrm{D}}-42.3(\mathrm{c} 0.32, \mathrm{EtOH})\left\{\mathrm{lit}{ }^{18}-46.4\right.$ (c 1.00, EtOH) $;$; IR (KBr , spectrometer A) $v_{\max }: 3174,3098,2967,2927,2875,1769,1705,1656,1385,1357,1333,1311,1278,1244,1125$, 1086, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.24$ (brs, 1H), $3.88(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01-2.94 $(\mathrm{m}, 2 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 207.3,171.8,69.5,41.4,30.9,18.8,16.6 \mathrm{ppm}$; MS (ESI) $\mathrm{m} / \mathrm{z} 164\left(\mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$;

5- Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds

[^13]Compound 4aa:

Compound 4aa:

Compound 4ba:

Compound 4ba:

143.392
138.513
135.695
128.968
128.539
128.293
128.269
128.141
126.977

116.873

$<{ }_{76.57}^{76.999}$
66.730
-65.783
-60.034
-39.709
-12.410

Compound 4ca:

S-21

Compound 4ca:

Compound 4da:

ZT•00 ' ε Topo
96 TExdo
Tdxə

Compound 4da:

Compound 4ea:

Compound 4ea:

Compound 4fa:

S-27

Compound 4fa:

Compound 4ga:

Compound 4ga:

Compound 4ha:

Compound 4ha:

Compound 4ab:

Compound 4ab:

Compound 4ac:

Compound 4ac:

Compound 4cc:

Compound 4cc:

Compound 8:

Compound 8 :

Compound 9:

S-41

Compound 9:

- 166.426
- 136.241 128.458
$-\quad 128.022$
-127.987
-100.309
- 85.858
77.422
$<\quad 76.999$
$\mathbf{7 6 . 5 7 5}$
- 66.211

Compound 10:

S-43

Compound 10:

Compound 5a:

Compound 5a:

Compound 5b:

S-47

Compound 5b:

Compound 5c:

Compound 5c:

-140.942

- 136.167 128.653
128.137
127.554
-108.992

77.423
$\times 77.000$
76.576
- 61.862
-43.682
-37.532
-24.514
-6.720

Compound 5g:

Compound 5g:

140.886
-136.400

$\begin{array}{r}128.654 \\ 127.655 \\ 127.359\end{array}$
-111.522
$\begin{array}{r}77.422 \\ <\quad 76.999 \\ -76.576 \\ \hline 71.292\end{array}$
-47.380
$\quad 38.785$
$-\quad 36.973$
-27.128
N-benzyl-5-isopropyl tetramic acid:

N-benzyl-5-isopropyl tetramic acid:

Compound 11a:

Compound 11a:

Compound 11b:

Compound 11b:

Compound 11c:

Compound 11c:

Compound 11d:

Compound 11d:

Compound 11e:

Compound 11e:

Compound 12a:

Compound 12a:

Compound 13a:

Compound 13a:

[^0]: ${ }^{1}$ When an equimolar mixture of nitrone 1a and allenoate 3a were treated by 2 equiv SmI_{2} at $-78{ }^{\circ} \mathrm{C}$, with no additive, only trace amount of hydroxylamine $4 \mathbf{a a}$ was detected by NMR, the major isolated products being [3+2] cycloadducts. ${ }^{2}$ Peltier, H. M.; McMahon, J. P.; Patterson, A. W.; Ellman, J. A. J. Am. Chem. Soc. 2006, 128, 16018-16019.
 ${ }^{3}$ (a) Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc. 2009, 131, 16905-16918; (b) Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem. Int. Ed. 2006, 45, 7086-7090.

[^1]: ${ }^{\mathrm{a}} \mathrm{SmI}_{2}$ was added to a solution of $\mathbf{1 a}, \mathbf{3 a}$ and water in THF at $-78^{\circ} \mathrm{C}$, then the temperature was allowed to reach room temperature.
 ${ }^{\text {b. }} \mathrm{SmI}_{2}$ was added to the solution of $\mathbf{1 a}$ (and LiBr) at $-40^{\circ} \mathrm{C}$, then the solution of $\mathbf{3 a}$ and water (or HFIP) in THF was added, in one portion.
 ${ }^{\text {c. }}$ See general procedure below.
 ${ }^{\text {d }}$ The second portion of allenoate 3a was added progressively using a syringe pump.
 ${ }^{\mathrm{e}}$ The yields of $\mathbf{6 a}$ were calculated based on the starting nitrone $\mathbf{1 a}$.

[^2]: ${ }^{4}$ Dondoni, A.; Franco, S.; Junquera, F.; Merchan, F.; Merino, P.; Tejero, T. Synth. Commun. 1994, 24, 2537-2550.
 ${ }^{5}$ Rout, L.; Harned, A. M. Chem. Eur. J. 2009, 15, 12926-12928.

[^3]: ${ }^{6}$ Belanger, D.; Tong, X.; Soumare, S.; Dory, Y. L.; Zhao, Y. Chem. Eur. J. 2009, 15, $4428-4436$.
 ${ }^{7}$ Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T.. J. Org. Chem. 2007, 72, 10035-10044.

[^4]: ${ }^{8}$ Aschwanden, P.; Kværnø, L.; Geisser, R. W.; Kleinbeck, F.; Carreira, E. M. Org. Lett. 2005, 7, 5741-5742.

[^5]: ${ }^{9}$ Evans, D. A.; Song, H. -J.; Fandrick, K. R.; Org. Lett. 2006, 8, 3351-3354.

[^6]: ${ }^{10}$ Burchak, O. N.; Masson, G.; Py, S. Synlett. 2010, 11, 1623-1626.

[^7]: ${ }^{11}$ Franco, S.; Merchán, F. L.; Merino, P.; Tejero, T. Synth. Commun. 1995, 25, 2275-2284.

[^8]: ${ }^{12}$ Takagi, K.; Tomita, I.; Endo, T. Polym. Bull., 2003, 50, 335-342.

[^9]: ${ }^{13}$ Jung, M. E.; Nishimura, N. Org. Lett., 2001, 3, 2113-2115.

[^10]: ${ }^{14}$ Spatz, J. H.; Welsch, S. J.; Duhaut, D. -E.; Jäger, N.; Boursier, T.; Fredrich, M.; Allmendinger, L.; Ross, G.; Kolb, J.; Burdack, C.; Umkehrer, M. Tetrahedron Lett. 2009, 50, 1705-1707.

[^11]: ${ }^{15}$ Frantz, M. -C.; Pierce, J. G.; Pierce, J. M.; Li, K.; Wan, Q.; Johnson, M.; Wipf, P. Org. Lett., 2011, 13, 2318-2321.
 ${ }^{16}$ Chemla, F.; Ferreira, F. J. Org. Chem., 2004, 69, 8244-8250.

[^12]: ${ }^{17}$ Ruan, S. -T.; Luo, J. -M; Du, Y.; Huang, P. -Q. Org. Lett. 2011, 13, 4938-4941.

[^13]: ${ }^{18}$ Hosseini, M.; Kringelum, H.; Murray, A.; Tønder, J. E. Org. Lett. 2006, 8, 2103-2106.

