Chiral Phosphapalladacycle as Efficient Catalysts for the Asymmetric Hydrophosphination of substituted methylidenemalonate esters – Direct Access to Functionalized Tertiary Chiral Phosphines

Chang Xu,^a Gan Jun Hao Kennard,^a Felix Hennersdorf,^b Yongxin Li, ^a Sumod A. Pullarkat ^{a,*} and Pak-Hing Leung ^{a,*}

^a Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore Fax: (+65) 6791-1961; e-mail:sumod@ntu.edu.sg, pakhing@ntu.edu.sg.

^b Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Johannisalle 29, D-04103, Leipzig, Germany

Supporting Information

Table of Contents

General information	S2
Experimental sections	S3-S9
Reference	S10
NMR spectra	S11-S26
Crystallographic Data	S27

General information

All reactions and manipulations were carried out under dry, oxygen-free nitrogen using the standard Schlenk technique. NMR spectra were recorded on a Bruker AV 300 spectrometer (¹H at 300 MHz, ¹³C at 75 MHz, ³¹P at 121 MHz) or a Bruker AV 400 (¹H at 400 MHz, ¹³C at 100 MHz, ³¹P at 162 MHz) or a Bruker AV 500 (¹H at 500 MHz, ¹³C at 125 MHz, ³¹P at 202 MHz). Chemical shift are given in ppm and are referenced to residual solvent peak in the respective deutero-solvents. (¹H NMR and ¹³C NMR) or to an 85% H₃PO₄ in D₂O externally (³¹P NMR). Solvents were degassed prior to use when necessary. DCM, Toluene, THF and acetone were purchased from TEDIA COMPANY (AR) and used as supplied. Low Temp PAIRSTIRRER PSL-1800 machine was used for controlling low temperatures for reactions. Column chromatography was conducted on Silica gel 60 (Merck). Optical rotations of the free phosphine products were measured as soon as possible without inert gas protection on the specified solution in a 0.1 dm cell at 20 °C with a Perkin-Elmer 341 polarimeter. Melting points were measured using the SRS Optimelt Automated Melting Point System, SRS MPA100.

The three palladacycles catalysts (*R*)-1, (*S*)-2, and (*R*)-3 were prepared by were prepared by treating the corresponding chloro-bridged dimeric palladium compounds¹ with silver perchlorate in acetonitrile via a procedure reported previously for (*R*)- 1^{2a} and (*R*)-3.^{2b} All the other reactants and reagents were used as supplied.

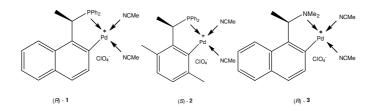


Figure 1.

Experimental Section:

1) Screening of reaction conditions:

		Ph CO ₂ Et	+ HPPh ₂ -	5 mol % Cat.	PPh ₂ CO ₂ Et		
		CO ₂ Et	2		Ph CO ₂ Et		
Entry	Cat	Solvent	Base	Temp (°C)	Reactivity (hrs)	Conversion ^b (%)	ee ^c (%)
1	(<i>R</i>)-1	DCM	NEt ₃	RT	1.5	99	63
2	(<i>R</i>)-1	DCM	NEt ₃	-80	3.5	99	96
3	(S)- 2	DCM	NEt ₃	-80	24	99	65
4	(R)- 3	DCM	NEt ₃	-80	7	99	86
5	(<i>S</i>)-1	DCM	NEt ₃	-80	3.5	99	96
6	(<i>R</i>)-1	DCM	NEt ₃	-40	2.5	99	93
7	(<i>R</i>)-1	Acetone	NEt ₃	-80	> 6	99	95
8	(<i>R</i>)-1	MeCN	NEt ₃	-40	4	99	81
9	(<i>R</i>)-1	Chloroform	NEt ₃	-40	24	99	85
10	(<i>R</i>)-1	THF	NEt ₃	-80	NIL	NIL	NIL
11	(<i>R</i>)-1	1, 4-dioxane : Water = 10 : 1	NEt ₃	RT	10	83	18
12	(<i>R</i>)-1	Toluene	NEt ₃	-80	> 24	NIL	NIL
13	(<i>R</i>)-1	DCM	DBU	-80	24	35	
14	(<i>R</i>)-1	DCM	t-BuONa ^d	-40	5.5	99	36

Table 1. Screening of reaction conditions.^a

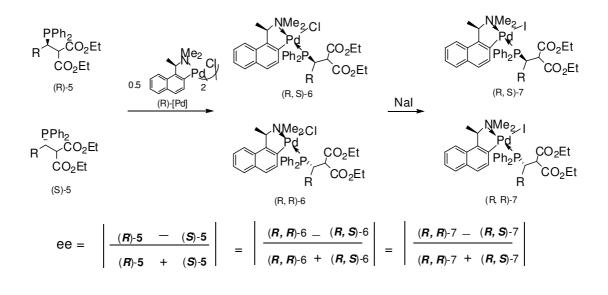
^a Conditions: HPPh₂ (50.0 mg, 2.69 x 10^4 mol), 5 mol % Cat, 1.2 equiv diethyl benzylidenemalonate (80.2 mg, 3.23 x 10^4 mol), 1 equiv Base (2.69 x 10^4 mol), 6 mL of degassed dichloromethane were reacted at indicated temperature. ^b Conversion was calculated from ³¹P{¹H} NMR. ^c ee was determined from ³¹P{¹H} NMR integration of the respective signals via the use of a chiral derivatizing agent. The detailed procedure is described in S5. ^d Solid 'BuONa was used.

