Supporting information

Discovery of a phosphine mediated cycloisomerization of alkynyl hemiketals: access to spiroketals and dihydropyrazoles via tandem reactions

Jaideep Saha, Chris Lorenc, Bikash Surana, Mark W. Peczuh*

Department of Chemistry, Univ. of Connecticut, 55 North Eagleville Road U3060, Storrs, CT 06269, USA mark.peczuh@uconn.edu

Description	Page
General Experimental	2
¹ H and ¹³ C chemical shift assignment for compound 15	3
Scheme S1 Facial selectivity of the dienophile in the [4+2] dimerization reaction	4
15: ¹ H, ¹³ C, COSY, HSQC, HMBC	5-9
21 : ¹ H, ¹³ C	10-11
22 : ¹ H, ¹³ C	12-13
23 : ¹ H, ¹³ C	14-15
24 : ¹ H, ¹³ C	16-17
25 : ¹ H, ¹³ C	18-19
34 : ¹ H, ¹³ C	20-21
35 : ¹ H, ¹³ C	22-23
37 : ¹ H, ¹³ C, NOESY	24-26
38 : ¹ H, ¹³ C	27-28
39 : ¹ H, ¹³ C	29-30
40 : ¹ H, ¹³ C	31-32
41 : ¹ H, ¹³ C	33-34
42 : ¹ H, ¹³ C	35-36
43 : ¹ H, ¹³ C	37-38
44a : ¹ H, ¹³ C	39-40
44b : ¹ H, ¹³ C	41-42
45 : ¹ H, ¹³ C, NOESY	43-45
46 : ¹ H, ¹³ C	46-47
47 : ¹ H, ¹³ C	48-49
48 : ¹ H, ¹³ C	50-51
49 : ¹ H, ¹³ C	52-53
50 : ¹ H, ¹³ C	54-55
51 : ¹ H, ¹³ C	56-57
52 : ¹ H, ¹³ C	58-59
53 : ¹ H, ¹³ C	60-61
54 : ¹ H, ¹³ C	62-63
55 : ¹ H, ¹³ C	64-65
56 : ¹ H, ¹³ C	66-67
57 : ¹ H, ¹³ C	68-69
62upper : ¹ H, ¹³ C, DEPT, HMBC(detail), ³¹ P	70-74
62lower : ¹ H, ¹³ C, ³¹ P(mix)	75-77
63 : ¹ H, ¹³ C	78-79
64 : ¹ H, ¹³ C	80-81
19 : ¹ H, ¹³ C	82-83
20 : ¹ H, ¹³ C	84-85
Data parameters for X-ray of 15	86-122

Contents (Total pages = 122)

General Experimental.

Unless otherwise noted, all reactions were conducted at room temperature under nitrogen atmosphere and all the solvents and reagents were purchased commercially and used as it is. Reactions were monitored by TLC (silica gel, 60 Å, F254, 250 nm). TLC was visualized either under UV light or by charring with 2.5% *p*-anisaldehyde in H₂SO₄, acetic acid, and ethanol solution or by ninhydrin solution for primary and secondary amine compounds. Flash column chromatography was conducted on silica gel (60 Å, 32-63 µm). Optical rotations were measured at 22 ± 2 °C. ¹H NMR spectra were recorded at 300, 400 and 500 MHz with chemical shifts referenced to (CH3)₄Si ($\delta_{\rm H}$ 0.00 ppm), the residual signal in CDCl₃ ($\delta_{\rm H}$ 7.27 ppm) or CD₃OD ($\delta_{\rm H}$ 3.31 ppm). ¹³C spectra were collected at 75, 100 and 125 MHz and referenced to the residual signal in CDCl₃ ($\delta_{\rm C}$ 77.2) or CD₃OD ($\delta_{\rm C}$ 49.0 ppm).

Figure S-1. ¹H and ¹³C chemical shift assignment for compound 15.

Scheme S1. Facial selectivity of the dienophile in the [4+2] dimerization reaction

Scheme S1 shows proposed transition states (TS) for the [4+2] hetero Diels Alder reactions that give rise to spiroketal product **21**. The model should hold for products **21-23** in Figure 3 of the main text. The spiroketal stereochemistry of **15** has been confirmed by an X-ray crystal structure of the product; the reaction proceeds through the Si face of the dienophile (Si/Re nomenclature refers to the face of the enol ether carbon that ends up as the spiroketal carbon.). In Scheme S1, two transition states (Si and Re) are shown. We propose that the reaction for C5-substituted systems proceeds through the Re face of the dienophile based on the precedent in *Carbohydr*. *Res.* **1994**, *264*, 141-146 and on Ithe potential for steric congestion in reactions that go through the Si face based on substitutents at the C5 position of the keto-enol ether.

Current Data Parameters cl-01-80-3 NAME EXPNO PROCNO 1 F2 - Acquisition Parameters Date_ 20110731 Time 15.01 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG 2g30 TD 32768 TD SOLVENT CDC13 NS DS 16 2 5592.841 Hz SWH FIDRES 0.170680 Hz 2.9295092 sec 71.8 AQ RĜ $\mathrm{D}W$ 89.400 usec DE TE D1 6.00 usec 298.2 K 1.50000000 sec TDO 1 ====== CHANNEL fl ======= 1H 9.20 usec NUC1 P1 PL1 -2.00 dB 400.1464009 MHz SFO1 F2 - Processing parameters SI 32768 32768 400.1440087 MHz SF WDW SSB EM 0 LB 0.30 Hz GB PC 0 1.00 ••••• т · T · 7 9 8 6 5 3 2 4 1 ppm 1.03 3.04 2.92 6.11 888888 8)2)

Ph

H Н

-15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 ppm

62	.41 36		
02	-45. -48.		
		Current NAME EXPNO PROCNO	Data Parameters JS-117-4-ii-sp3-300-31PHMBC 8 1
		F2 - AC Date_ Time INSTRUM PROBHD PULPROC TD SOLVENI NS SWH FIDRES AQ RG DW DE TE D1 D11 D11 D11	<pre>quisition Parameters 20110601 11.22 spect 5 mm Multinucl 22pg30 65536 CDC13 128 4 75187.969 Hz 1.147277 Hz 0.4338644 sec 20642.5 6.650 usec 6.00 usec 300.2 K 2.0000000 sec 0.33000000 sec 1</pre>
		NUC1 P1 PL1 SF01	E CHANNEL fl ======= 31P 8.25 usec -1.00 dB 121.5130752 MHz
		CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02	= CHANNEL f2 ======= waltzl6 1H 100.00 usec 0.00 dB 20.00 dB 20.00 dB 300.1312005 MHz
		F2 - Pr SI SF WDW SSB LB GB FC	ocessing parameters
	риций-или Малици, Али, Инферінения 1 на М		φ φ μ μ

Sample: UCONN MP10

X-ray Structure Report

for

Mark Peczuh

University of Connecticut

March 19, 2010

Experimental

Data Collection

A colorless block crystal of $O_8C_{18}H_{24}$ having approximate dimensions of 0.30 x 0.30 x 0.20 mm was mounted on a glass fiber. All measurements were made on a Rigaku Mercury2 CCD area detector with filtered Mo-K α radiation.

Indexing was performed from 1 images that were exposed for -10.0 seconds. The crystal-to-detector distance was 49.90 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

a = 10.150(6) Å b = 13.718(8) Å c = 26.178(15) Å V = 3644.9(35) Å³

For Z = 8 and F.W. = 368.38, the calculated density is 1.343 g/cm³. The systematic absences of:

h00: $h \pm 2n$ 0k0: $k \pm 2n$ 001: $l \pm 2n$

uniquely determine the space group to be:

P2₁2₁2₁ (#19)

The data were collected at a temperature of $-50 \pm 1^{\circ}$ C to a maximum 20 value of 55.0°. A total of 180 oscillation images were collected. A sweep of data was done using ω scans from -120.0 to 60.0° in 1.0° step, at χ =54.0° and ϕ = 0.0°. The exposure rate was 40.0 [sec./°]. The detector swing angle was -28.40°. The crystal-to-detector distance was 49.90 mm. Readout was performed in the 0.146 mm pixel mode.

Data Reduction

Of the 11526 reflections that were collected, 7659 were unique ($R_{int} = 0.055$). Data were collected and processed using CrystalClear (Rigaku). Net intensities and sigmas were derived as follows:

 $F^2 = [\Sigma(P_i - mB_{ave})] \cdot Lp^{-1}$

where P_i is the value in counts of the ith pixel

m is the number of pixels in the integration area Bave is the background average

Lp is the Lorentz and polarization factor

 $B_{ave} = \Sigma(B_j)/n$

where n is the number of pixels in the background area B_i is the value of the jth pixel in counts

 $\sigma^2(\mathsf{F2}_{hkl}) = [(\Sigma\mathsf{P}_i) + \mathsf{m}((\Sigma(\mathsf{B}_{ave} - \mathsf{B}_j)^2)/(\mathsf{n-1}))] \cdot \mathsf{Lp} \cdot \mathsf{errmul} + (\mathsf{erradd} \cdot \mathsf{F2})^2$

where erradd = 0.00errmul = 1.00

The linear absorption coefficient, μ , for Mo-K α radiation is 1.056 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.575 to 0.979. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods² and expanded using Fourier techniques³. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement⁴ on F² was based on 7655 observed reflections and 470 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

R1 =
$$\Sigma$$
 IIFoI - IFcII / Σ IFoI = 0.0765

wR2 = [
$$\Sigma$$
 (w (Fo² - Fc²)²)/ Σ w(Fo²)²]^{1/2} = 0.1871

The standard deviation of an observation of unit weight⁵ was 1.06. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.24 and -0.28 e⁻/Å³, respectively. The absolute structure was deduced based on Flack parameter, 0.1(13), using 3159 Friedel pairs.⁶

Neutral atom scattering factors were taken from Cromer and Waber⁷. Anomalous dispersion effects were included in Fcalc⁸; the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley⁹. The values for the mass attenuation coefficients are those of Creagh and Hubbell¹⁰. All calculations were performed using the CrystalStructure¹¹ crystallographic software package except for refinement, which was performed using SHELXL-97¹².

References

(1) <u>CrystalClear</u>: Rigaku Corporation, 1999. CrystalClear Software User's Guide, Molecular Structure Corporation, (c) 2000.J.W.Pflugrath (1999) Acta Cryst. D55, 1718-1725.

(2) SHELX97: Sheldrick, G.M. (1997).

(3) <u>DIRDIF99</u>: Beurskens, P.T., Admiraal, G., Beurskens, G., Bosman, W.P., de Gelder, R., Israel, R. and Smits, J.M.M.(1999). The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.

