Ferrocene-conjugated Copper(II) Complexes of L-Methionine and Phenanthroline Bases: Synthesis, Structure and Photocytotoxic Activity

Tridib K. Goswami,[†] Sudarshan Gadadhar,[‡] Mithun Roy,[†] Munirathinam Nethaji,[†] Anjali A. Karande,^{*,‡} and Akhil R. Chakravarty^{*,†}

[†]Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

[‡]Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India

Supplementary Data

Corresponding authors. E-mail: anjali@biochem.iisc.ernet.in, Fax: 91-80-23600814 (AAK) and E-mail: arc@ipc.iisc.ernet.in, Fax: 91-80-23600683 (ARC)

Cu(1)–O(1)	1.934(3)	O(1)–Cu(1)–N(3)	82.15(16)
Cu(1)–O(2')	2.220(4)	O(1)-Cu(1)-O(2')	91.25(15)
Cu(1)–N(1)	2.019(5)	N(1)-Cu(1)-N(3)	152.76(18)
Cu(1)–N(2)	1.994(5)	N(1)-Cu(1)-O(2')	99.70(16)
Cu(1)–N(3)	2.039(4)	N(2)-Cu(1)-N(1)	82.54(18)
O(1)-Cu(1)-N(1)	94.78(16)	N(2)-Cu(1)-O(2')	89.51(16)
O(1)-Cu(1)-N(2)	177.30(18)	N(2)-Cu(1)-N(3)	100.10(18)
		N(3)-Cu(1)-O(2')	107.40(16)

 Table S1. Selected bond distances (Å) and bond angles (°) of [Cu(Ph-met)(phen)](ClO₄) (5a)

Symmetry transformation for O(2'): x-1/2, -y+3/2, -z+2.

Table S2 . IC_{50} values of the ligands in HeLa and MCF-7 Cells

Compound	HeLa		MCF-7	
	IC ₅₀ (µM)	IC ₅₀ (μM)	IC ₅₀ (µM)	IC ₅₀ (µM)
	dark ^a	visible light ^b	dark ^a	visible light ^b
Fc-metH	>200	>200	>200	>200
Ph-metH	>200	>200	>200	>200
phen	>200	186.7 ± 4.0	131.8 ± 2.0	115.2 ± 2.0
dpq	>200	>200	108.8 ± 2.0	93.5 ± 3.0
dppz	>200	52.3 ± 0.8	96.6 ± 1.0	77.8 ± 2.0
nip	76.86 ± 1.20	47.88 ± 1.04	62.38 ± 1.18	35.6 ± 0.9
Cu(NO ₃) ₂ ·3H ₂ O	>200	169.0 ± 4.0	-	-

^{*a*} The IC₅₀ values correspond to 24 h incubation in dark. ^{*b*} The IC₅₀ values correspond to 4 h incubation in dark followed by photo-exposure to visible light (400-700 nm, 10 J cm⁻²).

	$[Cu(Ph-met)(phen)](ClO_4)$ (5a)
Empirical formula	$C_{24}H_{24}ClCuN_3O_6S$
Fw, g M ⁻¹	581.51
Crystal system	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
<i>a</i> , Å	7.4256(7)
<i>b</i> , Å	11.2727(10)
<i>c</i> , Å	29.133(3)
α, °	90
<i>β</i> , °	90
γ, °	90
$V, Å^3$	2438.6(4)
Ζ	4
<i>Т</i> , К	293(2)
$\rho_{\rm calcd}$, g cm ⁻³	1.584
λ , Å (Mo-K _{α})	0.71073
μ , cm ⁻¹	1.137
Data / restraints / parameters	7357 / 0 / 325
<i>F</i> (000)	1196
Goodness-of-fit	0.861
$R(F_{o})^{a}, I \geq 2\sigma(I) [wR(F_{o})^{b}]$	0.0613 [0.1449]
R (all data) [wR (all data)]	0.1552 [0.1905]
Largest diff. peak and hole (e $Å^{-3}$)	0.705, -0.421

Table S3. Selected Crystallographic Data for the complex [Cu(Ph-met)(phen)](ClO₄) (5a)

^a $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, ^b $wR = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o)^2]\}^{\frac{1}{2}}; w = [\sigma^2 (F_o)^2 + (AP)^2 + BP]^{-1},$ where $P = (F_o^2 + 2F_c^2) / 3$, A = 0.1095; B = 0.

