## **Supporting Information**

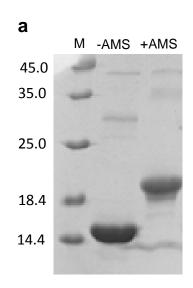
## Targeting and maturation of Erv1/ALR in the mitochondrial intermembrane space

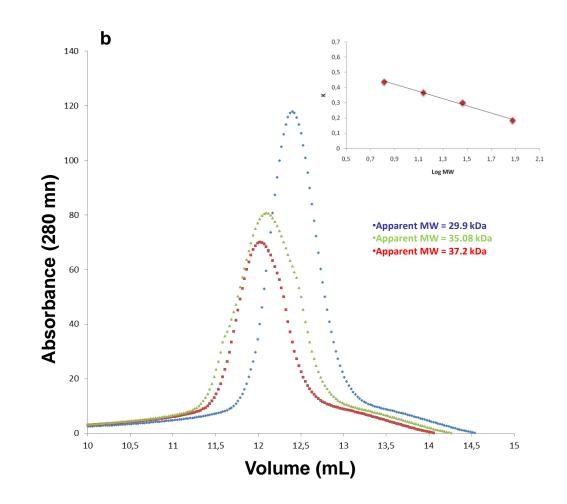
Emmanouela Kallergi, Maria Andreadaki, Paraskevi Kritsiligkou, Nitsa Katrakili, Charalambos Pozidis, Kostas Tokatlidis, Lucia Banci, Ivano Bertini, Chiara Cefaro, Simone Ciofi-Baffoni, Karolina Gajda, Riccardo Peruzzini **Supplementary Table 1.** <sup>15</sup>N transverse relaxation rates  $R_2$  (s<sup>-1</sup>) and heteronuclear <sup>15</sup>N{<sup>1</sup>H}-NOEs per residue of fully reduced FAD-free sf-ALR and *E. coli*-purified sf-ALR, collected at 600 MHz in 50 mM phosphate buffer pH 7 at 308K.

|      | <sup>15</sup> N R <sub>2</sub> |                         | <sup>15</sup> N { <sup>1</sup> H}-NOEs |                         |
|------|--------------------------------|-------------------------|----------------------------------------|-------------------------|
|      | Fully reduced FAD-free ALR     | E. coli-purified sf-ALR | Fully reduced FAD-free ALR             | E. coli-purified sf-ALR |
| D8   | 7.65                           | 5.74                    | 0.35                                   | 0.34                    |
| Т9   | 7.50                           | 9.68                    | -0.07                                  | 0.30                    |
| K10  | 9.63                           | 9.86                    | -0.07                                  | 0.28                    |
| F11  | 8.28                           | 11.38                   | 0.23                                   | 0.35                    |
| R12  | 9.19                           | 16.70                   | 0.06                                   | 0.39                    |
| E13  | 11.14                          | 13.06                   | 0.29                                   | 0.19                    |
| D14  | 9.33                           | 19.60                   | 0.05                                   | 0.30                    |
| C15  | 17.56                          | 18.56                   | 0.35                                   | 0.68                    |
| Mean | 10.04                          | 13.07                   | 0.15                                   | 0.36                    |
| A34  | 23.89                          | 20.01                   | 0.98                                   | 0.98                    |
| A35  | 18.08                          | 19.32                   | 0.61                                   | 0.67                    |
| Y36  | 23.46                          | 16.73                   | 0.85                                   | 0.84                    |
| Y37  | 24.69                          | 17.23                   | 0.86                                   | 0.78                    |
| L40  | 23.03                          | 16.83                   | 0.74                                   | 0.84                    |
| T42  | 22.65                          | 16.31                   | 0.71                                   | 0.83                    |
| Q47  | 27.60                          | 17.96                   | 0.52                                   | 0.87                    |
| D48  | 24.35                          | 15.24                   | 0.92                                   | 0.87                    |
| M49  | 17.44                          | 18.82                   | 0.54                                   | 0.77                    |
| A50  | 15.13                          | 18.42                   | 0.50                                   | 0.70                    |
| S57  | 31.19                          | 17.95                   | 0.65                                   | 0.99                    |
| K58  | 21.86                          | 16.92                   | 0.60                                   | 0.95                    |
| F59  | 20.91                          | 15.48                   | 0.59                                   | 0.75                    |
| T80  | 29.37                          | 13.14                   | 0.77                                   | 0.97                    |
| R81  | 22.96                          | 19.22                   | 0.65                                   | 0.67                    |
| T82  | 34.02                          | 15.86                   | 0.63                                   | 0.92                    |
| F86  | 25.29                          | 18.93                   | 0.67                                   | 0.83                    |
| T87  | 23.00                          | 16.90                   | 0.47                                   | 0.85                    |
| Mean | 23.83                          | 17.29                   | 0.68                                   | 0.84                    |
| G102 | 12.78                          | 15.82                   | 0.28                                   | 0.85                    |
| K110 | 13.89                          | 19.03                   | 0.46                                   | 0.72                    |
| V111 | 9.86                           | 20.33                   | -0.06                                  | 0.78                    |
| D112 | 9.38                           | 20.87                   | 0.11                                   | 0.73                    |
| E113 | 10.87                          | 22.94                   | -0.04                                  | 0.81                    |
| R114 | 12.69                          | 17.23                   | 0.23                                   | 0.74                    |
| W115 | 11.90                          | 19.84                   | 0.22                                   | 0.65                    |
| R116 | 9.41                           | 19.05                   | 0.19                                   | 0.79                    |
| D117 | 8.67                           | 19.37                   | 0.28                                   | 0.44                    |
| G118 | 8.24                           | 16.85                   | 0.03                                   | 0.68                    |
| W119 |                                | 19.98                   | 0.25                                   | 0.69                    |
| K120 | 8.12                           | 15.26                   | -0.05                                  | 0.81                    |
| D121 |                                | 17.45                   | 0.02                                   | 0.71                    |
| G122 | 5.51                           | 18.07                   | -0.48                                  | 0.59                    |
| S123 | 5.55                           | 17.87                   | -0.70                                  | 0.75                    |
| C124 | 3.90                           | 19.00                   | 0.37                                   | 0.75                    |
| D125 | 2.38                           | 13.51                   | -1.49                                  | 0.55                    |
| Mean |                                | 18.38                   | -0.02                                  | 0.709                   |