(4) Least Squares function minimized: (SHELXL97)

 $\Sigma w(F_0^2 - F_c^2)^2$ where w = Least Squares weights.

(5) Standard deviation of an observation of unit weight:

 $[\Sigma w(F_0^2 - F_c^2)^2 / (N_0 - N_v)]^{1/2}$

where N_0 = number of observations N_v = number of variables

(6) Flack, H. D. (1983), Acta Cryst. A39, 876-881.

(7) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(8) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(9) Creagh, D. C. & McAuley, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).

(10) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).

(11) <u>CrystalStructure 3.8</u>: Crystal Structure Analysis Package, Rigaku and Rigaku Americas (2000-2007). 9009 New Trails Dr. The Woodlands TX 77381 USA.

(12) SHELX97: Sheldrick, G.M. (1997).

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	O ₈ C ₁₈ H ₂₄
Formula Weight	368.38
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.30 X 0.30 X 0.20 mm
Crystal System	orthorhombic
Lattice Type	Primitive
Indexing Images	6 images @ 10.0 seconds
Detector Position	49.90 mm
Pixel Size	0.146 mm
Lattice Parameters	a = 10.150(6) Å b = 13.718(8) Å c = 26.178(15) Å V = 3644.9(35) Å ³
Space Group	P2 ₁ 2 ₁ 2 ₁ (#19)
Z value	8
D _{calc}	1.343 g/cm ³
F ₀₀₀	1568.00
μ(ΜοΚα)	1.056 cm ⁻¹

B. Intensity Measurements

Diffractometer	Rigaku SCXmini
Radiation	MoKα (λ = 0.71075 Å)
Detector Aperture	75 mm round
Data Images	180 exposures
ω oscillation Range (χ=54.0, φ=0.0)	-120.0 - 60.0 ⁰
Exposure Rate	40.0 sec./ ⁰
Detector Swing Angle	-28.40 ⁰
Detector Position	49.90 mm
Pixel Size	0.146 mm
20 _{max}	55.0 ⁰
No. of Reflections Measured	Total: 11526 Unique: 7655 (R _{int} = 0.055) Friedel pairs: 3159
Corrections	Lorentz-polarization Absorption (trans. factors: 0.575 - 0.979)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SHELX97)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$
Least Squares Weights	w = 1/ [$\sigma^2(Fo^2)$ + (0.0747 · P) ² + 0.5392 · P] where P = (Max(Fo ² ,0) + 2Fc ²)/3
$2\theta_{max}$ cutoff	55.0 ⁰
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	7655
No. Variables	470
Reflection/Parameter Ratio	16.29
Residuals: R1 (I>2.00o(I))	0.0765
Residuals: R (All reflections)	0.1200
Residuals: wR2 (All reflections)	0.1871
Goodness of Fit Indicator	1.062
Flack Parameter	0.1(13)
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	0.24 e⁻/Å ³
Minimum peak in Final Diff. Map	-0.28 e ⁻ /Å ³

Packing diagram – View down the *a*-axis

Packing diagram – View down the *b*-axis

Packing diagram – View down the *c*-axis

Table 1. Atomic coordinates and $\mathsf{B}_{\text{iso}}/\mathsf{B}_{\text{eq}}$

atom	x	У	Z	B _{eq}
O(1)	0.2500(2)	0.9409(2)	0.42256(10)	3.06(5)
O(2)	0.1565(2)	0.8712(2)	0.35204(11)	3.75(6)
O(3)	0.4237(3)	0.7034(2)	0.38562(11)	3.73(6)
O(4)	0.5272(2)	0.9230(2)	0.45480(9)	2.96(5)
O(5)	0.5442(2)	0.8355(2)	0.53161(9)	2.85(5)
O(6)	0.8127(3)	0.9639(3)	0.51288(12)	5.02(8)
O(7)	0.6860(3)	1.1020(2)	0.57143(10)	3.55(6)
O(8)	0.5938(2)	0.9781(2)	0.61776(9)	3.04(5)
O(9)	0.7456(2)	0.6854(2)	0.25452(9)	3.08(5)
O(10)	0.8177(3)	0.6116(2)	0.32813(10)	3.75(6)
O(11)	0.5888(2)	0.4368(2)	0.27020(11)	3.30(5)
O(12)	0.4638(2)	0.6658(2)	0.21560(10)	2.94(5)
O(13)	0.1783(3)	0.7101(2)	0.16689(14)	5.62(9)
O(14)	0.4541(2)	0.5893(2)	0.13567(10)	3.02(5)
O(15)	0.2800(3)	0.8383(2)	0.09609(11)	3.65(6)
O(16)	0.3899(2)	0.7201(2)	0.05077(10)	3.49(6)
C(1)	0.0166(4)	0.9264(3)	0.42130(19)	4.42(10)
C(2)	0.1304(5)	1.0440(3)	0.36250(18)	4.27(9)
C(3)	0.1378(4)	0.9465(3)	0.38977(14)	3.00(7)
C(4)	0.3568(4)	0.9071(3)	0.39145(14)	2.74(7)
C(5)	0.2877(4)	0.8366(3)	0.35455(14)	2.95(7)
C(6)	0.2907(4)	0.7346(3)	0.37663(17)	3.56(8)
C(7)	0.4930(4)	0.7657(3)	0.41681(15)	3.18(8)
C(8)	0.4605(4)	0.8592(3)	0.42196(14)	2.75(7)
C(9)	0.6067(4)	0.7207(3)	0.44371(17)	3.93(9)
C(10)	0.6967(4)	0.8000(3)	0.46576(16)	3.98(9)
C(11)	0.6144(4)	0.8788(3)	0.49063(13)	2.91(7)
C(12)	0.6946(4)	0.9637(3)	0.51291(14)	3.01(7)
C(13)	0.6102(4)	1.0415(3)	0.53863(14)	2.94(7)
C(14)	0.5116(4)	0.9944(3)	0.57402(15)	2.84(7)
C(15)	0.4508(4)	0.9009(3)	0.55507(15)	3.04(7)
C(16)	0.6754(4)	1.0622(3)	0.62286(15)	3.13(8)
C(17)	0.8069(4)	1.0308(3)	0.64220(18)	4.47(10)
C(18)	0.6096(6)	1.1380(4)	0.6560(2)	5.57(12)
C(19)	0.8492(5)	0.7831(3)	0.32102(18)	4.56(10)
C(20)	0.9769(4)	0.6656(4)	0.26570(19)	4.73(11)
C(21)	0.8485(4)	0.6870(3)	0.29165(14)	3.13(7)

Table 1. Atomic coordinates and $B_{\text{iso}}/B_{\text{eq}}$ (continued)

atom	х	У	Z	Beq
C(22)	0.6316(3)	0.6453(3)	0.28006(14)	2.75(7)
C(23)	0.6945(4)	0.5691(3)	0.31480(15)	3.27(8)
C(24)	0.7137(3)	0.4757(3)	0.28518(16)	3.18(8)
C(25)	0.5372(3)	0.5990(3)	0.24450(14)	2.55(7)
C(26)	0.5123(3)	0.5036(3)	0.24348(15)	2.72(7)
C(27)	0.4004(4)	0.4584(3)	0.21560(15)	3.04(7)
C(28)	0.3043(4)	0.5379(3)	0.19880(16)	3.25(8)
C(29)	0.3800(3)	0.6240(3)	0.17772(13)	2.58(7)
C(30)	0.2943(4)	0.7094(3)	0.15923(14)	2.90(7)
C(31)	0.3670(4)	0.7882(3)	0.12913(14)	2.91(7)
C(32)	0.4702(4)	0.7463(3)	0.09315(15)	2.97(7)
C(33)	0.5421(4)	0.6595(3)	0.11299(16)	3.16(7)
C(34)	0.2864(5)	0.7911(4)	0.04639(16)	4.24(10)
C(35)	0.1603(5)	0.7379(5)	0.0352(2)	6.48(16)
C(36)	0.3216(7)	0.8675(5)	0.0074(2)	7.9(2)

$$\begin{split} \mathsf{B}_{eq} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa}^*)^2 + \mathsf{U}_{22}(\mathsf{bb}^*)^2 + \mathsf{U}_{33}(\mathsf{cc}^*)^2 + 2\mathsf{U}_{12}(\mathsf{aa}^*\mathsf{bb}^*)\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa}^*\mathsf{cc}^*)\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb}^*\mathsf{cc}^*)\mathsf{cos}\ \alpha) \end{split}$$

Table 2. Atomic coordinates and B $_{\rm iso}$ involving hydrogens/B_{eq}

atom	х	У	Z	Beq
H(1)	-0.0023	0.8571	0.4208	5.30
H(2)	-0.0576	0.9619	0.4072	5.30
H(3)	0.0316	0.9474	0.4562	5.30
H(4)	0.0811	1.0898	0.3832	5.13
H(5)	0.0867	1.0357	0.3298	5.13
H(6)	0.2188	1.0688	0.3570	5.13
H(7)	0.3950	0.9624	0.3721	3.29
H(8)	0.3297	0.8383	0.3204	3.53
H(9)	0.2415	0.7334	0.4088	4.28
H(10)	0.2479	0.6894	0.3529	4.28
H(11)	0.6567	0.6801	0.4198	4.72
H(12)	0.5746	0.6788	0.4714	4.72
H(13)	0.7562	0.7712	0.4911	4.77
H(14)	0.7502	0.8283	0.4384	4.77
H(15)	0.5644	1.0814	0.5126	3.53
H(16)	0.4413	1.0416	0.5827	3.41
H(17)	0.4087	0.8676	0.5839	3.65
H(18)	0.3819	0.9167	0.5302	3.65
H(19)	0.8217	0.9631	0.6332	5.36
H(20)	0.8096	1.0379	0.6791	5.36
H(21)	0.8750	1.0709	0.6269	5.36
H(22)	0.6761	1.1799	0.6710	6.68
H(23)	0.5605	1.1059	0.6830	6.68
H(24)	0.5500	1.1768	0.6354	6.68
H(25)	0.9053	0.8296	0.3035	5.47
H(26)	0.8827	0.7722	0.3553	5.47
H(27)	0.7602	0.8086	0.3230	5.47
H(28)	0.9931	0.5959	0.2663	5.68
H(29)	1.0476	0.6990	0.2834	5.68
H(30)	0.9731	0.6879	0.2306	5.68
H(31)	0.5870	0.6961	0.3006	3.30
H(32)	0.6398	0.5578	0.3456	3.92
H(33)	0.7673	0.4886	0.2548	3.82
H(34)	0.7604	0.4281	0.3064	3.82
H(35)	0.3552	0.4117	0.2379	3.64
H(36)	0.4333	0.4232	0.1856	3.64
H(37)	0.2450	0.5121	0.1725	3.91

atom	x	У	Z	Beq
H(38)	0.2508	0.5587	0.2280	3.91
H(39)	0.4088	0.8348	0.1530	3.49
H(40)	0.5335	0.7976	0.0831	3.56
H(41)	0.5903	0.6285	0.0849	3.80
H(42)	0.6066	0.6806	0.1386	3.80
H(43)	0.1668	0.6714	0.0476	7.78
H(44)	0.1451	0.7372	-0.0014	7.78
H(45)	0.0877	0.7706	0.0520	7.78
H(46)	0.2418	0.8974	-0.0055	9.47
H(47)	0.3693	0.8373	-0.0205	9.47
H(48)	0.3766	0.9168	0.0233	9.47