Figure S1. The ESI-MS spectrum of $[Cu(Fc-met)(phen)](NO_3)$ (1) in aqueous MeOH showing prominent parent ion peak at 589.07 (m/z) which corresponds to $[M-(NO_3^-)]^+$. The peak at 591 m/z unit is due to the isotopic abundance of ⁶⁵Cu.

Figure S2. The ESI-MS spectrum of $[Cu(Fc-met)(dpq)](NO_3)$ (2) in aqueous MeOH showing prominent parent ion peakat 640.93 (m/z) which corresponds to $[M-(NO_3^-)]^+$. The peak at ~2 m/z unit higher at 642.87 is due to the isotopic abundance of ⁶⁵Cu.

Figure S3. The ESI-MS spectrum of $[Cu(Fc-met)(dppz)](NO_3)$ (**3**) in aqueous MeOH showing prominent parent ion peakat 691 (m/z) which corresponds to $[M-(NO_3^-)]^+$. The peak at 693 m/z is due to the isotopic abundance of ⁶⁵Cu.

Figure S4. The ESI-MS spectrum of $[Cu(Fc-met)(nip)](NO_3)$ (**4**) in aqueous MeOH showing prominent parent ion peak(m/z) at 754.93 which corresponds to $[M-(NO_3^-)]^+$. The peak at 756.94 m/z unit is due to the isotopic abundance of ⁶⁵Cu.

Figure S5. The ESI-MS spectrum of $[Cu(ph-met)(phen)](NO_3)$ (5) in aqueous MeOH showing prominent parent ion peak(m/z) at 499.11 which corresponds to $[[(M+H_2O)-(NO_3^-)]^+$.

Figure S6. The ESI-MS spectrum of $[Cu(Ph-met)(dppz)](NO_3)$ (6) in aqueous MeOH showing prominent parent ion peak(m/z) at 601 which corresponds to $[(M+H_2O)-(NO_3^{-})]^+$. The peak at 603 m/z is due to the isotopic abundance of ⁶⁵Cu.

Figure S7. Cyclic voltammograms of the complexes **2-4** in DMF-0.1 M TBAP at a scan rate of 50 mV s^{-1} .

Figure S8. Cyclic voltammogram of complex **6** showing the Cu(II)-Cu(I) redox couple in DMF-0.1 M TBAP at a scan rate of 50 mV s⁻¹.

Figure S9. (a) An ORTEP view of the cationic complex in [Cu(Fc-Met)(phen)](PF₆) (**1a**) showing 50% probability thermal ellipsoids and the atom numbering scheme for the metal and hetero atoms. The hydrogen atoms are omitted for clarity. Atoms color code: Fe and Cu, red; O, blue; N, green; C, black. (b) Unit cell packing diagram for the complex [Cu(Fc-met)(phen)](PF₆) (**1a**). The hydrogen atoms are not shown for clarity.

Figure S10. Unit cell packing diagram of the complex $[Cu(Ph-met)(phen)](ClO_4)$ (5a). The hydrogen atoms are not shown for clarity.

Figure S11. Crystal packing pattern of the complex $[Cu(Ph-met)(phen)](ClO_4)$ (**5a**): (a) 1-D chain showing the stacking of the phenyl ring in between the phenanthroline bases; (b) simplified 1-D pattern of the chain structure showing only the metal and the bridging carboxylate moiety. The hydrogen atoms are not shown for clarity.