2) Screening of substrates:

Table 2. Substrate scope for the phospalladacycle catalyzed P-H addition of diphenylphosphine to

 substituted methylidenemalonate esters.^a

	R CO ₂ Et	+ HPPh ₂ $\xrightarrow{5 \mod \% (R)-1}$ -80°C, DCM, NEt ₃	$R \xrightarrow{PPh_2}{CO_2Et} CO_2Et$	
Entry	R	Conversion ^b (%)	ee ^c (%)	
1	Ph	99	96	
2	OEt	99	74	
3	Me	99	ca. 66	
4	2 - furan	99	94	
5	4-MeOC ₆ H ₄	99	ca. 99	
6	(E)PhCH=CH	99	>99	
7	NH ₂	NIL	NIL	

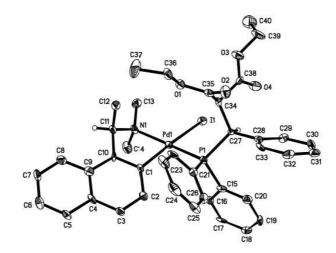
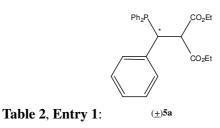

^a Conditions: HPPh₂ (50.0 mg, 2.69 x 10^{-4} mol), 5 mol % Cat (*R*)-1 (8.4 mg, 1.34 x 10^{-5} mol, 5 mol% of HPPh₂), 1.2 equiv malonate ester (3.23 x 10^{-4} mol), 1 equiv NEt₃ (27.1 mg, 2.69 x 10^{-4} mol), 6 mL of degassed DCM were reacted at -80 °C. ^b Conversion was calculated from ³¹P{¹H} NMR. ^c ee was determined from ³¹P{¹H} NMR integration of the respective signals via the use of a chiral derivatizing agent. The detailed procedure is described in S5.

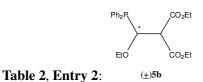
3) General procedure for synthesis of monophosphines via hydrophosphination of substituted methylidenemalonate esters. Catalyst (*R*)-1 (8.4 mg, 1.34 x 10^{-5} mol, 5 mol % of HPPh₂) was added to a degassed DCM solution (2 mL) of HPPh₂ (50.0 mg, 2.69 x 10^{-4} mol). The light yellow mixture was stirred at room temperature for 10 mins and then cooled to -80 °C. Subsequently, substrate (3.22 x 10^{-4} mol, 1.2 equivalents of HPPh₂) and NEt₃ (27.1 mg, 2.69 x 10^{-4} mol, 1 equivalent of HPPh₂) were each dissolved in 2 mL of degassed solvent and added dropwise. The hydrophosphination reaction was monitored by $^{31}P\{^{-1}H\}$ NMR. Upon completion, the reaction mixture was warmed to room temperature and solvent evaporated by vacuum. The yellowish–orange monophosphine product was re-dissolved in degassed DCM (5 mL) and filtered through a short silica gel column (packed with degassed n – Hexane) on a two-neck Schlenk flask protected by N₂. The solvent was removed by vacuum pump to give the enantio-enriched phosphine product (±)5.

Determination of ee: enatiomeric excess (ee %) were measured by ³¹P{¹H} NMR spectrum of the

corresponding compounds. The obtained phosphine product (±)5 was dissolved in DCM (3 mL) and added 0.51 equiv (a little excess) of enantio-pure (R)-{[Pd[Me₂NCH(Me)C₁₀H₆](μ -Cl)}₂ solid. After stirring for 30 min at RT, the solvent was evaporated and the ³¹P{¹H} NMR spectrum recorded. ee value was evaluated by integration of the corresponding products. The major diastereomer of **6a** was isolated by column chromatography on a silica column with hexane-dichloromethane.

The isolated **6a** (0.39 g, 0.50 mmol) was mixed with excessive sodium iodide (0.10 g, 0.60 mmol) in acetone (50 ml) and stirred vigorously for 15 min at room temperature. After the solvent were removed, the residue was extracted with dichloromethane. Removal of DCM gave 7a as a solid, which was then recrystallized from dichloromethane-hexane to give the product as yellow needle crystals (0.40 g, 93%). Its structure was confirmed by X-ray analysis which revealed that the absolute configuration of the major product were S. $[\alpha]_{\rm D} = -316.6$ (c 1.2, DCM). Mp: 167 °C dec. ³¹P NMR (CDCl₃, 162 M): δ 50.4; ¹H NMR (CDCl₃, 400 M): δ 8.02-7.98 (m, 2H, Ar), 7.67 (d, 1H, J = 8.40 Hz, Ar), 7,51-7.48 (m, 4H, Ar), 7.38-7.35 (m, 3H, Ar), 7.28-7.26 (m, 1H, Ar), 7.20-7.15 (m, 2H, Ar), 7.06-7.00 (m, 4H, Ar), 6.90 (d, 1H, J = 7.60 Hz, Ar), 6.71 (d, 1H, J = 8.40 Hz, Ar), 6.29 (m, 1H, Ar), 5.30-5.28 (m, 1H, CH), 5.24-5.19 (m, 1H, CH), 4.34-4.28 (m, 1H, CHMe), 4.19-4.07 (m, 2H, CH₂), 3.81-3.76 (m, 2H, CH₂), 3.32 (d, 3H, J = 8.40 Hz, NMe₂), 2.71 (s, 3H, NMe_2), 2.13 (d, 3H, CHMe), 1.19 (t, 3H, J = 7.20 Hz, CH_2CH_3), 0.88 (t, 3H, J = 7.20 Hz, CH₂CH₃); ¹³C NMR (CDCl₃, 100 M): δ 168.0 (d, 1C, J = 67.30 Hz, COOEt), 167.5 (d, 1C, J = 88.40 Hz, COOEt), 155.6 (d, 1C, J = 5.06 Hz, Ar), 147.8-123.3 (27 C, Ar), 73.3 (1C, CHMe), 61.8 $(1C, CH_2CH_3)$, 61.2 $(1C, CH_2CH_3)$, 56.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 52.1 (1C, NMe), 51.3 $(1C, CH_2CH_3)$, 61.2 $(1C, CH_2CH_3)$, 56.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 52.1 (1C, NMe), 51.3 $(1C, CH_2CH_3)$, 56.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 52.1 (1C, NMe), 51.3 $(1C, CH_2CH_3)$, 56.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 52.1 (1C, NMe), 51.3 $(1C, CH_2CH_3)$, 56.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 52.1 (1C, NMe), 51.3 $(1C, CH_2CH_3)$, 56.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 52.1 (1C, NMe), 51.3 $(1C, CH_2CH_3)$, 50.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 52.1 (1C, NMe), 51.3 $(1C, CH_2CH_3)$, 50.6 $(d, 1C, J_{PC} = 8.66 \text{ Hz}, CH)$, 51.3 (1C, NMe), 51.3 (1NMe), 49.3 (d, 1C, J_{PC} = 24.81 Hz, CH), 22.7 (1C, CHMe), 13.9 (1C, CH₂CH₃), 13.5 (1C, CH₂CH₃).


