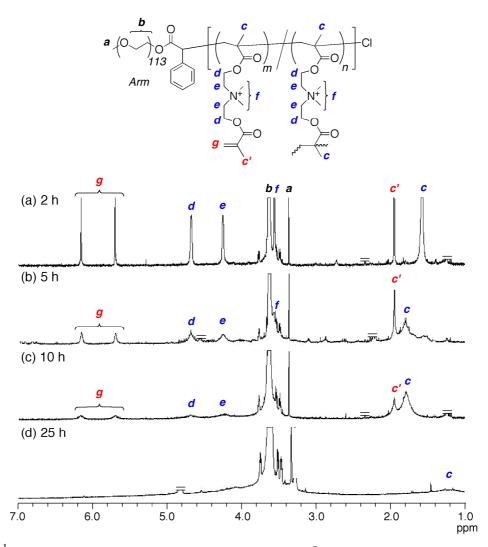

Supporting Information

Cation-Condensed Microgel-Core Star Polymers as Polycationic Nanocapsules for Molecular Capture and Release in Water


Kaoru Fukae, Takaya Terashima,^{*} Mitsuo Sawamoto^{*} *Corresponding Author Polymer Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan Tel: +81-75-383-2600 Fax: +81-75-383-2601 E-mail: terashima@living.polym.kyoto-u.ac.jp, sawamoto@star.polym.kyoto-u.ac.jp

Contents:

Synthesis of Cation-Condensed Microgel Star Polymers (S1)				
¹ H NMR spectra	2			
Synthesis of Microgel Star Polymers with a Non-Ionic Linking Agent (2')	3			
Conformation Analysis by MO-G with AM-1	3			
DSC Thermograms	4			
DSC analysis	4			
Encapsulation of Orange G into Polymers in Water	5			
UV-vis spectra of Methyl Orange in Water	5			
¹ H DOSY spectra	6			
DLS Measurements	6			
Release of Orange G from Polymers with NaCl Aqueous Solution	7			
	¹ H NMR spectra Synthesis of Microgel Star Polymers with a Non-Ionic Linking Agent (2') Conformation Analysis by MO-G with AM-1 DSC Thermograms DSC analysis Encapsulation of Orange G into Polymers in Water UV-vis spectra of Methyl Orange in Water ¹ H DOSY spectra DLS Measurements			

Figure S1. (a) Time-conversion curves and (b) SEC curves of the samples obtained from the linking reaction of PEG-Cl (1) with 2 and RuCp*Cl(PPh₃)₂: $[1]/[2]/[RuCp*Cl(PPh_3)_2]/[2-DMAE] = 20/200/2.0/40$ mM in EtOH/DMF (3/1, v/v) at 40 °C.

Figure S2. ¹H NMR spectra (500 MHz, in CDCl₃ at 25 °C) of the samples obtained from the linking reaction of **1** with **2** and RuCp*Cl(PPh₃)₂: (a) 2 h; (b) 5 h; (c) 10 h; (d) 25 h.

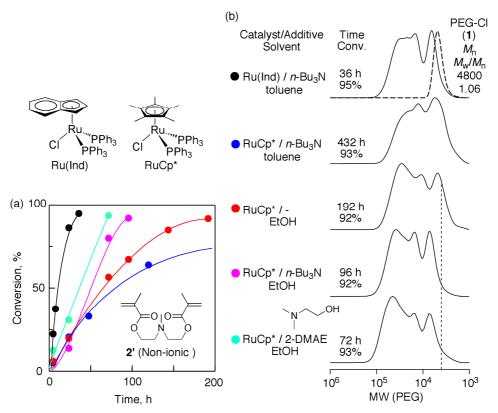
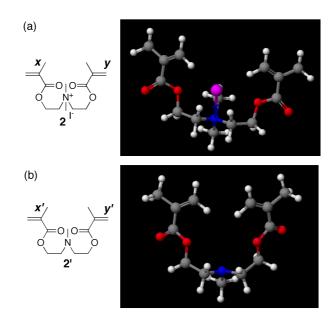
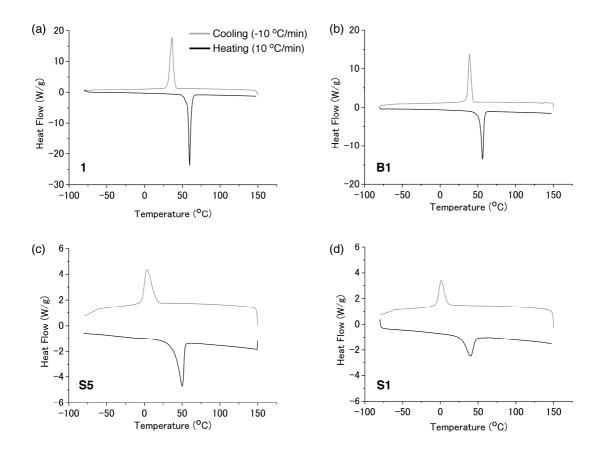