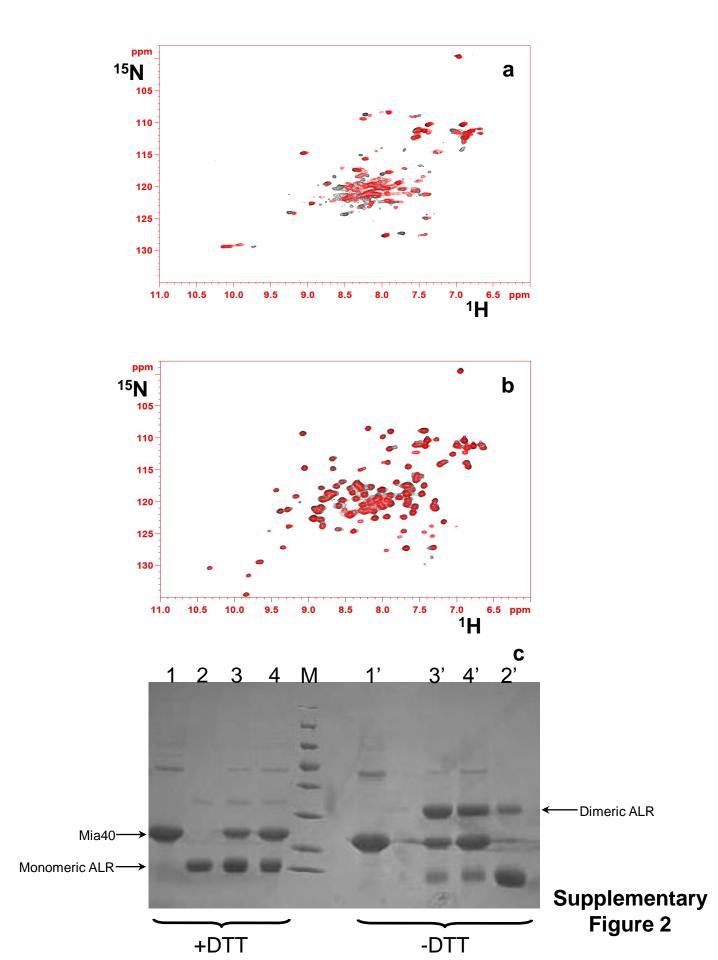
## **Supplementary Figure 1. Cysteine redox and aggregation state of fully reduced FAD-free sf-ALR**. (a) non reducing SDS-PAGE of fully reduced FAD-free sf-ALR before and after modification with 4-acetamido-4-maleimidylstilbene-2,2-disulfonic acid (AMS), a gel shift reagent selective for free thiol groups; (b) analytical size-exclusion chromatography comparison of apparent molecular size. Elution profiles of *E. coli* purified sf-ALR (blue dots), FAD-free sf-ALR in the absence (green dots) and the presence (red dots) of 100 mM DTT separated on a Superdex 75 HR 10/30 (Amersham Pharmacia Biotech). In the inset the calibration of gel filtration column obtained from standard profiles corresponding to conalbumin (75 KDa), carbonic anhydrase (29 KDa), ribonuclease (13.7 KDa) and aprotinin (6.5 KDa) and the corresponding apparent MWs of the analyzed ALR states are reported.

