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S1. Grid construction and descriptors calculation: 

 
The output of VAMP was used as input for ParaSurf’10TM to generate a grid 
around the molecule with a 4Å margin from the positions of the atoms in each 

direction and including all points for which the electron density is lower than 102 

eÅ3. The spacing of the grid is 1Å (the default in ParaSurfTM) and to calculate the 
local properties at each grid point using multipole electrostatics. All grid points 
inside the vdW volume of the central molecules were removed. At each grid 
point, the magnitude of the gradient vector for each local property and the cosine 
of the angle between it and the vector from the nearest atom in the central 

molecule to the grid point (cosθ) were calculated. Cos represents the direction of 
the gradient vector, as shown in Figure S1. We thus obtained the MEP, local 
ionization energy, local electron affinity, local polarizability, electron density and 
the magnitude and the direction (represented by cosθ ) of the gradient for each of 
such local properties at each grid point. The distance between the grid point and 
nearest atom in the CM was also calculated and used as a descriptor.  
 

Figure S1 Schematic representation for the gradient vector of the local property and its direction 

 

NA nearest atom in the CM.                           GP Grid point. 
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S2. Interacting complex geometrical optimization and energy calculation: 

 

Calculations of stabilization energies require higher levels of theory compared 

with geometry optimizations since the stabilization energy is more sensitive to an 

accurate description than the structure itself. To describe these non-covalent 

interactions accurately, high-level quantum mechanical calculations that 

reproduce a large portion of correlation energy are required. The most accurate 

quantum chemical method to obtain reliable geometries and energies of non-

covalent complexes is the coupled-cluster expansion with single and double 

excitations augmented by non-iterative corrections for triple excitations CCSD(T) 

which is usually used as a replacement for the far more expensive CCSDT.1-5 

However, its computational cost is very high, which rules it out for the large 

number of calculations required in the current work, Møller-Plesset perturbation 

theory (MP2) gives geometries and energies not very different from those of 

CCSD(T) 1-4,6 and is much less demanding than CCSD(T) but remains more 

expensive than DFT calculations. Until recently, DFT was considered unsuitable 

for the study of the non-covalent complexes because it fails to describe the 

dispersion component of the non-covalent interactions because non-local 

correlation is not included in the local DFT energy. DFT therefore works well in 

cases of H-bonding and charge-transfer interactions but is not suitable for 

interactions in which dispersion energy is important.1-3 However, many 

approaches are now available to overcome this drawback.7,8 Of these approaches, 

the best known is an empirical approach based on a force-field-like terms, where 

the empirical expression for the dispersion energy is applied and the total energy 

EDFT-D  is constructed as a sum of DFT and empirical dispersion correction.1,7,8  

Here, we have used two of such DFT-D approaches that can reproduce the 

different non-covalent energies. These are a) a generalized gradient 

approximation GAA density functional with additional long-range dispersion 

correction B97-D,7 which gives good geometrical and energetic descriptions of 

the non-covalent complexes because the short range part of the functional has 

been adjusted to the presence of the long-range correction and double-counting 
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effects are avoided. This functional gives a very balanced description of saturated 

vs. aromatic complexes and also a better description of hydrogen-bonded 

complexes than most of DFT approaches 7 and b) a long-range corrected hybrid 

density functional with damped atom-atom dispersion correction ωB97X-D, 

which is recommended for applications where non-covalent interactions are 

expected to be significant.8  

The choice of basis set is critical for a reasonably reliable description of any 

structural type of non-covalent complexes. Because of the strong dependence of 

stabilization energy on the basis set size, it is important to perform the calculation 

with as large a basis set as possible. One small, reliable basis set is Dunning’s 

aug-cc-pVDZ basis set, although aug-cc-pVTZ is even more reliable. 3 Because of 

the large number of calculations to be performed, calculations with both 

functionals used the more economical double-zeta aug-cc-pVDZ basis set.9-12 

Before selecting the level of theory for our calculations, we performed a pilot 

experiment in which we randomly selected 452 points to represent different 

interactions between different central molecules and probes and first performed 

constrained geometrical optimizations using the aug-cc-pVDZ basis set followed 

by single point energy calculations on the optimized structure with aug-cc-pVTZ. 

This approach is much more expensive than the one finally selected, but gives an 

RMSD between the two interaction energies of only 0.17 kcal mol1. The 

maximum absolute difference obtained using the B97-D functional was 1.06 kcal 

mol1, so we selected the less computationally expensive double-zeta basis set. 