Figure 2.

4) Characterization Data

Compound 4a was reacted with HPPh₂ at -80 °C for 3.5 h according to the general procedure to provide (±)**5a** (99% conversion, 96% ee) (air sensitive): $[\alpha]_D = -82.8$ (*c* 1.3, DCM). ³¹P NMR (CDCl₃, 121 M): δ 2.7; ¹H NMR (CDCl₃, 400 M): δ 7.64-7.59 (m, 2H, Ar), 7.35-7.31 (m, 3H, Ar),

7.23-7.11 (m, 5H, Ar), 7.05-7.03 (m, 3H, Ar), 6.99-6.96 (m, 2H, Ar), 4.40 (dd, 1H, J = 10.76, 3.42 Hz, $CH(COOEt)_2$), 3.94 (dd, 1H, J = 10.76, 7.10 Hz, Ph_2PCH), 3.91-3.84 (m, 3H, $COOCH_2CH_3$), 3.78-3.70 (m, 1H, $COOCH_2CH_3$), 1.15 (t, 3H, J = 7.24 Hz, CH_2CH_3), 0.92 (t, 3H, J = 7.24 Hz, CH_2CH_3); ¹³C NMR (CDCl₃, 75 M): δ 167.9 (1C, COOEt), 167.5 (1C, COOEt), 134.7-126.5 (18 C, Ar), 61.5 (1C, CH_2CH_3), 61.3 (1C, CH_2CH_3), 56.2 (d, 1C, $J_{PC} = 27.03$ Hz, PPh_2CH), 44.2 (d, 1C, $J_{PC} = 19.57$ Hz, $CH(OEt)_2$), 13.8 (1C, CH_2CH_3), 13.7 (1C, CH_2CH_3).

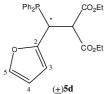
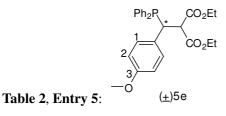

Compound 5b was reacted with HPPh₂ at -80 °C for 8h according to the general procedure to provide (±)**5b** (99% conversion, 74% ee) (airsensitive): $[\alpha]_{D} = -90.7$ (*c* 0.4, DCM). ³¹P NMR (CDCl₃, 121 M): δ -2.6; ¹H NMR (CDCl₃, 300 M): δ 7.83-7.78 (m, 2H, Ar), 7.52-7.48 (m, 2H, Ar), 7.43-7.41 (m, 3H, Ar), 7.34-7.32 (m, 3H, Ar), 4.87 (dd, 1H, *J* = 9.6, 6.9 Hz, PPh₂CH), 4.19 (q, 2H, *J* = 6.9 Hz, COOCH₂CH₃), 4.10 (qd, 2H, *J* = 7.2, 2.1 Hz, COOCH₂CH₃), 3.66 (dd, 1H, *J* = 9.9, 6.6 Hz, CH(COOEt)₂), 3.47 (m, 1H, OCH₂CH₃), 3.03 (m, 1H, OCH₂CH₃), 1.30-1.21 (m, 6H, COOCH₂CH₃), 0.90 (t, 3H, OCH₂CH₃); ¹³C NMR (CDCl₃, 75 M): δ 167.5 (1C, COOCH₂CH₃), 167.0 (1C, COOCH₂CH₃), 135.6-128.2 (12C, Ar), 80.4 (d, 1C, *J*_{PC} = 20.3 Hz, PPh₂CH), 69.3 (1C, OCH₂CH₃), 61.5 (2C, COOCH₂CH₃), 56.9 (d, 1C, *J*_{PC} = 22.5 Hz, *C*H(OEt)₂), 15.1 (1C, OCH₂CH₃), 14.0 (1C, COOCH₂CH₃), 13.9 (1C, COOCH₂CH₃).

 Table 2, Entry 3:
 (±


Compound 4c was reacted with HPPh₂ at -80 °C for 4h according to the general procedure to provide (±)**5c** (99% conversion, 66% ee) (airsensitive): $[\alpha]_D = -50.2$ (*c* 0.3, DCM). ³¹P NMR (CDCl₃, 202 M): δ -3.8; ¹H NMR (CDCl₃, 500 M): δ 7.55-7.49 (m, 4H, Ar), 7.37-7.32 (m, 6H, Ar), 4.20 (qd, 2H, *J* = 7.4, 1.0 Hz COOCH₂CH₃), 4.14-4.06 (m, 2H, COOCH₂CH₃), 3.32 (t, 1H, *J* = 7.0 Hz, CH(OEt)₂), 3.20-3.14 (m, 1H, PPh₂CH), 1.27 (t, 3H, *J* = 7.2 Hz, COOCH₂CH₃), 1.24 (t, 3H, *J* = 7.2 Hz, COOCH₂CH₃), 1.10 (q, 3H, *J* = 7.0 Hz, PPh₂CHCH₃); ¹³C NMR (CDCl₃, 125 M): δ 168.7 (d, 1C, *J*_{PC} = 7.4 Hz, COOEt), 168.2 (d, 1C, *J*_{PC} = 9.1 Hz, COOEt), 134.4-128.4 (m, 12C,

Ar), 61.5 (1C, CH_2CH_3), 61.3 (1C, CH_2CH_3), 54.5 (d, 1C, $J_{PC} = 21.1$ Hz, $CH(COOEt)_2$), 30.5 (d, 1C, $J_{PC} = 14.8$ Hz, PPh_2CH), 14.1 (1C, CH_3), 14.0 (1C, CH_3), 13.9 (1C, CH_3).