Table 2. Atomic coordinates and B_{iSO} involving hydrogens/ B_{eq} (continued)

$$\begin{split} \mathsf{B}_{\text{eq}} = 8/3 \ \pi^2 (\mathsf{U}_{11}(\mathsf{aa}^*)^2 + \mathsf{U}_{22}(\mathsf{bb}^*)^2 + \mathsf{U}_{33}(\mathsf{cc}^*)^2 + 2\mathsf{U}_{12}(\mathsf{aa}^*\mathsf{bb}^*)\mathsf{cos}\ \gamma + 2\mathsf{U}_{13}(\mathsf{aa}^*\mathsf{cc}^*)\mathsf{cos}\ \beta + 2\mathsf{U}_{23}(\mathsf{bb}^*\mathsf{cc}^*)\mathsf{cos}\ \alpha) \end{split}$$

Table 3. Anisotropic displacement parameters

atom	U11	U22	სვვ	U ₁₂	U ₁₃	U23
O(1)	0.0387(16)	0.0421(18)	0.0355(14)	-0.0036(13)	0.0006(12)	-0.0054(13)
O(2)	0.0396(17)	0.054(2)	0.0486(16)	-0.0047(15)	-0.0061(14)	-0.0173(15)
O(3)	0.0542(19)	0.0354(18)	0.0519(17)	-0.0053(15)	-0.0041(15)	-0.0126(14)
O(4)	0.0474(17)	0.0347(16)	0.0303(13)	-0.0054(13)	-0.0069(12)	0.0022(11)
O(5)	0.0462(16)	0.0317(16)	0.0306(12)	-0.0003(14)	0.0040(12)	-0.0004(11)
O(6)	0.0313(18)	0.096(3)	0.064(2)	-0.0132(18)	0.0072(15)	-0.027(2)
O(7)	0.0565(18)	0.0355(17)	0.0429(15)	-0.0137(15)	-0.0059(14)	0.0038(13)
O(8)	0.0496(17)	0.0339(16)	0.0319(13)	-0.0039(14)	-0.0016(12)	0.0014(12)
O(9)	0.0377(15)	0.0438(18)	0.0356(13)	-0.0076(13)	-0.0075(12)	0.0056(13)
O(10)	0.0493(18)	0.0487(19)	0.0443(15)	-0.0080(15)	-0.0198(14)	0.0115(15)
O(11)	0.0445(17)	0.0315(16)	0.0492(16)	0.0004(13)	-0.0042(14)	0.0118(13)
O(12)	0.0416(15)	0.0360(16)	0.0341(13)	0.0070(13)	-0.0076(12)	-0.0002(12)
O(13)	0.0391(19)	0.090(3)	0.084(2)	0.026(2)	0.0159(17)	0.033(2)
O(14)	0.0451(16)	0.0342(16)	0.0355(13)	0.0080(14)	0.0026(12)	-0.0022(12)
O(15)	0.0586(19)	0.0369(18)	0.0434(14)	0.0179(15)	-0.0042(14)	-0.0020(13)
O(16)	0.0551(19)	0.0438(18)	0.0336(13)	0.0193(15)	-0.0028(14)	-0.0026(13)
C(1)	0.044(2)	0.060(3)	0.064(3)	-0.008(2)	0.003(2)	-0.008(2)
C(2)	0.053(2)	0.052(3)	0.058(2)	-0.003(2)	-0.013(2)	0.007(2)
C(3)	0.036(2)	0.042(2)	0.0354(19)	-0.006(2)	-0.0020(18)	-0.0082(18)
C(4)	0.041(2)	0.033(2)	0.0307(17)	-0.0109(19)	0.0026(18)	-0.0009(17)
C(5)	0.040(2)	0.041(2)	0.0308(19)	-0.009(2)	-0.0014(18)	-0.0078(18)
C(6)	0.046(2)	0.038(2)	0.051(2)	-0.009(2)	-0.001(2)	-0.005(2)
C(7)	0.040(2)	0.043(2)	0.038(2)	-0.004(2)	0.0034(19)	-0.0049(19)
C(8)	0.038(2)	0.034(2)	0.0324(19)	-0.0097(19)	0.0021(17)	-0.0051(17)
C(9)	0.056(2)	0.046(2)	0.047(2)	0.006(2)	0.003(2)	-0.011(2)
C(10)	0.041(2)	0.070(3)	0.040(2)	0.003(2)	-0.001(2)	-0.012(2)
C(11)	0.037(2)	0.046(2)	0.0267(17)	0.001(2)	0.0007(17)	-0.0031(18)
C(12)	0.039(2)	0.049(2)	0.0258(18)	-0.007(2)	0.0003(18)	0.0011(18)
C(13)	0.041(2)	0.036(2)	0.0347(19)	-0.001(2)	-0.0095(18)	0.0046(18)
C(14)	0.032(2)	0.036(2)	0.040(2)	0.0034(18)	0.0003(18)	-0.0010(18)
C(15)	0.033(2)	0.046(2)	0.037(2)	-0.003(2)	0.0057(18)	-0.0045(19)
C(16)	0.043(2)	0.037(2)	0.039(2)	-0.008(2)	-0.0038(19)	-0.0022(19)
C(17)	0.059(3)	0.052(3)	0.059(2)	-0.019(2)	-0.011(2)	0.000(2)
C(18)	0.095(4)	0.050(3)	0.066(3)	0.003(3)	0.005(3)	-0.022(2)
C(19)	0.061(3)	0.053(3)	0.059(2)	-0.003(2)	-0.016(2)	-0.007(2)
C(20)	0.043(2)	0.079(4)	0.057(2)	-0.005(2)	-0.008(2)	0.001(2)
C(21)	0.041(2)	0.044(2)	0.0345(19)	-0.002(2)	-0.0073(19)	0.0040(18)

Table 3. Anisotropic displacement parameters (continued)

atom	U11	U22	U33	U ₁₂	U ₁₃	U23
C(22)	0.034(2)	0.038(2)	0.0328(18)	0.0037(19)	-0.0059(17)	0.0024(18)
C(23)	0.037(2)	0.053(3)	0.0340(19)	-0.004(2)	-0.0023(18)	0.009(2)
C(24)	0.034(2)	0.038(2)	0.048(2)	0.0011(19)	-0.0046(19)	0.015(2)
C(25)	0.030(2)	0.035(2)	0.0312(18)	0.0051(18)	-0.0055(17)	-0.0009(17)
C(26)	0.032(2)	0.037(2)	0.034(2)	0.0039(18)	0.0024(17)	0.0091(17)
C(27)	0.038(2)	0.040(2)	0.038(2)	-0.007(2)	-0.0006(18)	0.0022(19)
C(28)	0.035(2)	0.047(2)	0.041(2)	-0.004(2)	-0.0058(18)	0.002(2)
C(29)	0.032(2)	0.038(2)	0.0283(17)	0.0050(18)	-0.0043(16)	-0.0017(17)
C(30)	0.037(2)	0.046(2)	0.0275(17)	0.011(2)	-0.0008(17)	-0.0041(18)
C(31)	0.040(2)	0.034(2)	0.037(2)	0.008(2)	-0.0042(18)	-0.0065(18)
C(32)	0.040(2)	0.034(2)	0.039(2)	-0.003(2)	-0.0014(19)	-0.0010(18)
C(33)	0.034(2)	0.042(2)	0.044(2)	0.009(2)	0.0055(19)	0.0001(19)
C(34)	0.067(3)	0.059(3)	0.035(2)	0.026(2)	-0.000(2)	0.004(2)
C(35)	0.075(4)	0.103(5)	0.069(3)	0.038(4)	-0.025(3)	-0.032(3)
C(36)	0.143(6)	0.090(5)	0.067(3)	0.061(4)	0.024(4)	0.039(3)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table 4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
O(1)	C(3)	1.429(4)	O(1)	C(4)	1.433(4)
O(2)	C(3)	1.442(5)	O(2)	C(5)	1.415(5)
O(3)	C(6)	1.435(5)	O(3)	C(7)	1.375(5)
O(4)	C(8)	1.401(4)	O(4)	C(11)	1.425(4)
O(5)	C(11)	1.419(4)	O(5)	C(15)	1.443(4)
O(6)	C(12)	1.198(5)	O(7)	C(13)	1.420(4)
O(7)	C(16)	1.456(4)	O(8)	C(14)	1.434(4)
O(8)	C(16)	1.427(5)	O(9)	C(21)	1.427(4)
O(9)	C(22)	1.445(4)	O(10)	C(21)	1.442(5)
O(10)	C(23)	1.424(5)	O(11)	C(24)	1.430(4)
O(11)	C(26)	1.390(4)	O(12)	C(25)	1.402(4)
O(12)	C(29)	1.427(4)	O(13)	C(30)	1.195(5)
O(14)	C(29)	1.416(4)	O(14)	C(33)	1.441(5)
O(15)	C(31)	1.414(4)	O(15)	C(34)	1.455(5)
O(16)	C(32)	1.422(4)	O(16)	C(34)	1.437(6)
C(1)	C(3)	1.507(6)	C(2)	C(3)	1.518(6)
C(4)	C(5)	1.537(5)	C(4)	C(8)	1.476(5)
C(5)	C(6)	1.515(6)	C(7)	C(8)	1.331(6)
C(7)	C(9)	1.487(6)	C(9)	C(10)	1.532(6)
C(10)	C(11)	1.513(6)	C(11)	C(12)	1.535(6)
C(12)	C(13)	1.525(6)	C(13)	C(14)	1.510(5)
C(14)	C(15)	1.506(5)	C(16)	C(17)	1.492(6)
C(16)	C(18)	1.509(7)	C(19)	C(21)	1.527(6)
C(20)	C(21)	1.498(6)	C(22)	C(23)	1.526(5)
C(22)	C(25)	1.479(5)	C(23)	C(24)	1.510(6)
C(25)	C(26)	1.333(5)	C(26)	C(27)	1.485(5)
C(27)	C(28)	1.527(6)	C(28)	C(29)	1.514(6)
C(29)	C(30)	1.537(5)	C(30)	C(31)	1.527(5)
C(31)	C(32)	1.522(5)	C(32)	C(33)	1.490(6)
C(34)	C(35)	1.502(8)	C(34)	C(36)	1.505(8)