Figure S12. Absorption spectral traces of the complexes **1** (a), **2** (b), **3** (c), **4** (d), **5** (e) and **6** (f) in 5 mM Tris-HCl buffer (pH 7.2) on increasing the quantity of calf thymus DNA. The inset shows the least-squares fits of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA] for the complexes using McGhee-von Hippel (MvH) method using the expression of Bard and co-workers (vide text for details).

Figure S13. Gel electrophoresis diagram showing the chemical nuclease activity of the complexes **1-6** (10 μ M) using SC pUC19 DNA (0.2 μ g, 30 μ M b.p.) in the presence of 1 mM Glutathione (GSH) as a reducing and 200 μ M H₂O₂ as oxidizing agent: lane-1, DNA control; lane-2, DNA + **1** + GSH; lane-3, DNA + **2** + GSH; lane-4, DNA + **3** + GSH; lane-5, DNA + **4** + GSH; lane-6, DNA + **5** + GSH; lane-7, DNA + **6** + GSH; lane-8, DNA control; lane-9, DNA + **1** + H₂O₂; lane-10, DNA + **2** + H₂O₂; lane-11, DNA + **3** + H₂O₂; lane-12, DNA + **4** + H₂O₂; lane-13, DNA + **5** + H₂O₂; lane-14, DNA + **6** + H₂O₂.

Figure S14. Gel electrophoresis diagram showing the chemical nuclease activity of the Ph-metH, FcmetH (10 μ M) and Cu²⁺ (10 μ M) salt using SC pUC19 DNA (0.2 μ g, 30 μ M b.p.) in the presence of 1.0 mM glutathione (GSH) as a reducing agent and 200 μ M H₂O₂ as an oxidizing agent. Details are given in a tabular form.

Lane No.	Reaction Conditions	Incubation Time in dark (t/h)	% NC
1	DNA control	2	2
2	DNA + GSH	2	2
3	$DNA + H_2O_2$	2	5
4	DNA + Ph-metH + GSH	2	3
5	DNA + Fc-metH + GSH	2	7
6	$DNA + Ph-metH + H_2O_2$	2	5
7	$DNA + Fc-metH + H_2O_2$	2	7
8	$DNA + Cu(NO_3)_2 \cdot 3H_2O + GSH$	2	6
9	$\overline{\text{DNA}} + \text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O} + \text{H}_2\text{O}_2$	2	4

Figure S15. Gel diagram showing the mechanistic aspects of chemical nuclease activity of [Cu(Fc-met)(dppz)](NO₃) (**3**) in the presence of various singlet oxygen quenchers and hydroxyl radical scavengers using GSH and H_2O_2 as the external reducing and oxidizing agents.

Lane No.	Reaction conditions	Incubation time in dalk (t/h)	% NC
1	DNA control	2	3
2	DNA + 3 + GSH	2	98
3	$DNA + 3 + NaN_3 + GSH$	2	95
4	DNA + 3 + TEMP + GSH	2	96
5	DNA + 3 + DMSO + GSH	2	13
6	DNA + 3 + KI + GSH	2	8
7	DNA + 3 + Catalase + GSH	2	4
8	DNA + 3 + Argon + GSH	2	11
9	$DNA + 3 + H_2O_2$	2	89
10	$DNA + 3 + NaN_3 + H_2O_2$	2	93
11	$DNA + 3 + TEMP + H_2O_2$	2	95
12	$DNA + 3 + DMSO + H_2O_2$	2	12
13	$DNA + 3 + KI + H_2O_2$	2	14
14	$DNA + 3 + Argon + H_2O_2$	2	7

Figure S16. Gel electrophoresis diagram showing the chemical nuclease activity of the complexes 1-3 (10 μ M) using SC pUC19 DNA (0.2 μ g, 30 μ M b.p.) in the presence of 1.0 mM glutathione (GSH) as a reducing agent and distamycin as minor groove and methyl green as major groove binder. Details are given in a tabular form.