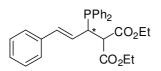
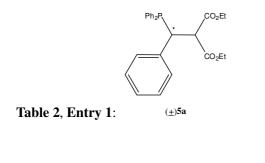


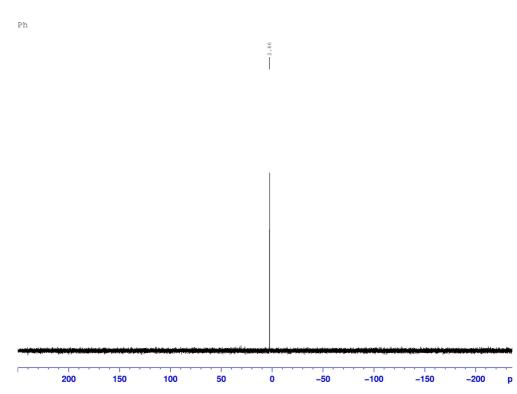
Table 2, Entry 4: $\overset{4}{4}$

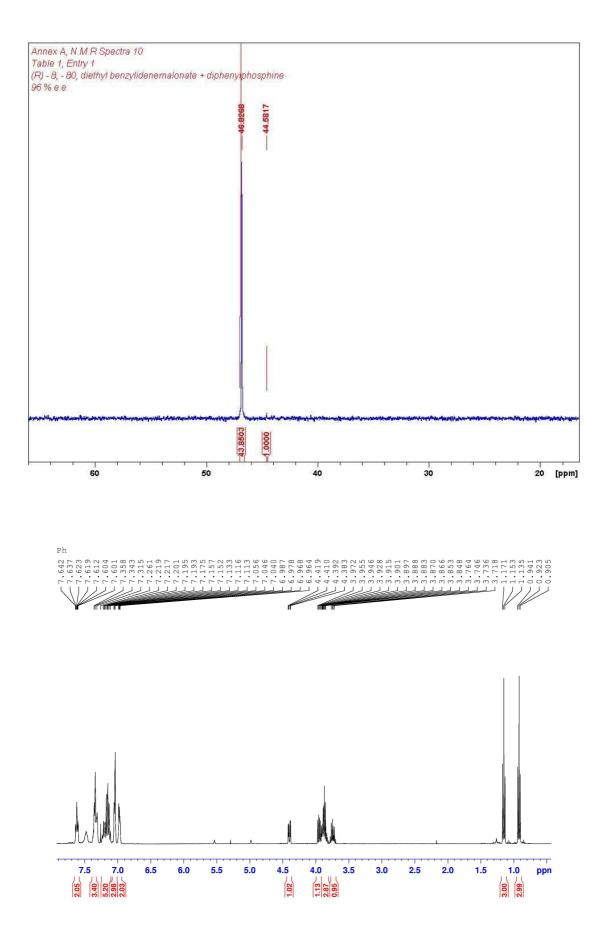
Compound 4d was reacted with HPPh₂ at -80 °C for 4h according to the general procedure to provide (±)**5d** (99% conversion, 94% ee) (airsensitive): $[\alpha]_D = -120.7$ (*c* 0.6, DCM). ³¹P NMR (CDCl₃, 202 M): δ 1.5; ¹H NMR (CDCl₃, 500 M): δ 7.57-7.54 (m, 2H, Ar), 7.38-7.32 (m, 3H, Ar), 7.32-7.28 (m, 1H, Ar), 7.23-7.16 (m, 4H, Ar), 7.07 (d, 1H, *J* = 1.0 Hz, C₅*H*), 6.08 (q, 1H, C₄*H*), 5.76 (d, 1H, *J* = 3.2 Hz C₃*H*), 4.51 (d, 1H, *J* = 10.6 Hz, C*H*(OEt)₂), 4.09-4.02 (m, 4H, COOC*H*₂CH₃), 3.80 (dd, 1H, *J* = 10.6, 6.3 Hz, PPh₂C*H*), 1.24 (t, 3H, *J* = 7.3 Hz, COOCH₂C*H*₃), 1.08 (t, 3H, *J* = 7.5 Hz, COOCH₂C*H*₃); ¹³C NMR (CDCl₃, 125 M): δ 167.7 (1C, COOEt), 167.4 (1C, COOEt), 151.2 (1C, C₂), 140.8 (1C, C₅), 134.6-128.0 (m, 12C, Ar), 110.3 (1C, C₄), 107.4 (d, 1C, *J* = 2.5 Hz, C₃), 61.8 (1C, CH₂CH₃), 61.5 (1C, CH₂CH₃), 54.5 (d, 1C, *J*_{PC} = 27.5 Hz, PPh₂CH), 38.3 (d, 1C, *J*_{PC} = 22.0 Hz, *C*H(COOEt)₂), 14.0 (1C, COOCH₂CH₃), 13.9 (1C, COOCH₂*C*H₃).