atom	atom	distance	atom	atom	distance
C(1)	H(1)	0.970	C(1)	H(2)	0.970
C(1)	H(3)	0.970	C(2)	H(4)	0.970
C(2)	H(5)	0.970	C(2)	H(6)	0.970
C(4)	H(7)	0.990	C(5)	H(8)	0.990
C(6)	H(9)	0.980	C(6)	H(10)	0.980
C(9)	H(11)	0.980	C(9)	H(12)	0.980
C(10)	H(13)	0.980	C(10)	H(14)	0.980
C(13)	H(15)	0.990	C(14)	H(16)	0.990
C(15)	H(17)	0.980	C(15)	H(18)	0.980
C(17)	H(19)	0.970	C(17)	H(20)	0.970
C(17)	H(21)	0.970	C(18)	H(22)	0.970
C(18)	H(23)	0.970	C(18)	H(24)	0.970
C(19)	H(25)	0.970	C(19)	H(26)	0.970
C(19)	H(27)	0.970	C(20)	H(28)	0.970
C(20)	H(29)	0.970	C(20)	H(30)	0.970
C(22)	H(31)	0.990	C(23)	H(32)	0.990
C(24)	H(33)	0.980	C(24)	H(34)	0.980
C(27)	H(35)	0.980	C(27)	H(36)	0.980
C(28)	H(37)	0.980	C(28)	H(38)	0.980
C(31)	H(39)	0.990	C(32)	H(40)	0.990
C(33)	H(41)	0.980	C(33)	H(42)	0.980
C(35)	H(43)	0.970	C(35)	H(44)	0.970
C(35)	H(45)	0.970	C(36)	H(46)	0.970
C(36)	H(47)	0.970	C(36)	H(48)	0.970

Table 5. Bond lengths involving hydrogens (Å)

Table 6. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
C(3)	O(1)	C(4)	106.2(2)	C(3)	O(2)	C(5)	109.4(3)
C(6)	O(3)	C(7)	113.2(3)	C(8)	O(4)	C(11)	116.0(3)
C(11)	O(5)	C(15)	113.0(3)	C(13)	O(7)	C(16)	107.5(3)
C(14)	O(8)	C(16)	106.6(2)	C(21)	O(9)	C(22)	106.1(2)
C(21)	O(10)	C(23)	108.8(2)	C(24)	O(11)	C(26)	112.8(3)
C(25)	O(12)	C(29)	115.4(2)	C(29)	O(14)	C(33)	115.1(3)
C(31)	O(15)	C(34)	107.6(3)	C(32)	O(16)	C(34)	108.1(3)
O(1)	C(3)	O(2)	105.5(3)	O(1)	C(3)	C(1)	108.2(3)
O(1)	C(3)	C(2)	111.7(3)	O(2)	C(3)	C(1)	110.6(3)
O(2)	C(3)	C(2)	108.4(3)	C(1)	C(3)	C(2)	112.2(3)
O(1)	C(4)	C(5)	102.4(3)	O(1)	C(4)	C(8)	112.1(3)
C(5)	C(4)	C(8)	112.7(3)	O(2)	C(5)	C(4)	104.4(3)
O(2)	C(5)	C(6)	110.3(3)	C(4)	C(5)	C(6)	109.4(3)
O(3)	C(6)	C(5)	110.9(3)	O(3)	C(7)	C(8)	122.2(3)
O(3)	C(7)	C(9)	114.9(3)	C(8)	C(7)	C(9)	123.0(3)
O(4)	C(8)	C(4)	113.5(3)	O(4)	C(8)	C(7)	123.0(3)
C(4)	C(8)	C(7)	123.4(3)	C(7)	C(9)	C(10)	110.3(4)
C(9)	C(10)	C(11)	109.9(3)	O(4)	C(11)	O(5)	111.3(3)
O(4)	C(11)	C(10)	111.3(2)	O(4)	C(11)	C(12)	104.9(3)
O(5)	C(11)	C(10)	107.6(3)	O(5)	C(11)	C(12)	107.3(2)
C(10)	C(11)	C(12)	114.4(3)	O(6)	C(12)	C(11)	122.1(4)
O(6)	C(12)	C(13)	124.0(4)	C(11)	C(12)	C(13)	113.6(3)
O(7)	C(13)	C(12)	111.8(3)	O(7)	C(13)	C(14)	103.8(2)
C(12)	C(13)	C(14)	110.1(3)	O(8)	C(14)	C(13)	99.8(3)
O(8)	C(14)	C(15)	111.6(3)	C(13)	C(14)	C(15)	115.7(3)
O(5)	C(15)	C(14)	113.6(3)	O(7)	C(16)	O(8)	105.0(2)
O(7)	C(16)	C(17)	110.8(3)	O(7)	C(16)	C(18)	107.9(3)
O(8)	C(16)	C(17)	108.5(3)	O(8)	C(16)	C(18)	110.7(3)
C(17)	C(16)	C(18)	113.6(3)	O(9)	C(21)	O(10)	106.4(3)
O(9)	C(21)	C(19)	111.1(3)	O(9)	C(21)	C(20)	109.0(3)
O(10)	C(21)	C(19)	106.7(3)	O(10)	C(21)	C(20)	110.4(3)
C(19)	C(21)	C(20)	113.2(4)	O(9)	C(22)	C(23)	101.6(3)
O(9)	C(22)	C(25)	113.0(2)	C(23)	C(22)	C(25)	110.6(3)
O(10)	C(23)	C(22)	103.5(3)	O(10)	C(23)	C(24)	111.1(3)
C(22)	C(23)	C(24)	109.2(3)	O(11)	C(24)	C(23)	110.1(3)
O(12)	C(25)	C(22)	113.8(3)	O(12)	C(25)	C(26)	122.0(3)
C(22)	C(25)	C(26)	123.9(3)	O(11)	C(26)	C(25)	122.1(3)
Table 6. Bond angles (⁰) (continued)

atom O(11) C(26) O(12) O(12) O(14) O(13) C(29) O(15) O(15) O(16) C(31) O(15) O(15)	atom C(26) C(27) C(29) C(29) C(29) C(30) C(30) C(30) C(31) C(32) C(32) C(32) C(34) C(34)	atom C(27) C(28) O(14) C(30) C(30) C(30) C(29) C(31) C(32) C(31) C(33) O(16) C(36)	angle 113.6(3) 109.4(3) 111.0(3) 104.5(3) 108.2(2) 120.7(3) 115.4(3) 103.6(2) 100.6(3) 115.0(3) 105.2(3) 107.9(4)	atom C(25) C(27) O(12) O(14) C(28) O(13) O(15) C(30) O(16) O(14) O(15) O(15) O(16)	atom C(26) C(28) C(29) C(29) C(29) C(30) C(31) C(31) C(31) C(32) C(33) C(34) C(34)	atom C(27) C(29) C(28) C(28) C(30) C(31) C(30) C(32) C(32) C(33) C(32) C(35) C(35)	angle 124.4(3) 109.7(3) 111.3(2) 106.9(3) 115.0(3) 123.8(4) 111.0(3) 112.6(3) 110.6(3) 112.0(3) 110.7(3) 108.0(4)
O(15)	C(34)	O(16)	105.2(3)	O(15)	C(34)	C(35)	110.7(3)
O(15)	C(34)	C(36)	107.9(4)	O(16)	C(34)	C(35)	108.0(4)
O(16)	C(34)	C(36)	110.6(4)	C(35)	C(34)	C(36)	114.1(4)

Table 7.	Bond angles	involving l	nydrogens	(0)
		- 5	J · · · · · ·	`

atom	atom	atom	angle	atom	atom	atom	angle
C(3)	C(1)	H(1)	109.5	C(3)	C(1)	H(2)	109.5
C(3)	C(1)	H(3)	109.5	H(1)	C(1)	H(2)	109.5
H(1)	C(1)	H(3)	109.5	H(2)	C(1)	H(3)	109.5
C(3)	C(2)	H(4)	109.5	C(3)	C(2)	H(5)	109.5
C(3)	C(2)	H(6)	109.5	H(4)	C(2)	H(5)	109.5
H(4)	C(2)	H(6)	109.5	H(5)	C(2)	H(6)	109.5
O(1)	C(4)	H(7)	109.8	C(5)	C(4)	H(7)	109.8
C(8)	C(4)	H(7)	109.8	O(2)	C(5)	H(8)	110.9
C(4)	C(5)	H(8)	110.9	C(6)	C(5)	H(8)	110.9
O(3)	C(6)	H(9)	109.5	O(3)	C(6)	H(10)	109.5
C(5)	C(6)	H(9)	109.5	C(5)	C(6)	H(10)	109.5
H(9)	C(6)	H(10)	108.0	C(7)	C(9)	H(11)	109.6
C(7)	C(9)	H(12)	109.6	C(10)	C(9)	H(11)	109.6
C(10)	C(9)	H(12)	109.6	H(11)	C(9)	H(12)	108.1
C(9)	C(10)	H(13)	109.7	C(9)	C(10)	H(14)	109.7
C(11)	C(10)	H(13)	109.7	C(11)	C(10)	H(14)	109.7
H(13)	C(10)	H(14)	108.2	O(7)	C(13)	H(15)	110.3
C(12)	C(13)	H(15)	110.3	C(14)	C(13)	H(15)	110.3
O(8)	C(14)	H(16)	109.7	C(13)	C(14)	H(16)	109.7
C(15)	C(14)	H(16)	109.7	O(5)	C(15)	H(17)	108.8
O(5)	C(15)	H(18)	108.8	C(14)	C(15)	H(17)	108.8
C(14)	C(15)	H(18)	108.8	H(17)	C(15)	H(18)	107.7
C(16)	C(17)	H(19)	109.5	C(16)	C(17)	H(20)	109.5
C(16)	C(17)	H(21)	109.5	H(19)	C(17)	H(20)	109.5
H(19)	C(17)	H(21)	109.5	H(20)	C(17)	H(21)	109.5
C(16)	C(18)	H(22)	109.5	C(16)	C(18)	H(23)	109.5
C(16)	C(18)	H(24)	109.5	H(22)	C(18)	H(23)	109.5
H(22)	C(18)	H(24)	109.5	H(23)	C(18)	H(24)	109.5
C(21)	C(19)	H(25)	109.5	C(21)	C(19)	H(26)	109.5
C(21)	C(19)	H(27)	109.5	H(25)	C(19)	H(26)	109.5
H(25)	C(19)	H(27)	109.5	H(26)	C(19)	H(27)	109.5
C(21)	C(20)	H(28)	109.5	C(21)	C(20)	H(29)	109.5
C(21)	C(20)	H(30)	109.5	H(28)	C(20)	H(29)	109.5
H(28)	C(20)	H(30)	109.5	H(29)	C(20)	H(30)	109.5
O(9)	C(22)	H(31)	110.4	C(23)	C(22)	H(31)	110.4
C(25)	C(22)	H(31)	110.4	O(10)	C(23)	H(32)	110.9
C(22)	C(23)	H(32)	110.9	C(24)	C(23)	H(32)	110.9