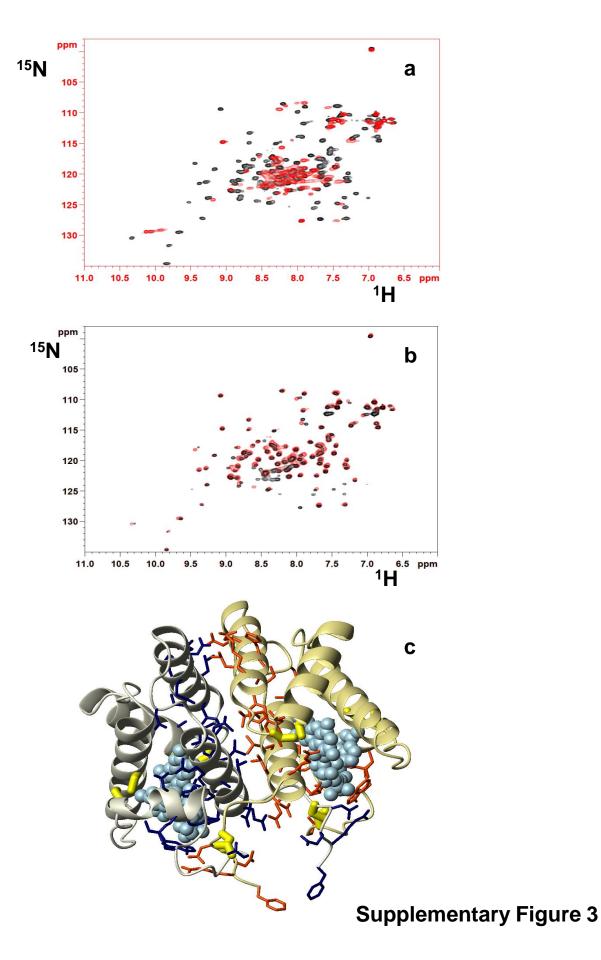
Supplementary Figure 2. Maturation process of sf-ALR by sequential addition of Mia40<sub>38-S</sub> and FAD. (a) Overlay of <sup>1</sup>H-<sup>15</sup>N HSQC spectra of fully reduced FAD-free sf-ALR before (in red) and after addition of 2 equivalents of Mia40<sub>38-S</sub> (in black); (b) overlay of <sup>1</sup>H-<sup>15</sup>N HSQC spectra of a 1:2:1 fully reduced FAD-free sf-ALR/Mia40<sub>38-S</sub>/FAD mixture (in red) and of *E. coli*-purified sf-ALR state (in black); (c) non reducing SDS-PAGE of Mia40<sub>38-S</sub> (1, 1'), fully reduced FAD-free sf-ALR (2, 2') and 1:1 (3, 3') and 1:2 (4, 4') fully reduced FAD-free sf-ALR/Mia40<sub>38-S</sub> mixtures in the presence or absence of 150 mM DTT.

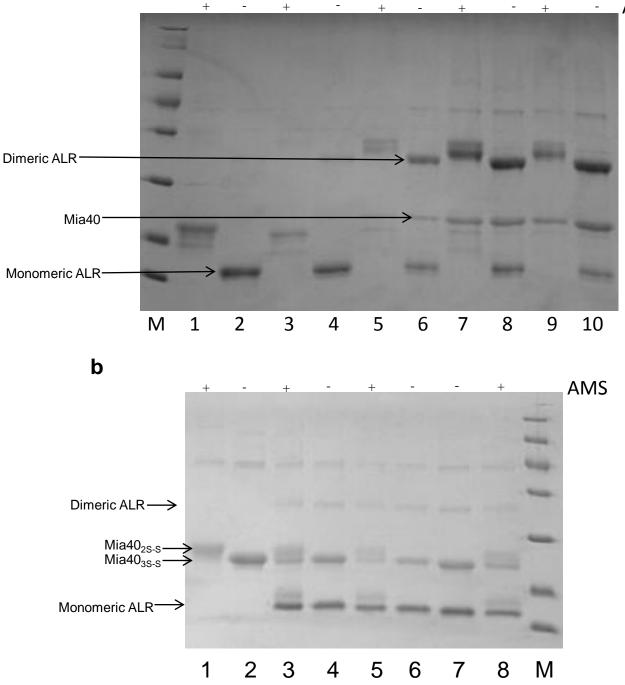

**Supplementary Figure 3.** Maturation process of sf-ALR by sequential addition of FAD and Mia40<sub>3S-S</sub>. (a) Overlay of <sup>1</sup>H-<sup>15</sup>N HSQC spectra of fully reduced FAD-free sf-ALR before (in red) and after addition of 1 equivalent of FAD (in black); (b) overlay of <sup>1</sup>H-<sup>15</sup>N HSQC spectra of a 1:2:1 fully reduced FAD-free sf-ALR/Mia40<sub>3S-S</sub>/FAD mixture (in black) and of *E. coli*-purified sf-ALR state (in red); (c) residues showing backbone chemical shift variations comparing the <sup>1</sup>H-<sup>15</sup>N HSQC maps of the 1:2:1 fully reduced FAD-free sf-ALR/Mia40<sub>3S-S</sub>/FAD mixture with that of the *E. coli*-purified sf-ALR state are mapped in blue and orange on the ribbon representation of the two