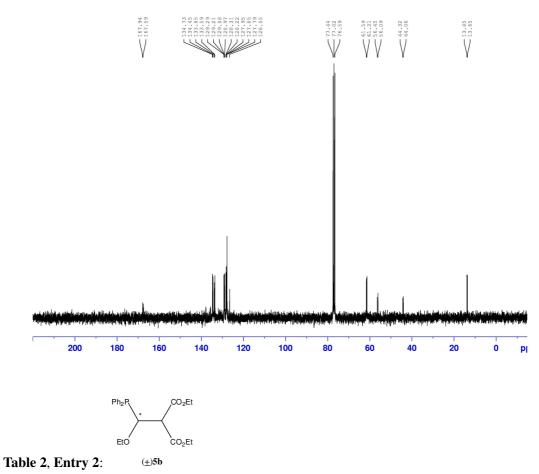
Compound 4e was reacted with HPPh₂ at -80 °C for 8h according to the general procedure to provide (±)**5e** (99% conversion, >99% ee) (airsensitive): $[\alpha]_D = -92.9$ (*c* 0.7, DCM). ³¹P NMR (CDCl₃, 202 M): δ 1.2; ¹H NMR (CDCl₃, 500 M): δ 7.61-7.58 (m, 2H, Ar), 7.34-7.31 (m, 3H, Ar), 7.20-7.15 (m, 5H, Ar), 6.92 (d, 2H, *J* = 8.5 Hz, C₁*H*), 6.61 (d, 2H, *J* = 8.5 Hz, C₂*H*), 4.29 (q, 1H, C*H*(OEt)₂), 3.89-3.85 (m, 4H, COOC*H*₂CH₃), 3.76-3.71 (m, 1H, PPh₂C*H*), 1.24 (t, 3H, *J* = 7.3 Hz, COOCH₂C*H*₃), 1.08 (t, 3H, *J* = 7.5 Hz, COOCH₂C*H*₃); ¹³C NMR (CDCl₃, 125 M): δ 168.0 (1C, COOEt), 167.5 (1C, COOEt), 158.0 (1C, *C*₃), 134.6-128.0 (m, 15C, Ar), 113.2 (2C, *C*₂), 61.6 (1C, *C*H₂CH₃), 61.3 (1C, *C*H₂CH₃), 56.3 (d, 1C, *J*_{PC} = 26.9 Hz, PPh₂CH), 55.1 (1C, OCH₃), 43.3 (d, 1C, *J*_{PC} = 19.0 Hz, *C*H(COOEt)₂), 13.9 (1C, COOCH₂CH₃), 13.8 (1C, COOCH₂CH₃).

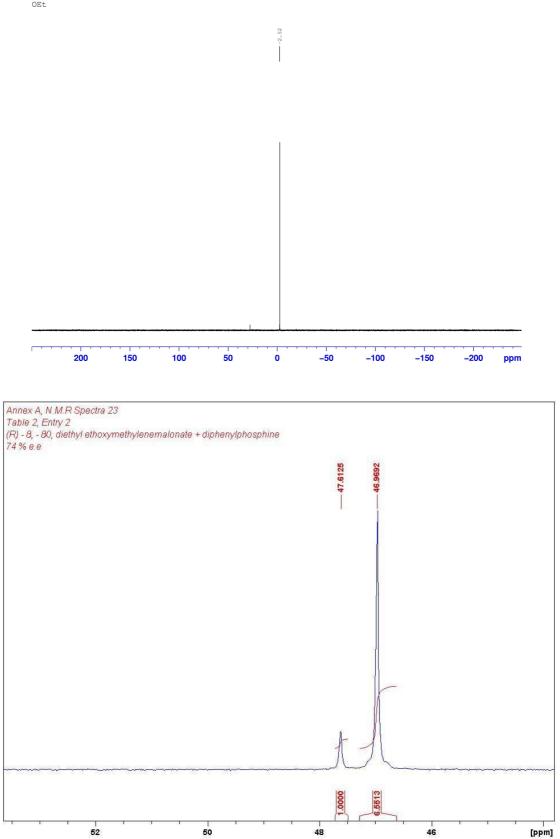
Table 2, Entry 6: $(\pm)5f$

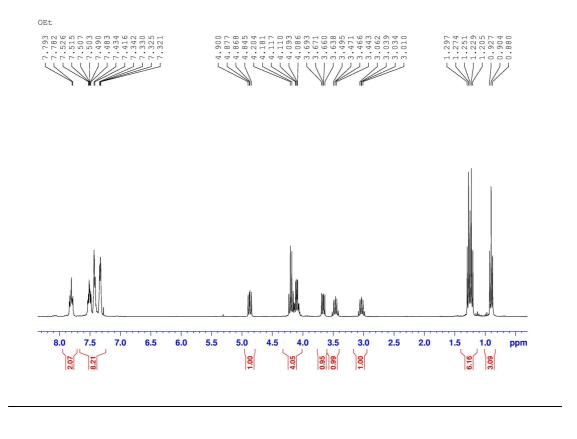

Compound 4f was reacted with HPPh₂ at -80 °C for 4h according to the general procedure to provide (±)**5f** (99% conversion, >99% ee) (airsensitive): $[\alpha]_D = -160.9$ (*c* 1.7, DCM). ³¹P NMR (CDCl₃, 121 M): δ 0.2; ¹H NMR (CDCl₃, 300 M): δ 7.60-7.51 (m, 4H, Ar), 7.40-7.32 (m, 6H, Ar), 7.28-7.12 (m, 5H, Ar), 6.23 (d, 1H, *J* = 8.5 Hz, PhC*H*), 6.02-5.92 (m, 1H, PhCH=C*H*), 4.24-4.10 (m, 4H, COOC*H*₂CH₃), 3.91 (t, 1H, *J* = 9.7 Hz, C*H*(OEt)₂), 3.61-3.55 (dd, 1H, *J* = 6.7, 2.9 Hz, PPh₂C*H*), 1.30 (t, 3H, *J* = 7.1 Hz, COOCH₂CH₃), 1.18 (t, 3H, *J* = 7.1 Hz, COOCH₂CH₃); ¹³C NMR (CDCl₃, 75 M): δ 168.0 (d, 1C, *J* = 4.2 Hz, COOEt), 167.7 (d, 1C, *J* = 13.2 Hz, COOEt), 137.0-1226.1 (m, 20C, Ar, CH=CH), 61.7 (1C, CH₂CH₃), 61.4 (1C, CH₂CH₃), 54.5 (d, 1C, *J*_{PC} = 24.9 Hz, PPh₂CH), 42.0 (d, 1C, *J*_{PC} = 19.3 Hz, CH(COOEt)₂), 14.1 (2C, CH₃).