Lane No.	Reaction conditions	Incubation time in dalk (t/h)	% NC
1	DNA control	2	3
2	DNA + 1 + GSH	2	55
3	DNA + 2 + GSH	2	78
4	DNA + 3 + GSH	2	89
5	DNA + distamycin + 1 + GSH	2	12
6	DNA + distamycin + 2 + GSH	2	13
7	DNA + distamycin + 3 + GSH	2	87
8	DNA + methyl green + 1 + GSH	2	53
9	DNA + methyl green + 2 + GSH	2	76
10	DNA + methyl green + 3 + GSH	2	14
11	DNA + distamycin	2	5
12	DNA + methyl green	2	8

Figure S17. Gel electrophoresis diagram showing the photo-induced DNA cleavage activity of the complexes **1-6** (20 μ M for 454 nm and 25 μ M for other wavelengths) using SC pUC19 DNA (0.2 μ g, 30 μ M b.p.) on exposure to monochromatic laser radiations for 2 h. (a) 454 nm: lane-1, DNA control; lane-2, DNA + **1**; lane-3, DNA + **2**; lane-4, DNA + **3**; lane-5, DNA + **4**; lane-6, DNA + **5**; lane-7, DNA + **6**. (b) 568 nm: lane-1, DNA control; lane-2, DNA + **1**; lane-6, DNA + **5**; lane-7, DNA + **4**; lane-6, DNA + **5**; lane-7, DNA + **6**. (c) 647 nm: lane-1, DNA control; lane-2, DNA + **1**; lane-3, DNA + **2**; lane-4, DNA + **6**. (d) Dark: lane-1, DNA + **1**; lane-2, DNA + **1**; lane-3, DNA + **4**; lane-6, DNA + **5**; lane-7, DNA + **6**. (d) Dark: lane-1, DNA + **1**; lane-2, DNA + **1**; lane-3, DNA + **4**; lane-6, DNA + **5**; lane-6, DNA + **6**. (d) Dark: lane-1, DNA + **1**; lane-2, DNA + **2**; lane-3, DNA + **3**; lane-4, DNA + **4**; lane-5, DNA + **5**; lane-6, DNA + **6**. (d) Dark: lane-1, DNA + **1**; lane-2, DNA + **2**; lane-3, DNA + **3**; lane-4, DNA + **4**; lane-5, DNA + **5**; lane-6, DNA + **6**. (d) Dark: lane-1, DNA + **1**; lane-2, DNA + **2**; lane-3, DNA + **3**; lane-4, DNA + **4**; lane-5, DNA + **5**; lane-6, DNA + **6**. (d) Dark: lane-1, DNA + **1**; lane-2, DNA + **2**; lane-3, DNA + **3**; lane-4, DNA + **4**; lane-5, DNA + **5**; lane-6, DNA + **6**. (d) Dark: lane-1, DNA + **1**; lane-2, DNA + **2**; lane-3, DNA + **3**; lane-4, DNA + **4**; lane-5, DNA + **5**; lane-6, DNA + **6**.

Figure S18. Gel electrophoresis diagram showing the photocleavage of SC pUC19 DNA (0.2 μ g, 30 μ M bp) by the ligands on irradiation with 647 nm laser radiation (50 mW). Exposure time (t) = 2h. Details are given below in a tabular form.

Lane No.	Reaction Conditions	[Ligand] / µM	λ / nm	% NC
1	DNA control	25	647	2
2	DNA + Ph-trpH	25	647	6
3	DNA + Fc-trpH	25	647	3
4	DNA + phen	25	647	4
5	DNA + dpq	25	647	4
6	DNA + dppz	25	647	9
7	DNA + nip	25	647	5

Figure S19. Gel diagram showing the nuclease activity of $[Cu(Ph-met)(dppz)](NO_3)$ (6) in dark for 2 h in the presence of various singlet oxygen quenchers and hydroxyl radical scavengers using GSH and H_2O_2 as the external reducing and oxidizing agents: lane-1, DNA control; lane-2, DNA + 6; lane-3, DNA + 6 + NaN₃; lane-4, DNA + 6 + TEMP; lane-5, DNA + 6 + L-His; lane-6, DNA + 6 + DMSO; lane-7, DNA + 6 + KI; lane-8, DNA + 6 + Catalase.