atom	atom	atom	angle	atom	atom	atom	angle
O(11)	C(24)	H(33)	109.7	O(11)	C(24)	H(34)	109.6
C(23)	C(24)	H(33)	109.6	C(23)	C(24)	H(34)	109.6
H(33)	C(24)	H(34)	108.2	C(26)	C(27)	H(35)	109.8
C(26)	C(27)	H(36)	109.8	C(28)	C(27)	H(35)	109.8
C(28)	C(27)	H(36)	109.8	H(35)	C(27)	H(36)	108.2
C(27)	C(28)	H(37)	109.7	C(27)	C(28)	H(38)	109.7
C(29)	C(28)	H(37)	109.7	C(29)	C(28)	H(38)	109.7
H(37)	C(28)	H(38)	108.2	O(15)	C(31)	H(39)	109.8
C(30)	C(31)	H(39)	109.8	C(32)	C(31)	H(39)	109.8
O(16)	C(32)	H(40)	110.1	C(31)	C(32)	H(40)	110.1
C(33)	C(32)	H(40)	110.1	O(14)	C(33)	H(41)	109.2
O(14)	C(33)	H(42)	109.2	C(32)	C(33)	H(41)	109.2
C(32)	C(33)	H(42)	109.2	H(41)	C(33)	H(42)	107.9
C(34)	C(35)	H(43)	109.5	C(34)	C(35)	H(44)	109.5
C(34)	C(35)	H(45)	109.5	H(43)	C(35)	H(44)	109.5
H(43)	C(35)	H(45)	109.5	H(44)	C(35)	H(45)	109.5
C(34)	C(36)	H(46)	109.5	C(34)	C(36)	H(47)	109.5
C(34)	C(36)	H(48)	109.5	H(46)	C(36)	H(47)	109.5
H(46)	C(36)	H(48)	109.5	H(47)	C(36)	H(48)	109.5

Table 7. Bond angles involving hydrogens (⁰) (continued)

Table 8. Torsion Angles(⁰)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
C(3)	O(1)	C(4)	C(5)	-35.0(3)	C(3)	O(1)	C(4)	C(8)	-156.0(3)
C(4)	O(1)	C(3)	O(2)	30.7(3)	C(4)	O(1)	C(3)	C(1)	149.1(3)
C(4)	O(1)	C(3)	C(2)	-86.9(3)	C(3)	O(2)	C(5)	C(4)	-8.4(3)
C(3)	O(2)	C(5)	C(6)	109.0(3)	C(5)	O(2)	C(3)	O(1)	-13.0(4)
C(5)	O(2)	C(3)	C(1)	-129.8(3)	C(5)	O(2)	C(3)	C(2)	106.8(3)
C(6)	O(3)	C(7)	C(8)	-23.8(5)	C(6)	O(3)	C(7)	C(9)	156.7(3)
C(7)	O(3)	C(6)	C(5)	56.2(4)	C(8)	O(4)	C(11)	O(5)	-76.2(3)
C(8)	O(4)	C(11)	C(10)	43.9(4)	C(8)	O(4)	C(11)	C(12)	168.1(3)
C(11)	O(4)	C(8)	C(4)	170.9(3)	C(11)	O(4)	C(8)	C(7)	-12.7(5)
C(11)	O(5)	C(15)	C(14)	-56.1(4)	C(15)	O(5)	C(11)	O(4)	-51.4(4)
C(15)	O(5)	C(11)	C(10)	-173.6(3)	C(15)	O(5)	C(11)	C(12)	62.8(3)
C(13)	O(7)	C(16)	O(8)	0.7(4)	C(13)	O(7)	C(16)	C(17)	117.7(3)
C(13)	O(7)	C(16)	C(18)	-117.4(3)	C(16)	O(7)	C(13)	C(12)	-94.9(3)
C(16)	O(7)	C(13)	C(14)	23.7(4)	C(14)	O(8)	C(16)	O(7)	-26.6(3)
C(14)	O(8)	C(16)	C(17)	-145.2(3)	C(14)	O(8)	C(16)	C(18)	89.6(3)
C(16)	O(8)	C(14)	C(13)	40.0(3)	C(16)	O(8)	C(14)	C(15)	162.9(3)
C(21)	O(9)	C(22)	C(23)	-36.4(3)	C(21)	O(9)	C(22)	C(25)	-154.9(3)
C(22)	O(9)	C(21)	O(10)	25.7(3)	C(22)	O(9)	C(21)	C(19)	-90.0(3)
C(22)	O(9)	C(21)	C(20)	144.7(3)	C(21)	O(10)	C(23)	C(22)	-19.0(3)
C(21)	O(10)	C(23)	C(24)	98.1(3)	C(23)	O(10)	C(21)	O(9)	-3.2(4)
C(23)	O(10)	C(21)	C(19)	115.4(3)	C(23)	O(10)	C(21)	C(20)	-121.3(3)
C(24)	O(11)	C(26)	C(25)	-17.4(5)	C(24)	O(11)	C(26)	C(27)	164.2(3)
C(26)	O(11)	C(24)	C(23)	54.3(4)	C(25)	O(12)	C(29)	O(14)	-73.7(3)
C(25)	O(12)	C(29)	C(28)	45.2(4)	C(25)	O(12)	C(29)	C(30)	169.9(2)
C(29)	O(12)	C(25)	C(22)	174.8(3)	C(29)	O(12)	C(25)	C(26)	-12.2(5)
C(29)	O(14)	C(33)	C(32)	-60.2(4)	C(33)	O(14)	C(29)	O(12)	-53.4(4)
C(33)	O(14)	C(29)	C(28)	-174.9(3)	C(33)	O(14)	C(29)	C(30)	60.7(4)
C(31)	O(15)	C(34)	O(16)	-6.3(4)	C(31)	O(15)	C(34)	C(35)	110.2(4)
C(31)	O(15)	C(34)	C(36)	-124.3(4)	C(34)	O(15)	C(31)	C(30)	-93.8(3)
C(34)	O(15)	C(31)	C(32)	27.3(4)	C(32)	O(16)	C(34)	O(15)	-19.3(4)
C(32)	O(16)	C(34)	C(35)	-137.6(3)	C(32)	O(16)	C(34)	C(36)	97.0(4)
C(34)	O(16)	C(32)	C(31)	34.8(3)	C(34)	O(16)	C(32)	C(33)	156.8(3)
O(1)	C(4)	C(5)	O(2)	26.4(3)	O(1)	C(4)	C(5)	C(6)	-91.6(3)
O(1)	C(4)	C(8)	O(4)	-66.8(4)	O(1)	C(4)	C(8)	C(7)	116.8(4)
C(5)	C(4)	C(8)	O(4)	178.3(3)	C(5)	C(4)	C(8)	C(7)	1.9(5)
C(8)	C(4)	C(5)	O(2)	147.0(3)	C(8)	C(4)	C(5)	C(6)	29.0(4)
O(2)	C(5)	C(6)	O(3)	-172.5(3)	C(4)	C(5)	C(6)	O(3)	-58.2(4)

Table 8. Torsion angles (^O) (continued)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
O(3)	C(7)	C(8)	O(4)	177.8(3)	O(3)	C(7)	C(8)	C(4)	-6.1(6)
O(3)	C(7)	C(9)	C(10)	165.3(3)	C(8)	C(7)	C(9)	C(10)	-14.2(5)
C(9)	C(7)	C(8)	O(4)	-2.7(6)	C(9)	C(7)	C(8)	C(4)	173.3(3)
C(7)	C(9)	C(10)	C(11)	43.5(4)	C(9)	C(10)	C(11)	O(4)	-59.8(4)
C(9)	C(10)	C(11)	O(5)	62.4(4)	C(9)	C(10)	C(11)	C(12)	-178.5(3)
O(4)	C(11)	C(12)	O(6)	-126.2(4)	O(4)	C(11)	C(12)	C(13)	58.8(3)
O(5)	C(11)	C(12)	O(6)	115.4(4)	O(5)	C(11)	C(12)	C(13)	-59.7(4)
C(10)	C(11)	C(12)	O(6)	-3.9(5)	C(10)	C(11)	C(12)	C(13)	-179.0(3)
O(6)	C(12)	C(13)	O(7)	-12.6(5)	O(6)	C(12)	C(13)	C(14)	-127.4(4)
C(11)	C(12)	C(13)	O(7)	162.4(3)	C(11)	C(12)	C(13)	C(14)	47.5(4)
O(7)	C(13)	C(14)	O(8)	-38.6(3)	O(7)	C(13)	C(14)	C(15)	-158.5(3)
C(12)	C(13)	C(14)	O(8)	81.2(3)	C(12)	C(13)	C(14)	C(15)	-38.7(4)
O(8)	C(14)	C(15)	O(5)	-70.3(4)	C(13)	C(14)	C(15)	O(5)	42.9(4)
O(9)	C(22)	C(23)	O(10)	33.6(3)	O(9)	C(22)	C(23)	C(24)	-84.8(3)
O(9)	C(22)	C(25)	O(12)	-74.1(4)	O(9)	C(22)	C(25)	C(26)	113.0(4)
C(23)	C(22)	C(25)	O(12)	172.7(3)	C(23)	C(22)	C(25)	C(26)	-0.2(4)
C(25)	C(22)	C(23)	O(10)	153.9(3)	C(25)	C(22)	C(23)	C(24)	35.5(4)
O(10)	C(23)	C(24)	O(11)	-177.3(3)	C(22)	C(23)	C(24)	O(11)	-63.8(4)
O(12)	C(25)	C(26)	O(11)	176.9(3)	O(12)	C(25)	C(26)	C(27)	-4.9(6)
C(22)	C(25)	C(26)	O(11)	-10.8(6)	C(22)	C(25)	C(26)	C(27)	167.4(3)
O(11)	C(26)	C(27)	C(28)	166.1(3)	C(25)	C(26)	C(27)	C(28)	-12.2(5)
C(26)	C(27)	C(28)	C(29)	43.2(4)	C(27)	C(28)	C(29)	O(12)	-61.6(4)
C(27)	C(28)	C(29)	O(14)	59.7(3)	C(27)	C(28)	C(29)	C(30)	179.8(3)
O(12)	C(29)	C(30)	O(13)	-114.1(4)	O(12)	C(29)	C(30)	C(31)	68.5(3)
O(14)	C(29)	C(30)	O(13)	127.6(4)	O(14)	C(29)	C(30)	C(31)	-49.8(4)
C(28)	C(29)	C(30)	O(13)	8.2(5)	C(28)	C(29)	C(30)	C(31)	-169.2(3)
O(13)	C(30)	C(31)	O(15)	-22.6(5)	O(13)	C(30)	C(31)	C(32)	-138.2(4)
C(29)	C(30)	C(31)	O(15)	154.7(3)	C(29)	C(30)	C(31)	C(32)	39.1(4)
O(15)	C(31)	C(32)	O(16)	-37.8(3)	O(15)	C(31)	C(32)	C(33)	-156.6(3)
C(30)	C(31)	C(32)	O(16)	82.2(3)	C(30)	C(31)	C(32)	C(33)	-36.6(4)
O(16)	C(32)	C(33)	O(14)	-67.4(4)	C(31)	C(32)	C(33)	O(14)	45.6(4)

The sign is positive if when looking from atom 2 to atom 3 a clock-wise motion of atom 1 would superimpose it on atom 4.