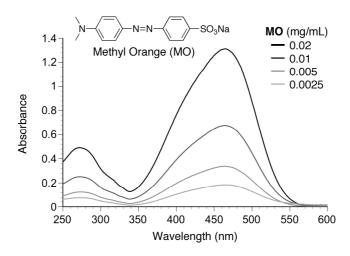
Figure S3. (a) Time-conversion curves and (b) SEC curves of the samples obtained from the Ru-mediated linking reaction of 1 with a non-ionic 2': [1]/[2']/[Ru]/[additive] = 20/200/2/40 mM in toluene at 80 °C or in EtOH at 40 °C.

Figure S4. Most stable conformations of **2** and **2'**, calculated by MO-G (a semiempirical molecular orbital program) coupled with AM1 (Hamiltonian). The distance between two olefins of **2** (x-y = ~6.8 Å) was longer than that of **2'** (x'-y' = ~5.1 Å).

Figure S5. DSC thermograms recorded on (a) **1**, (b) **B1**, (c) **S5**, and (d) **S1** via the cooling scan from 150 °C to -80 °C (gray line, cooling rate: -10 °C/min) and the second heating scan from -80 °C to 150 °C (black line, heating rate: 10 °C/min).

Samples	$T_{\rm c} (^{\rm o}{\rm C})^a$	$T_{\rm m} (^{\rm o}{\rm C})^a$	$\Delta H_{m,total} \left(J/g \right)^b$	w^{c}	$\Delta H^{0}_{m, calcd} (J/g)^{d}$	Fractional Crystallinity $(\%)^e$
1	36.3	59.6	187	0.97	191	~100
B1	38.8	56.2	139	0.65	128	~100
S5	3.2	49.4	69	0.73	144	~48
S1	1.0	40.3	45	0.58	114	~40

Table S1. DSC Analysis of Samples (1, B1, S5, S1)


^{*a*} $T_{\rm c}$ and $T_{\rm m}$ were determined by DSC measurements at the second heating step from -80 °C to 150 °C with 10 °C/min, respectively.

^{*b*} Melting enthalpy ($\Delta H_{m,total}$) was obtained from integration of endothermal peaks.

^c Weight fraction of PEG segments in samples.

^{*d*} Calculated melting enthalpy: $\Delta H^{0}_{m,calcd} = \Delta H^{0}_{m} \times w$; $\Delta H^{0}_{m} = 197 \text{ J/g}$.

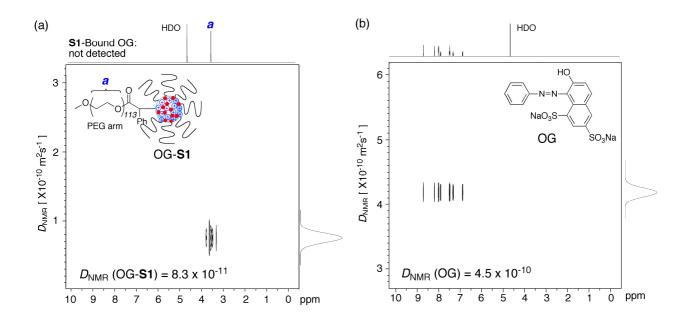
^{*e*} Fractional crystallinity (%) = $100\Delta H_{m,total}/\Delta H_{m,calcd}^{0}$.

Figure S6. UV-vis spectra of MO in H₂O at r.t.: [MO] = 0.02, 0.01, 0.005, 0.0025 mg/mL (6.1 x $10^{-5} - 7.6 \times 10^{-6}$ M).