 

S3. Previous trials of non-covalent interaction models: 

 

Many techniques for estimating non-covalent interaction strengths have been 

published in the last four decades, often for the most common and important type 

of interaction, the hydrogen bond. These techniques can be as simple as being 

based on simple indicator variables, such as the number of the H-bond donors and 

acceptors in the molecule.13-15 The disadvantage of such methods is that they 

cannot differentiate between the different H-bond donor and acceptor strengths 
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because they neglect the effect of the remainder of the molecule on the H-bonding 

ability. Other methods are based on experimentally measured properties such as 

the difference between octanol-water and cyclohexane-water partition coefficients 
16 or solvatochromic parameters (derived from spectroscopic data),17-19 but such 

methods depend on experimentally derived properties. On the other hand various 

methods based on theoretically calculated properties such as LUMO and HOMO 

energies and atomic charges,20,21 self-atom polarizability and 

superdelocalizability,22, 23 molecular electrostatic potential MEP 24 or combination 

of these properties 25 and electrostatic potential Vα(r) at distance r 26  have been 

proposed. However, such approaches treat the H-bond as an isolated interaction 

and do not take the influence of the molecular environment into account. They are 

also often focused on limited group of compounds, so that they cannot be used as 

universal tools for predicting H-bond strengths. Many of such methods also only 

consider electrostatic parameters and neglect other non-covalent interaction steric 

and dispersion components. In recent years, because of the increased 

computational power and the increasing awareness that computational methods 

are capable of accurate geometry and energy calculations for non-covalent 

interactions,27-31 attention has been given to using the quantum mechanical (QM) 

calculations to predict H-bond strength. In this context, Schwöbel et al.32, 33 used ab 

initio and DFT based local molecular parameters for modeling and predicting the 

H-donor and H-acceptor strengths in some organic compounds. Another approach 

used the calculated interaction energy of the two interacting systems as a measure 

for the H-bond strength34,35 based on the hypothesis that the hydrogen bond free 

energy is linearly related to the enthalpy.19,36,37 This approach gives a better 

correlation between the calculated energies and the experimental hydrogen-

binding constant than the other approaches.34 It also takes all the different 

components of the non-covalent interaction including the steric and the dispersion 

components into consideration and considers the molecular environment, not just 

the isolated H-bond forming atoms. The major drawback of such an approach is 

the high demand in computational resources and time. This problem can be solved 

easily once a model for calculating the interaction energy is generated and then 
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the procedures can be extended to any other molecule. The key point is to choose 

descriptors for this model that can describe the different non-covalent interaction 

components to be able to predict the interaction energy as accurately as possible. 

 

S4.  Multiple linear regression (MLR) procedures: 

 

The RapidMiner 5.0.008 software 38,39 was used with its default multiple linear 

regression (MLR) parameters, which use the Akaike criterion for model selection 

using the M5 prime method of feature selection during regression and delete 

colinear features during regression if exit.  

We used a 10-fold cross-validation strategy for the MLR models. For each model, 

the data set was split into ten equal subsets. For each MLR, nine different subsets 

were selected as training sets and the tenth was used as the test set, yielding ten 

training sets of 90% of the points, and their corresponding test sets consisting of 

10% of the points. Training and test sets were chosen such that each point appears 

in the test set for only one MLR. Then, ten separate MLRs were constructed. The 

cross-validated result for any given point is then the prediction by the MLR for 

which it appeared in the test set. This should therefore give a worst case 

prediction for the given point in this model.  

 

S5. Removing points with secondary clashes: 

 

This was done by calculating the distance between all the probe atoms, except the 

interacting atom on the grid, and all the CM atoms except the nearest at all points, 

if the distance is less than the sum of vdW radii of any two atoms, the point was 

removed. 

 

 

 

 

 



SI8 
 

S6. Plots of different models results (cross-validated): 

Figure S2 H2O as H‐donor (B97‐D functional) model 
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Figure S3 H2O as H‐acceptor (B97‐D functional) model 

 

Figure S4 Formamide as H‐donor (B97‐D functional) model
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Figure S5 Formamide as H‐acceptor (B97‐D functional) model 

 

 

Figure S6 NH3 as H‐donor (B97‐D functional) model 
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Figure S7 NH3 as H‐acceptor (B97‐D functional) model 

 

 

Figure S8 NH4 (B97‐D functional) model 
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Figure S9 OH (B97‐D functional) model 

 

 

Figure S10 H2O as H‐donor (ωB97X‐D) model 
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Figure S11 H2O as H‐acceptor (ωB97X‐D) model 

 

 

Figure S12 Formamide as H‐donor (ωB97X‐D) model 
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Figure S13 Formamide as H‐acceptor (ωB97X‐D) model 

 

 

Figure S14 NH3 as H‐donor (ωB97X‐D) model 
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Figure S15 NH3 as H‐acceptor (ωB97X‐D) model 

 

 

Figure S16 NH4 (ωB97X‐D) model 
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Figure S17 OH (ωB97X‐D) model 

 

 

S7. (un)substituted pyridines calculated and predicted interaction energies and 
their pKBHX. 

Compound  Gaussian calculated 
E (Kcal mol‐1) 

Model  predicted  E 
(Kcal mol‐1) 

pKBHX 

Pyridine  ‐6.12  ‐6.36  1.86 

P‐Chloropyridine  ‐5.67  ‐5.63  1.54 

P‐aminopyridine  ‐6.99  ‐6.47  2.56 
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