Table 9. Distances beyond the asymmetric unit out to 3.60 Å

atom O(1)	atom C(36) ¹⁾	distance 3.518(7)	atom O(2)	atom C(19) ²⁾	distance 3.442(6)
O(3)	C(17) ³⁾	3.501(6)	O(3)	C(22)	3.567(4)
O(4)	$O(14)^{4}$	3.294(3)	O(5)	C(6) ⁵⁾	3.599(5)
O(6)	C(1) ⁶⁾	3.209(5)	O(8)	O(10) ³⁾	3.372(4)
O(8)	C(6) ⁵⁾	3.540(5)	O(10)	O(8) ⁵⁾	3.372(4)
O(10)	$C(14)^{5)}$	3.542(4)	O(10)	$C(15)^{5)}$	3.347(4)
O(11)	$C(31)^{7}$	3.363(4)	O(13)	$C(20)^{2)}$	3.353(6)
O(14)	$O(4)^{7)}$	3.294(3)	O(14)	$C(4)^{7}$	3.229(4)
O(16)	$C(13)^{7}$	3.389(4)	O(16)	C(35) ⁸⁾	3.595(6)
C(1)	$O(6)^{2)}$	3.209(5)	C(4)	$O(14)^{4)}$	3.229(4)
C(6)	O(5) ³⁾	3.599(5)	C(6)	O(8) ³⁾	3.540(5)
C(13)	O(16) ⁴⁾	3.389(4)	C(14)	O(10) ³⁾	3.542(4)
C(15)	$O(10)^{3)}$	3.347(4)	C(17)	$O(3)^{5)}$	3.501(6)
C(19)	$O(2)^{6)}$	3.442(6)	C(20)	O(13) ⁶⁾	3.353(6)
C(22)	O(3)	3.567(4)	C(24)	$C(31)^{7}$	3.510(5)
C(31)	$O(11)^{4}$	3.363(4)	C(31)	$C(24)^{4}$	3.510(5)
C(35)	O(16) ⁹⁾	3.595(6)	C(36)	O(1) ¹⁰⁾	3.518(7)

Symmetry Operators:

(1)	-X+1/2,-Y+2,Z+1/2	(2) X-1,Y,Z
(3)	X+1/2-1,-Y+1/2+1,-Z+1	(4) -X+1,Y+1/2,-Z+1/2
(5)	X+1/2,-Y+1/2+1,-Z+1	(6) X+1,Y,Z
(7)	-X+1,Y+1/2-1,-Z+1/2	(8) X+1/2,-Y+1/2+1,-Z
(9)	X+1/2-1,-Y+1/2+1,-Z	(10) -X+1/2,-Y+2,Z+1/2-1

atom	atom	distance	atom	atom	distance
O(1)	H(41) ¹⁾	3.048	O(1)	H(46) ²⁾	2.911
O(1)	$H(47)^{2}$	3.598	O(1)	$H(48)^{2}$	3.523
O(2)	$H(25)^{3)}$	2.905	O(2)	$H(26)^{3)}$	3.095
O(2)	$H(29)^{3)}$	3.167	O(2)	$H(33)^{1)}$	3.318
O(3)	$H(19)^{4}$	2.555	O(3)	H(31)	2.777
O(3)	H(32)	3.147	O(4)	$H(41)^{1}$	3.234
O(5)	$H(1)^{5}$	2.959	O(5)	$H(9)^{5}$	2.708
O(5)	$H(13)^{4)}$	3.322	O(6)	$H(1)^{6}$	3.388
O(6)	$H(2)^{6}$	3.065	O(6)	$H(3)^{6)}$	2.682
O(6)	H(9) ⁵⁾	3.471	O(6)	H(12) ⁵⁾	3.328
O(6)	$H(43)^{1}$	3.264	O(6)	H(48) ⁷⁾	3.563
O(7)	$H(40)^{7}$	3.176	O(7)	H(43) ¹⁾	3.584
O(7)	$H(44)^{1)}$	3.121	O(7)	H(45) ²⁾	3.322
O(7)	H(47) ¹⁾	3.538	O(8)	H(9) ⁵⁾	3.339
O(8)	H(10) ⁵⁾	2.884	O(8)	$H(28)^{4)}$	3.360
O(8)	H(29) ⁴⁾	3.580	O(9)	H(5) ⁸⁾	3.464
O(9)	H(6) ⁸⁾	3.348	O(9)	H(22) ⁹⁾	2.971
O(9)	H(35) ¹⁾	3.275	O(10)	H(11)	3.051
O(10)	H(16) ⁵⁾	3.383	O(10)	H(17) ⁵⁾	2.498
O(11)	H(8) ⁸⁾	2.853	O(11)	$H(20)^{4)}$	3.149
O(11)	$H(21)^{4}$	3.460	O(11)	H(39) ⁸⁾	2.450
O(13)	H(4) ¹⁰⁾	3.372	O(13)	$H(23)^{11}$	3.525
O(13)	$H(24)^{11}_{11}$	2.909	O(13)	H(28) ³⁾	3.572
O(13)	H(29) ³⁾	3.330	O(13)	H(30) ³⁾	2.685
O(13)	$H(34)^{1}$	3.135	O(14)	H(6) ⁸⁾	3.337
O(14)	H(7) ⁸⁾	2.328	O(15)	H(16) ¹¹⁾	2.808
O(15)	H(24) ¹¹⁾	3.510	O(15)	H(32) ¹⁾	3.474
O(15)	H(34) ¹⁾	2.864	O(16)	H(15) ⁸⁾	2.567
O(16)	$H(44)^{12}$	2.953	O(16)	H(45) ¹²⁾	3.360
C(1)	$H(12)^{4}$	3.213	C(1)	H(14) ³⁾	3.053
C(1)	H(25) ³⁾	3.542	C(1)	H(26) ³⁾	3.052
C(1)	H(48) ²⁾	3.595	C(2)	H(30) ¹⁾	3.307
C(2)	H(33) ¹⁾	3.329	C(2)	H(41) ¹⁾	3.358
C(2)	H(42) ¹⁾	3.262	C(2)	H(47) ²⁾	3.468
C(4)	H(36) ¹⁾	2.942	C(4)	H(41) ¹⁾	3.146
C(5)	H(33) ¹⁾	3.584	C(5)	H(36) ¹⁾	3.246
C(6)	H(13) ⁴⁾	3.482	C(6)	H(19) ⁴⁾	2.741

atom	atom	distance	atom	atom	distance
C(6)	H(29) ³⁾	3.505	C(7)	H(13) ⁴⁾	3.441
C(7)	H(31)	3.328	C(7)	H(36) ¹⁾	3.524
C(8)	$H(13)^{4}$	3.561	C(8)	H(36) ¹⁾	3.141
C(9)	H(3) ⁵⁾	3.572	C(9)	$H(17)^{5}$	3.374
C(9)	H(18) ⁵⁾	3.439	C(9)	H(32)	3.422
C(10)	$H(1)^{6}$	3.366	C(10)	$H(9)^{5}$	3.346
C(10)	$H(17)^{5}$	3.406	C(10)	H(18) ⁵⁾	3.519
C(10)	H(26)	3.475	C(11)	$H(9)^{5}$	3.310
C(12)	H(9) ⁵⁾	3.425	C(12)	$H(43)^{1}$	3.551
C(13)	$H(45)^{2}$	3.287	C(14)	$H(45)^{2}$	3.427
C(15)	$H(11)^{4}$	3.252	C(15)	$H(13)^{4}$	3.307
C(15)	$H(26)^{4}$	3.410	C(16)	$H(10)^{5}$	3.586
C(17)	$H(10)^{5}$	3.082	C(17)	H(35) ⁵⁾	3.274
C(17)	$H(39)^{7}$	3.436	C(17)	$H(40)^{7}$	3.249
C(18)	H(30) ⁷⁾	3.197	C(19)	$H(1)^{6}$	3.183
C(19)	$H(2)^{6}$	3.463	C(19)	H(11)	3.535
C(19)	H(14)	3.291	C(19)	$H(17)^{5}$	3.292
C(19)	H(35) ¹⁾	3.130	C(19)	$H(36)^{1}$	3.457
C(19)	$H(37)^{1}$	3.288	C(20)	H(5) ⁸⁾	3.138
C(20)	$H(10)^{6}$	3.589	C(20)	H(38) ⁶⁾	3.295
C(21)	$H(17)^{5}$	3.399	C(23)	H(11)	3.165
C(23)	$H(17)^{5}$	3.538	C(23)	H(39) ⁸⁾	3.484
C(24)	H(8) ⁸⁾	3.376	C(24)	H(39) ⁸⁾	2.811
C(25)	H(20) ⁴⁾	3.587	C(26)	H(7) ⁸⁾	3.219
C(26)	H(8) ⁸⁾	3.243	C(26)	H(20) ⁴⁾	2.945
C(27)	H(7) ⁸⁾	3.096	C(27)	H(8) ⁸⁾	3.333
C(27)	H(20) ⁴⁾	2.908	C(27)	H(27) ⁸⁾	2.811
C(28)	H(20) ⁴⁾	3.363	C(28)	H(25) ⁸⁾	3.562
C(28)	H(27) ⁸⁾	3.263	C(29)	H(7) ⁸⁾	3.440
C(30)	H(34) ¹⁾	3.182	C(31)	H(21) ⁹⁾	3.256
C(31)	$H(34)^{1}_{1}$	2.865	C(32)	H(15) ⁸⁾	3.592
C(32)	H(21) ⁹⁾	3.089	C(32)	$H(44)^{12}$	2.995
C(33)	H(6) ⁸⁾	2.838	C(33)	H(7) ⁸⁾	2.806
C(33)	$H(44)^{12}$	3.410	C(33)	H(46) ¹²⁾	3.554
C(34)	H(15) ⁸⁾	3.598	C(34)	H(16) ¹¹⁾	3.393
C(35)	H(15) ¹¹⁾	3.420	C(35)	$H(16)^{11}_{10}$	3.430
C(35)	H(24) ¹¹⁾	3.580	C(35)	H(40) ¹³⁾	3.387