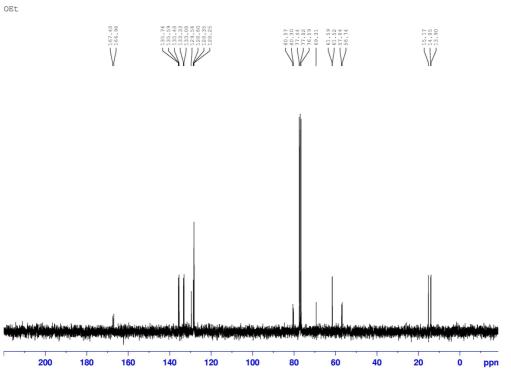

References:

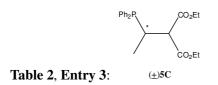

1. (a) Ng, J. K.-P.; Tan, G.-K.; Vittal, J. J.; Leung, P.-H. *Inorg. Chem.* **2003**, *42*, 7674-7682. (b) Ng, J. K.-P.; Li, Y.; Tan, G.-K.; Koh, L.-L.; Vittal, J. J.; Leung, P.-H. *Inorg. Chem.* **2005**, *44*, 9874-9886. (c) Allen, D. G.; McLaughlin, G. M.; Robertson, G. B.; Steffen, W. L.; Salem, G.; Wild, S. B. *Inorg. Chem.* **1982**, *21*, 1007-1014.

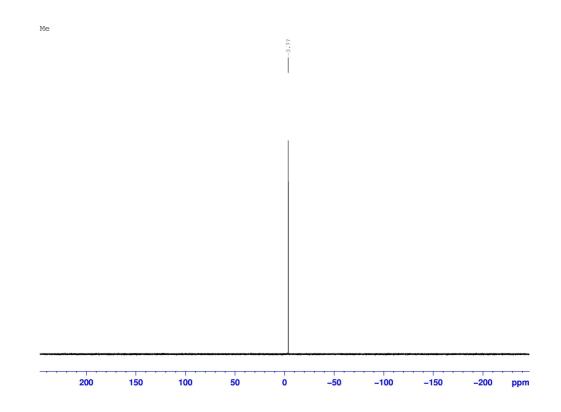

2. (a) Huang, Y.; Chew, R. J.; Li, Y.; Pullarkat, S. A.; Leung, P. H. *Org. Lett.* **2011**, 13, 5862-5865. (b) Chooi, S. Y. M.; Leung, P. H.; Lim, C. C.; Mok, K. F.; Quek, G. H.; Sim, K. Y.; Tan, M. K. *Tetrahedron: Asymmetry* **1992**, *3*, 529-532.