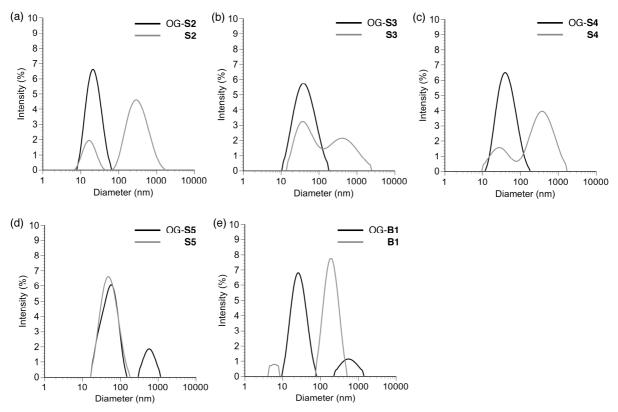
Entry	Polymer	$[OG]_0/[Polymer]_0$	Time	OG _{polymer} ^b	$N_{\rm OG/polymer}^{c}$	$N_{\rm N+/OG}^{d}$
		(mg/mL)	(h)	(µmol/g)		
1	S1	5/10	2	652	402	1.9
2	S1	0.5/1	2	672	414	1.8
3	S1	0.5/1	24	721	445	1.6
4	S1	0.05/0.1	2	637	392	1.9
5	S1	0.05/0.1	10	756	466	1.5
6	S1	0.05/0.1	24	780	482	1.5
7	B1	5/10	2	420	3.3	3.3
8	B1	0.5/1	2	477	3.8	2.9
9	B1	0.5/1	24	475	3.8	2.9
10	B1	0.05/0.1	2	197	1.6	9.1
11	B1	0.05/0.1	10	323	2.6	4.5
12	B1	0.05/0.1	24	475	3.8	2.9

Table S2. Encapsulation of Orange G into Polymers in Water^a

^{*a*} Polymers (**S1**, **B1**) and Orange G (OG) were stirred in H_2O at r.t., followed by the dialysis of the mixture with H_2O .


^{*b*} The amount of OG per a gram polymer, determined by UV-vis analysis of OG-bearing polymers in H_2O with the calibration plot of OG at 478 nm.

^{*c*} The number of OG in a single polymer:


 $N_{\text{OG/polymer}} = \text{OG}_{\text{polymer}} \times [M_{\text{w,star}}(\text{MALLS}): \mathbf{S1} \text{ or } M_{\text{n}}(\text{NMR}): \mathbf{B1}] \times 10^{-6}.$

^{*d*} The number ratio of polymer-bound cations to polycation-bound OGs:

 $N_{\text{N+/OG}} = N_{\text{N+}}/(N_{\text{OG/polymer}} - N_{\text{OG/PEG}}); N_{\text{OG/PEG}} = N_{\text{arm}} \times [N_{\text{OG/polymer}} (S5)/74].$

Figure S7. ¹H DOSY spectra (500 MHz) of (a) OG-bearing **S1** and (b) OG alone in D_2O at 30 °C. Diffusion coefficient (D_{NMR}) was calculated by the following software: Delta v4.3.6, JEOL.

Figure S8. DLS intensity distributions of (a) OG-S2 and S2, (b) OG-S3 and S3, (c) OG-S4 and S4, (d) OG-S5 and S5, and (e) OG-B1 and B1 in H₂O at 25 °C: [OG-bearing polymer] (black line) = 1 (S2-S5), 10 (B1) mg/mL; [polymer] (gray line) = 0.1 mg/mL.

Entry	Polymer	Time (h)	$N_{\rm OG/polymer}{}^{b}$	OG in Polymer $(\%)^c$
1	S1	0	414	100
2	S1	2	224	54
3	S1	5	107	26
4	S1	24	48	12
5	B1	0	3.8	100
6	B1	2	0.65	17
7	B1	5	0.15	4.0
8	B 1	24	0.033	0.88

Table S3. Release of Polymer-Bound OG from S1 and B1 with NaCl aqueous solutions^a

^{*a*} Aqueous solutions of OG-bearing polymers (**S1**, **B1**) ([polymer] = 1 mg/mL, 1 mL) were charged in dialysis tubes and the tubes were placed in 0.1 M NaCl aqueous solutions (100 mL). At the predetermined periods, the inner solutions were sampled for UV-vis analysis to determine the amount of polymer-bound OGs (OG_{polymer}: μ mol/g) with the calibration plot of OG at 478 nm. ^{*b*} The number of OG in a single polymer:

 $N_{\text{OG/polymer}} = \text{OG}_{\text{polymer}} \times [M_{\text{w,star}}(\text{MALLS}): \mathbf{S1}, M_{\text{n}}(\text{NMR}): \mathbf{B1}] \times 10^{-6}.$

^c Mole percent of OG remaining in polymers: 100 x $N_{OG/polymer}(t)/N_{OG/polymer}(t=0)$.