atom	atom	distance	atom	atom	distance
C(35)	H(47) ¹³⁾	3.152	C(36)	H(3) ¹¹⁾	3.235
C(36)	$H(4)^{11}$	3.448	C(36)	$H(16)^{11}$	3.544
C(36)	$H(41)^{13}$	3.370	C(36)	$H(44)^{12}$	3.587
H(1)	O(5) ⁴⁾	2.959	H(1)	$O(6)^{(3)}$	3.388
H(1)	$C(10)^{3)}$	3.366	H(1)	C(19) ³⁾	3.183
H(1)	$H(12)^{4}$	2.969	H(1)	$H(13)^{3)}$	3.283
H(1)	$H(14)^{3)}$	2.584	H(1)	$H(17)^{4)}$	3.214
H(1)	$H(25)^{3)}$	3.233	H(1)	$H(26)^{3)}$	2.381
H(1)	$H(27)^{3)}$	3.580	H(2)	$O(6)^{(3)}$	3.065
H(2)	$C(19)^{3)}$	3.463	H(2)	$H(14)^{3)}$	2.798
H(2)	$H(25)^{3)}$	3.285	H(2)	$H(26)^{3)}$	2.998
H(2)	$H(27)^{3)}$	3.564	H(2)	$H(37)^{14}$	2.905
H(2)	$H(43)^{14}$	3.301	H(3)	$O(6)^{(3)}$	2.682
H(3)	$C(9)^{4)}$	3.572	H(3)	$C(36)^{2)}$	3.235
H(3)	$H(12)^{4)}$	2.604	H(3)	$H(14)^{3)}$	3.323
H(3)	$H(46)^{2}$	3.290	H(3)	$H(47)^{2)}$	3.179
H(3)	$H(48)^{2}$	2.724	H(4)	O(13) ¹⁴⁾	3.372
H(4)	$C(36)^{2}$	3.448	H(4)	$H(22)^{15)}$	3.595
H(4)	$H(24)^{15)}$	3.254	H(4)	$H(30)^{1)}$	3.315
H(4)	H(41) ¹⁾	3.479	H(4)	H(42) ¹⁾	3.454
H(4)	$H(43)^{14)}$	3.295	H(4)	$H(45)^{14}$	3.457
H(4)	$H(46)^{2}$	3.427	H(4)	H(47) ²⁾	2.756
H(5)	O(9) ¹⁾	3.464	H(5)	$C(20)^{1)}$	3.138
H(5)	H(25) ³⁾	3.443	H(5)	H(28) ¹⁾	2.770
H(5)	H(30) ¹⁾	2.689	H(5)	H(33) ¹⁾	2.743
H(5)	H(37) ¹⁴⁾	3.382	H(6)	O(9) ¹⁾	3.348
H(6)	O(14) ¹⁾	3.337	H(6)	C(33) ¹⁾	2.838
H(6)	H(22) ¹⁵⁾	3.550	H(6)	H(30) ¹⁾	3.423
H(6)	H(33) ¹⁾	3.129	H(6)	$H(41)^{1)}_{1}$	2.596
H(6)	H(42) ¹⁾	2.347	H(6)	H(47) ²⁾	3.569
H(7)	O(14) ¹⁾	2.328	H(7)	$C(26)^{(1)}_{(1)}$	3.219
H(7)	$C(27)^{1}_{1}$	3.096	H(7)	$C(29)^{1)}_{1}$	3.440
H(7)	C(33) ¹⁾	2.806	H(7)	H(36) ¹⁾	2.369
H(7)	H(41) ¹⁾	2.547	H(7)	H(42) ¹⁾	3.006
H(8)	O(11) ¹⁾	2.853	H(8)	$C(24)^{1)}_{1}$	3.376
H(8)	$C(26)^{1}$	3.243	H(8)	C(27) ¹⁾	3.333
H(8)	H(29) ³⁾	3.576	H(8)	H(31)	3.300

atom	atom	distance	atom	atom	distance
H(8)	H(33) ¹⁾	3.016	H(8)	H(36) ¹⁾	2.677
H(9)	O(5) ⁴⁾	2.708	H(9)	$O(6)^{4}$	3.471
H(9)	$O(8)^{4)}$	3.339	H(9)	$C(10)^{4)}$	3.346
H(9)	$C(11)^{4)}$	3.310	H(9)	$C(12)^{4)}$	3.425
H(9)	$H(13)^{4)}$	2.625	H(9)	$H(19)^{4)}$	3.022
H(10)	$O(8)^{4)}$	2.884	H(10)	$C(16)^{4)}$	3.586
H(10)	$C(17)^{4)}$	3.082	H(10)	$C(20)^{3)}$	3.589
H(10)	$H(19)^{4)}$	2.251	H(10)	$H(20)^{4)}$	3.287
H(10)	H(29) ³⁾	2.730	H(11)	O(10)	3.051
H(11)	$C(15)^{5)}$	3.252	H(11)	C(19)	3.535
H(11)	C(23)	3.165	H(11)	$H(17)^{5}$	2.641
H(11)	H(18) ⁵⁾	2.951	H(11)	H(26)	3.115
H(11)	H(27)	3.261	H(11)	H(31)	3.206
H(11)	H(32)	2.573	H(12)	$O(6)^{4)}$	3.328
H(12)	$C(1)^{5}$	3.213	H(12)	H(1) ⁵⁾	2.969
H(12)	H(3) ⁵⁾	2.604	H(12)	$H(13)^{4}$	3.447
H(12)	H(18) ⁵⁾	3.383	H(13)	O(5) ⁵⁾	3.322
H(13)	$C(6)^{5}$	3.482	H(13)	$C(7)^{5}$	3.441
H(13)	$C(8)^{(5)}$	3.561	H(13)	$C(15)^{5}$	3.307
H(13)	$H(1)^{6}$	3.283	H(13)	H(9) ⁵⁾	2.625
H(13)	$H(12)^{5}_{-}$	3.447	H(13)	$H(17)^{5}$	3.141
H(13)	H(18) ⁵⁾	2.930	H(14)	$C(1)^{6)}_{0}$	3.053
H(14)	C(19)	3.291	H(14)	H(1) ⁶⁾	2.584
H(14)	H(2) ⁶⁾	2.798	H(14)	H(3) ⁶⁾	3.323
H(14)	H(17) ⁵⁾	3.185	H(14)	H(26)	2.671
H(14)	H(27)	3.035	H(15)	O(16) ¹⁾	2.567
H(15)	$C(32)^{1}$	3.592	H(15)	$C(34)^{1}$	3.598
H(15)	$C(35)^{2}$	3.420	H(15)	H(41) ¹⁾	3.066
H(15)	H(43) ¹⁾	3.384	H(15)	$H(44)^{2}$	3.293
H(15)	$H(45)^{2}$	2.751	H(15)	$H(46)^{2}$	3.157
H(15)	$H(47)^{1}_{0}$	3.580	H(16)	O(10) ⁴⁾	3.383
H(16)	O(15) ²⁾	2.808	H(16)	$C(34)^{2}$	3.393
H(16)	$C(35)^{2}$	3.430	H(16)	$C(36)^{2}$	3.544
H(16)	H(34) ⁴⁾	3.460	H(16)	H(45) ²⁾	2.714
H(16)	H(46) ²⁾	3.080	H(17)	O(10) ⁴⁾	2.498
H(17)	$C(9)^{4}$	3.374	H(17)	$C(10)^{4}$	3.406
H(17)	C(19) ⁴⁾	3.292	H(17)	C(21) ⁴⁾	3.399

atom	atom	distance	atom	atom	distance
H(17)	$C(23)^{4)}$	3.538	H(17)	H(1) ⁵⁾	3.214
H(17)	$H(11)^{4}$	2.641	H(17)	H(13) ⁴⁾	3.141
H(17)	$H(14)^{4}$	3.185	H(17)	H(26) ⁴⁾	2.507
H(17)	$H(32)^{4)}$	3.451	H(18)	$C(9)^{4)}$	3.439
H(18)	$C(10)^{4)}$	3.519	H(18)	$H(11)^{4)}$	2.951
H(18)	$H(12)^{4)}$	3.383	H(18)	$H(13)^{4)}$	2.930
H(18)	H(46) ²⁾	2.992	H(18)	H(48) ²⁾	3.483
H(19)	O(3) ⁵⁾	2.555	H(19)	C(6) ⁵⁾	2.741
H(19)	H(9) ⁵⁾	3.022	H(19)	H(10) ⁵⁾	2.251
H(19)	H(32) ⁵⁾	3.288	H(20)	O(11) ⁵⁾	3.149
H(20)	C(25) ⁵⁾	3.587	H(20)	C(26) ⁵⁾	2.945
H(20)	$C(27)^{5}$	2.908	H(20)	C(28) ⁵⁾	3.363
H(20)	H(10) ⁵⁾	3.287	H(20)	H(35) ⁵⁾	2.329
H(20)	H(38) ⁵⁾	2.834	H(20)	H(39) ⁷⁾	3.419
H(21)	O(11)	3.460	H(21)	C(31) ⁷⁾	3.256
H(21)	$C(32)^{7}$	3.089	H(21)	H(32) ⁵⁾	3.296
H(21)	H(35) ⁵⁾	3.553	H(21)	H(39) ⁷⁾	2.637
H(21)	H(40) ⁷⁾	2.330	H(21)	H(42) ⁷⁾	3.428
H(22)	O(9) ⁷⁾	2.971	H(22)	$H(4)^{16}$	3.595
H(22)	H(6) ¹⁶⁾	3.550	H(22)	H(25) ⁷⁾	3.569
H(22)	H(30) ⁷⁾	2.831	H(22)	H(35) ⁵⁾	3.253
H(22)	H(42) ⁷⁾	3.041	H(23)	O(13) ²⁾	3.525
H(23)	$H(25)_{-}^{7)}$	3.296	H(23)	H(28) ⁴⁾	3.145
H(23)	H(30) ⁷⁾	3.110	H(23)	H(34) ⁴⁾	3.093
H(24)	O(13) ²⁾	2.909	H(24)	O(15) ²⁾	3.510
H(24)	C(35) ²⁾	3.580	H(24)	$H(4)^{16}$	3.254
H(24)	H(30) ⁷⁾	3.117	H(24)	$H(45)^{2}$	2.690
H(25)	O(2) ⁶⁾	2.905	H(25)	C(1) ⁶⁾	3.542
H(25)	$C(28)^{1}$	3.562	H(25)	H(1) ⁶⁾	3.233
H(25)	H(2) ⁶⁾	3.285	H(25)	H(5) ⁶⁾	3.443
H(25)	H(22) ⁹⁾	3.569	H(25)	H(23) ⁹⁾	3.296
H(25)	H(35) ¹⁾	3.071	H(25)	H(37) ¹⁾	2.997
H(26)	O(2) ⁶⁾	3.095	H(26)	$C(1)^{6}$	3.052
H(26)	C(10)	3.475	H(26)	C(15) ⁵⁾	3.410
H(26)	H(1) ⁶⁾	2.381	H(26)	H(2) ⁶⁾	2.998
H(26)	H(11)	3.115	H(26)	H(14)	2.671
H(26)	H(17) ⁵⁾	2.507	H(27)	C(27) ¹⁾	2.811