subunits of *E. coli*-purified sf-ALR. FAD is in light blue and cysteine residues are shown as yellow sticks.

Supplementary Figure 4. Non reducing SDS-PAGE analysis of FAD and Mia40<sub>38-8</sub>/Mia40<sub>28-8</sub> mixture. (a) (1, 2) Fully reduced FAD-free sf-ALR before and after modification with 4-acetamido-4-maleimidylstilbene-2,2-disulfonic acid (AMS); (3, 4) a 1:1 fully reduced FAD-free sf-ALR/FAD mixture before and after AMS modification; (5, 6) a 1:1:0.5 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>38-8</sub> mixture before and after AMS modification; (7, 8) a 1:1:1 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>38-8</sub> mixture before and after AMS modification; (9, 10) a 1:1:1.5 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>38-8</sub> mixture before and after AMS modification; (9, 10) a 1:1:1.5 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (5, 6) a 1:1:1 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification; (7, 8) a 1:2:2 fully reduced FAD-free sf-ALR/FAD/Mia40<sub>28-8</sub> mixture before and after AMS modification.


Supplementary Figure 5. Catalytic activity of the reconstituted sf-ALR enzyme. ALR-mediated reduction of cytochrome c was measured over time by measuring absorbance increase at 550 nm in the following reconstitution procedures: (i) fully reduced FAD-free sf-ALR was mixed with oxidized cytochrome c (black line); (ii) fully reduced FAD-free sf-ALR was mixed with Mia40<sub>3S-S</sub> and, after 1 h, with FAD and oxidized cytochrome c (blue line); (iii) fully reduced FAD-free sf-ALR was mixed FAD-free sf-ALR was mixed with FAD and, after 1 h, with Mia40<sub>3S-S</sub> and oxidized cytochrome c (magenta line); (iv) fully reduced FAD-free sf-ALR was mixed with FAD-free sf-ALR was mixed with FAD-free sf-ALR was mixed with FAD and oxidized cytochrome c (green line); (v) fully reduced FAD-free sf-ALR was mixed with Mia40<sub>3S-S</sub> and, after 1 h, with oxidized cytochrome c (olive line). In the inset, a selected region of the absorbance spectrum of oxidized cytochrome c (red line) is compared with that collected on the mixture (ii) (blue line) to show that

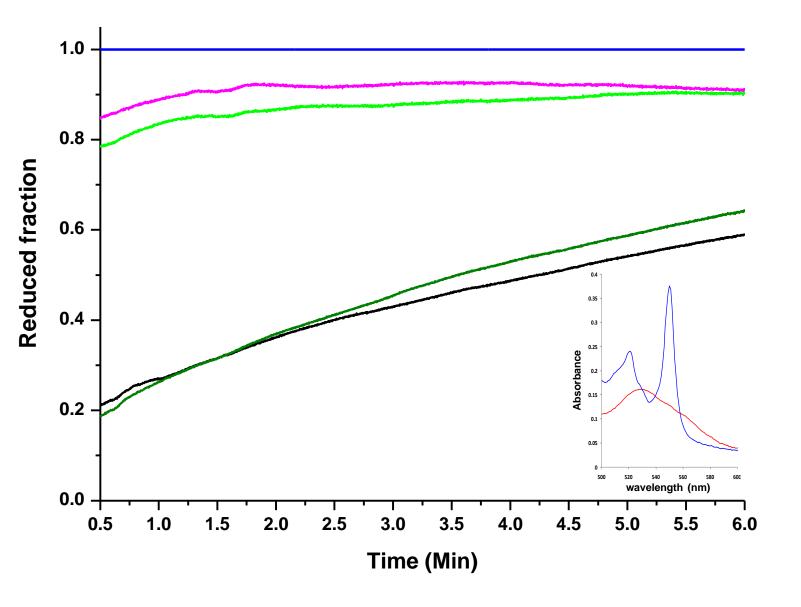

the observed increase of absorbance at 550 nm allows to monitor the electron transfer from ALR to cytochrome c.






**Supplementary Figure 1** 








а

**Supplementary Figure 4** 

AMS



**Supplementary Figure 5**