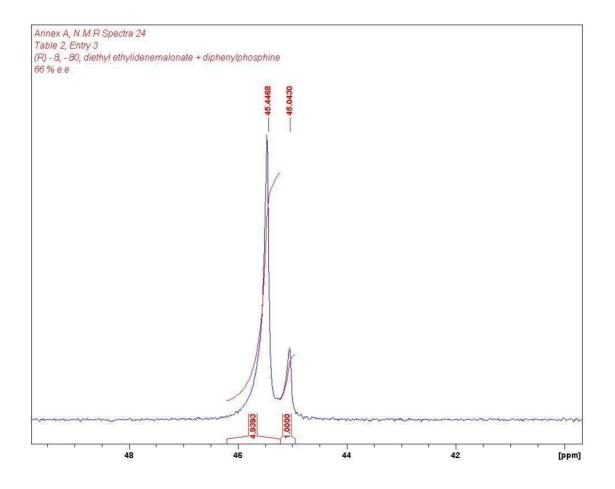

NMR Spectra

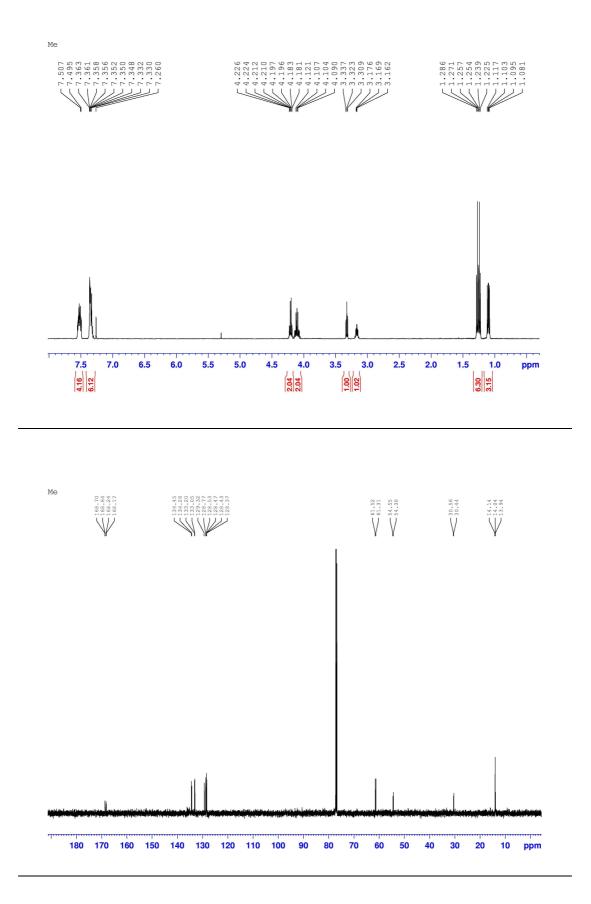


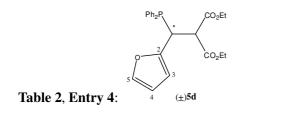


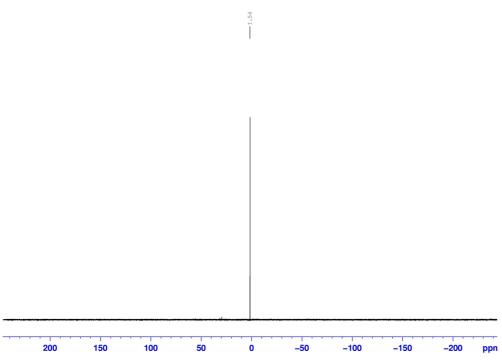


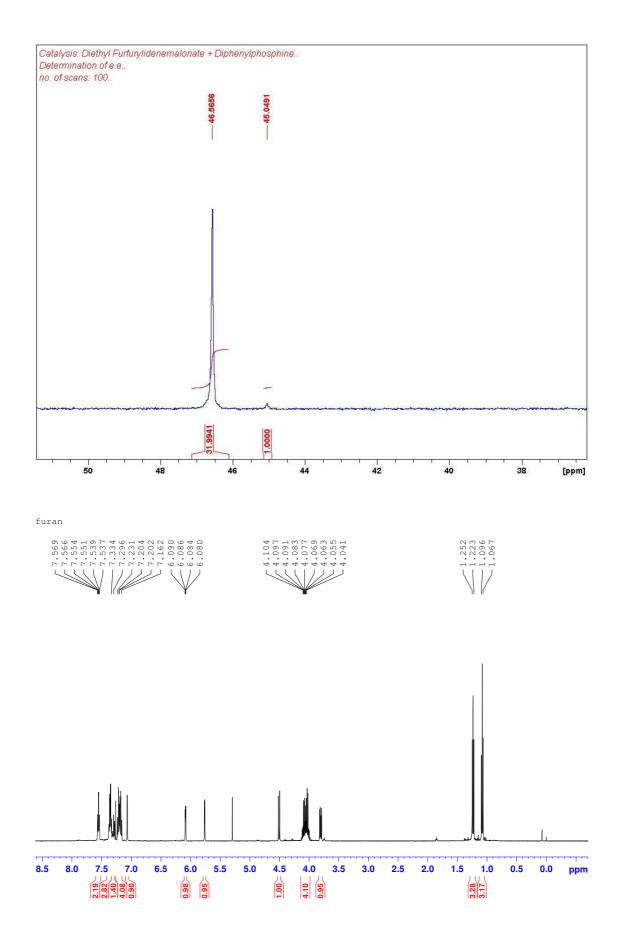


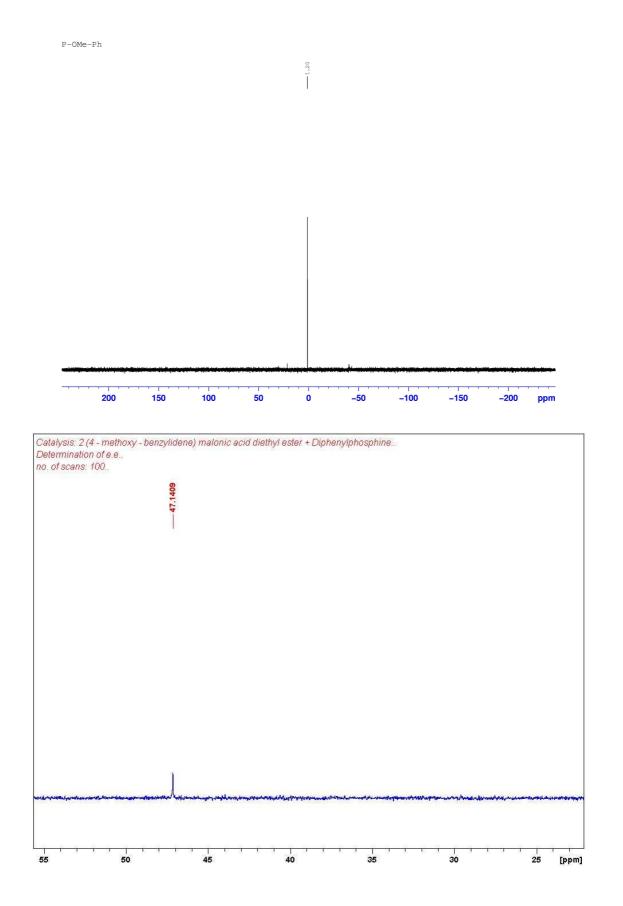

OEt



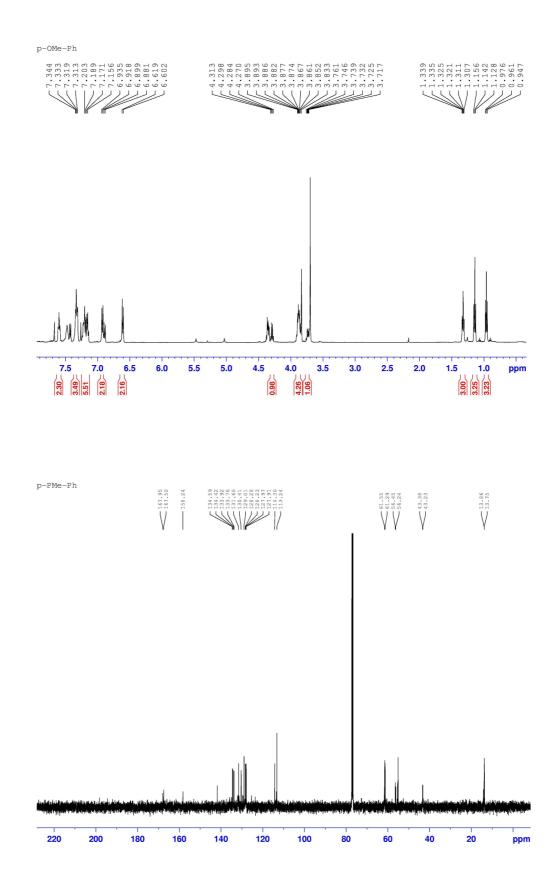


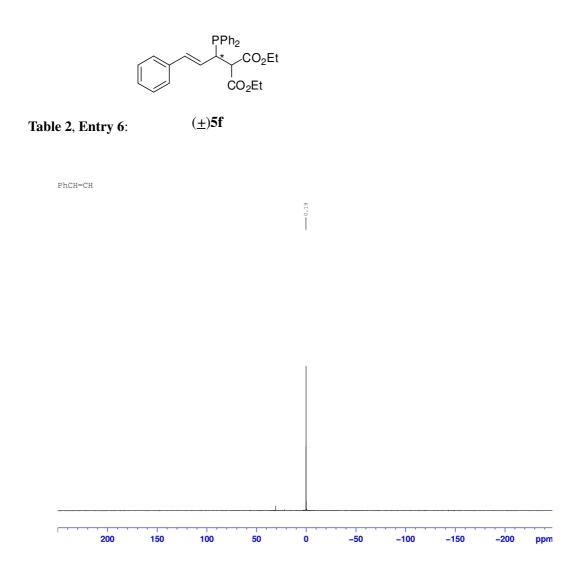


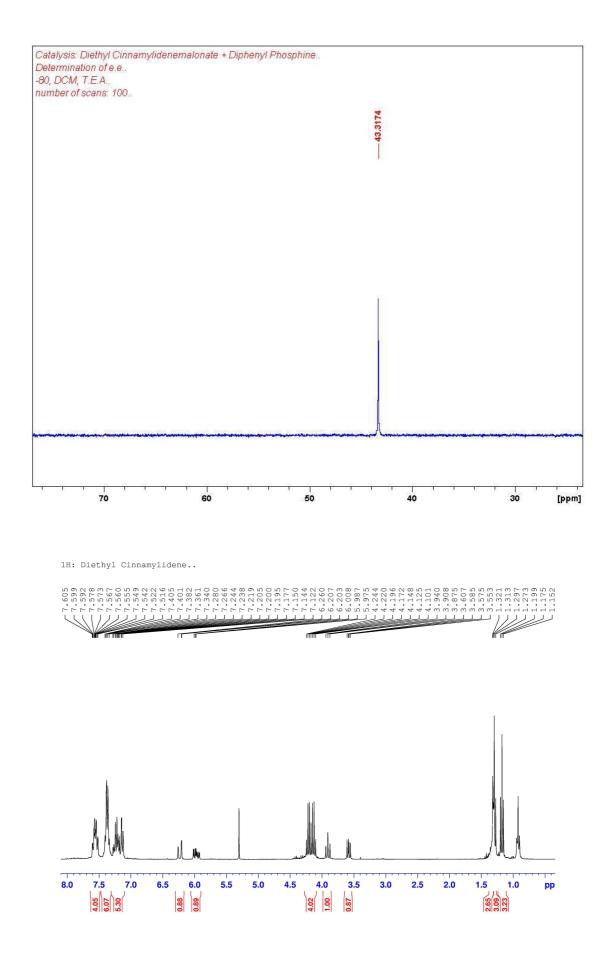


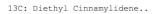


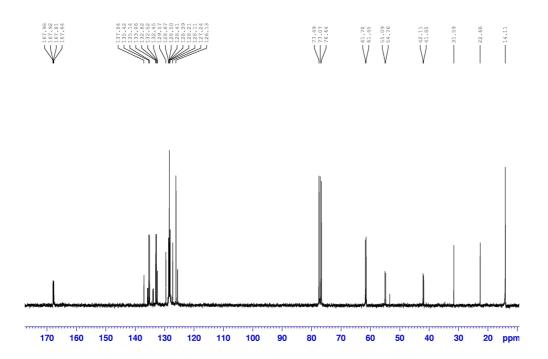
fuan










S22

Crystal data and structure refinement for 7a.

Empirical formula	C40 H43 I N O4 P Pd		
Formula weight	866.02		
Temperature	103(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 9.6549(7) Å	<i>α</i> = 90°.	
	b = 13.8040(10) Å	β= 90°.	
	c = 28.1935(19) Å	$\gamma = 90^{\circ}$.	
Volume	3757.5(5) Å ³		
Ζ	4		
Density (calculated)	1.531 Mg/m ³		
Absorption coefficient	1.398 mm ⁻¹		
F(000)	1744		
Crystal size	0.40 x 0.04 x 0.04 mm ³		
Theta range for data collection	1.64 to 29.62°.		
Index ranges	-12<=h<=13, -18<=k<=14, -31<=l<=37		
Reflections collected	21296		
Independent reflections	8971 [R(int) = 0.0781]		
Completeness to theta = 25.00°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9462 and 0.6047		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8971 / 0 / 438		
Goodness-of-fit on F ²	1.006		
Final R indices [I>2sigma(I)]	R1 = 0.0557, wR2 = 0.1120		
R indices (all data)	R1 = 0.1074, wR2 = 0.1495		
Absolute structure parameter	-0.03(3)		
Largest diff. peak and hole	0.937 and -1.806 e.Å ⁻³		