atom	atom	distance	atom	atom	distance
H(27)	C(28) ¹⁾	3.263	H(27)	H(1) ⁶⁾	3.580
H(27)	$H(2)^{6}$	3.564	H(27)	H(11)	3.261
H(27)	H(14)	3.035	H(27)	H(35) ¹⁾	2.431
H(27)	H(36) ¹⁾	2.526	H(27)	$H(37)^{1)}$	2.795
H(28)	$O(8)^{5}$	3.360	H(28)	O(13) ⁶⁾	3.572
H(28)	H(5) ⁸⁾	2.770	H(28)	H(23) ⁵⁾	3.145
H(28)	H(38) ⁶⁾	2.848	H(29)	$O(2)^{6)}$	3.167
H(29)	O(8) ⁵⁾	3.580	H(29)	O(13) ⁶⁾	3.330
H(29)	C(6) ⁶⁾	3.505	H(29)	H(8) ⁶⁾	3.576
H(29)	H(10) ⁶⁾	2.730	H(29)	H(38) ⁶⁾	3.173
H(30)	O(13) ⁶⁾	2.685	H(30)	C(2) ⁸⁾	3.307
H(30)	C(18) ⁹⁾	3.197	H(30)	H(4) ⁸⁾	3.315
H(30)	H(5) ⁸⁾	2.689	H(30)	H(6) ⁸⁾	3.423
H(30)	H(22) ⁹⁾	2.831	H(30)	H(23) ⁹⁾	3.110
H(30)	H(24) ⁹⁾	3.117	H(30)	H(38) ⁶⁾	3.331
H(31)	O(3)	2.777	H(31)	C(7)	3.328
H(31)	H(8)	3.300	H(31)	H(11)	3.206
H(31)	H(35) ¹⁾	3.179	H(31)	H(36) ¹⁾	3.143
H(32)	O(3)	3.147	H(32)	O(15) ⁸⁾	3.474
H(32)	C(9)	3.422	H(32)	H(11)	2.573
H(32)	H(17) ⁵⁾	3.451	H(32)	H(19) ⁴⁾	3.288
H(32)	H(21) ⁴⁾	3.296	H(32)	H(39) ⁸⁾	3.099
H(33)	O(2) ⁸⁾	3.318	H(33)	$C(2)^{(8)}$	3.329
H(33)	$C(5)^{8)}$	3.584	H(33)	H(5) ⁸⁾	2.743
H(33)	H(6) ⁸⁾	3.129	H(33)	H(8) ⁸⁾	3.016
H(34)	O(13) ⁸⁾	3.135	H(34)	O(15) ⁸⁾	2.864
H(34)	C(30) ⁸⁾	3.182	H(34)	C(31) ⁸⁾	2.865
H(34)	H(16) ⁵⁾	3.460	H(34)	H(23) ⁵⁾	3.093
H(34)	H(39) ⁸⁾	2.391	H(35)	O(9) ⁸⁾	3.275
H(35)	C(17) ⁴⁾	3.274	H(35)	C(19) ⁸⁾	3.130
H(35)	H(20) ⁴⁾	2.329	H(35)	H(21) ⁴⁾	3.553
H(35)	H(22) ⁴⁾	3.253	H(35)	H(25) ⁸⁾	3.071
H(35)	H(27) ⁸⁾	2.431	H(35)	H(31) ⁸⁾	3.179
H(36)	$C(4)^{(8)}$	2.942	H(36)	C(5) ⁸⁾	3.246
H(36)	C(7) ⁸⁾	3.524	H(36)	C(8) ⁸⁾	3.141
H(36)	C(19) ⁸⁾	3.457	H(36)	H(7) ⁸⁾	2.369
H(36)	H(8) ⁸⁾	2.677	H(36)	H(27) ⁸⁾	2.526

atom	atom	distance	atom	atom	distance
H(36)	H(31) ⁸⁾	3.143	H(37)	C(19) ⁸⁾	3.288
H(37)	$H(2)^{10}$	2.905	H(37)	$H(5)^{10}$	3.382
H(37)	H(25) ⁸⁾	2.997	H(37)	H(27) ⁸⁾	2.795
H(38)	$C(20)^{3)}$	3.295	H(38)	$H(20)^{4)}$	2.834
H(38)	$H(28)^{3)}$	2.848	H(38)	$H(29)^{3)}$	3.173
H(38)	$H(30)^{3)}$	3.331	H(39)	$O(11)^{1}$	2.450
H(39)	$C(17)^{9)}$	3.436	H(39)	$C(23)^{1)}$	3.484
H(39)	$C(24)^{1)}$	2.811	H(39)	H(20) ⁹⁾	3.419
H(39)	$H(21)^{9}$	2.637	H(39)	$H(32)^{1)}$	3.099
H(39)	$H(34)^{1)}$	2.391	H(40)	O(7) ⁹⁾	3.176
H(40)	$C(17)^{9)}$	3.249	H(40)	$C(35)^{12}$	3.387
H(40)	$H(21)^{9}$	2.330	H(40)	$H(44)^{12}$	2.466
H(41)	$O(1)^{8}$	3.048	H(41)	O(4) ⁸⁾	3.234
H(41)	$C(2)^{8)}$	3.358	H(41)	$C(4)^{8)}$	3.146
H(41)	$C(36)^{12}$	3.370	H(41)	$H(4)^{(8)}$	3.479
H(41)	H(6) ⁸⁾	2.596	H(41)	$H(7)^{8)}$	2.547
H(41)	H(15) ⁸⁾	3.066	H(41)	$H(44)^{12}$	2.911
H(41)	$H(46)^{12}$	2.609	H(41)	$H(47)^{12}$	3.328
H(42)	C(2) ⁸⁾	3.262	H(42)	H(4) ⁸⁾	3.454
H(42)	H(6) ⁸⁾	2.347	H(42)	H(7) ⁸⁾	3.006
H(42)	H(21) ⁹⁾	3.428	H(42)	H(22) ⁹⁾	3.041
H(43)	O(6) ⁸⁾	3.264	H(43)	O(7) ⁸⁾	3.584
H(43)	C(12) ⁸⁾	3.551	H(43)	$H(2)^{10)}$	3.301
H(43)	H(4) ¹⁰⁾	3.295	H(43)	H(15) ⁸⁾	3.384
H(43)	$H(47)^{13}$	3.104	H(44)	O(7) ⁸⁾	3.121
H(44)	O(16) ¹³⁾	2.953	H(44)	$C(32)^{13)}$	2.995
H(44)	$C(33)^{13)}$	3.410	H(44)	$C(36)^{13}$	3.587
H(44)	$H(15)^{11}$	3.293	H(44)	$H(40)^{13}$	2.466
H(44)	$H(41)^{13}$	2.911	H(44)	$H(47)^{13}$	3.036
H(44)	$H(48)^{13}$	3.496	H(45)	O(7) ¹¹⁾	3.322
H(45)	O(16) ¹³⁾	3.360	H(45)	$C(13)^{11}$	3.287
H(45)	$C(14)^{11}$	3.427	H(45)	$H(4)^{10}$	3.457
H(45)	H(15) ¹¹⁾	2.751	H(45)	$H(16)^{11}$	2.714
H(45)	H(24) ¹¹⁾	2.690	H(45)	$H(47)^{13}$	2.790
H(46)	O(1) ¹¹⁾	2.911	H(46)	C(33) ¹³⁾	3.554
H(46)	H(3) ¹¹⁾	3.290	H(46)	H(4) ¹¹⁾	3.427
H(46)	$H(15)^{11}$	3.157	H(46)	H(16) ¹¹⁾	3.080

atom	atom	distance	atom	atom	distance
H(46)	H(18) ¹¹⁾	2.992	H(46)	H(41) ¹³⁾	2.609
H(47)	$O(1)^{(1)}$	3.598	H(47)	O(7) ⁸⁾	3.538
H(47)	$C(2)^{11}$	3.468	H(47)	C(35) ¹²⁾	3.152
H(47)	H(3) ¹¹⁾	3.179	H(47)	$H(4)^{11}$	2.756
H(47)	H(6) ¹¹⁾	3.569	H(47)	H(15) ⁸⁾	3.580
H(47)	H(41) ¹³⁾	3.328	H(47)	H(43) ¹²⁾	3.104
H(47)	H(44) ¹²⁾	3.036	H(47)	H(45) ¹²⁾	2.790
H(48)	O(1) ¹¹⁾	3.523	H(48)	O(6) ⁹⁾	3.563
H(48)	$C(1)^{11}$	3.595	H(48)	H(3) ¹¹⁾	2.724
H(48)	H(18) ¹¹⁾	3.483	H(48)	H(44) ¹²⁾	3.496

Symmetry Operators:

(1) -X+1,Y+1/2,-Z+1/2	(2) -X+1/2,-Y+2,Z+1/2
(3) X-1,Y,Z	(4) X+1/2-1,-Y+1/2+1,-Z+1
(5) X+1/2,-Y+1/2+1,-Z+1	(6) X+1,Y,Z
(7) -X+1/2+1,-Y+2,Z+1/2	(8) -X+1,Y+1/2-1,-Z+1/2
(9) -X+1/2+1,-Y+2,Z+1/2-1	(10) -X,Y+1/2-1,-Z+1/2
(11) -X+1/2,-Y+2,Z+1/2-1	(12) X+1/2,-Y+1/2+1,-Z
(13) X+1/2-1,-Y+1/2+1,-Z	(14) -X,Y+1/2,-Z+1/2
(15) X+1/2-1,-Y+1/2+2,-Z+	1 (16) X+1/2,-Y+1/2+2,-Z+1