Figure S20. Cell viability plots showing cytotoxic effect of (a) complexes 1 and 5 and (b) complexes 2 and 4 in HeLa cells in dark (black symbols) and in the presence of visible light (red symbols, 400-700 nm, $10 J \text{ cm}^{-2}$).

Figure S21. Cell viability plots showing cytotoxic effect of (a) Fc-metH and Ph-metH ligands; (b) phen, dpq and dppz ligands; (c) nip ligand and (d) $Cu(NO_3)_2 \cdot 3H_2O$ in HeLa cells in dark (black symbols) and in the presence of visible light (red symbols, 400-700 nm, 10 *J* cm⁻²).

Figure S22. Cell viability plots showing cytotoxic effect of (a) complexes 1 and 5 and (b) complexes 2 and 4 in MCF-7 cells in dark (black symbols) and in the presence of visible light (red symbols, 400-700 nm, $10 J \text{ cm}^{-2}$).

Figure S23. Cell viability plots showing cytotoxic effect of (a) Fc-metH and Ph-metH lignads; (b) phen, dpq and dppz ligands and (c) nip ligand in MCF-7 cells in dark (black symbols) and in the presence of visible light (red symbols, 400-700 nm, $10 J \text{ cm}^{-2}$).

Figure S24. Complex 3 induced apoptotic cell death by flow cytometric analysis: (a) control cells in the dark, (b) control cells exposed to visible light (400-700 nm, 10 J cm⁻²), (c) cells treated with complex 3 in the dark and (d) cells treated with complex 4 (5 μ M) exposed to visible light (400-700 nm, 10 J cm⁻²).

Figure S25. The ESI-MS spectrum of Ph-metH ligand in aqueous MeOH showing prominent peak corresponding to $[M+Na^+]$ at 262 (m/z).

Figure S26. The ¹H-NMR spectrum of Ph-metH ligand in D_2O

Figure S27. Spectral traces in the visible region of complex 1 (1mM) in the presence of Bovine Serum Albumin (BSA) (10 μ M) at various time intervals. No apparent changes in the spectrum indicate the stability of the complex in the presence of BSA.

Figure S28. MALDI-TOF MS and ESI-MS spectra of a mixture of Bovine Serum Albumin (BSA) (10 μ M) and complex **1** (200 μ M) just after mixing (a and b) and after 8 h (c and d). The peaks at m/z = 66.6 kD and 589 correspond to BSA and [M-(NO₃⁻)]⁺ of complex **1**, respectively. No apparent change in the ESI-MS indicates the stability of the complex in the presence of BSA.

Figure S29. Differential pulse voltammograms (DPV) of (a) complex **1** (2 mM) in the presence of Bovine Serum Albumin (BSA) (10 μ M) at different time points; (b) Fc-metH ligand (2 mM) in the presence of BSA (10 μ M) at the same time points in DMF/H₂O (1:4 v/v)-0.1 M TBAP (scan rate: 5 mV s⁻¹). No apparent change in DPVs indicates that in the presence of BSA, Cu²⁺ is not undergoing decomplexation (leaching) from the complex leaving Fc-metH ligand free in solution atleast upto 8 h.

Scheme S1. Synthetic scheme for the ligand Ph-metH.

Scheme S2. Synthetic scheme for the complexes 1-4.

Scheme S3. Synthetic scheme for the complexes 5 and 6 (X = carboxylate oxygen in the solid state and H_2O in an aqueous phase).