Ferrocene-Decorated Nanocrystalline Cellulose with Charge Carrier Mobility

Electronic Supporting Information

Samuel Eyley^a, Sara Shariki^b, Sara E.C. Dale^b, Simon Bending ^c, Frank Marken^{b,*} and Wim Thielemans^{a,d,†}

 ^a School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
^bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
^c Department of Physics, University of Bath, Bath BA2 7AY, UK
^d Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK

* Frank.marken@bath.ac.uk

[†]Wim.thielemans@nottingham.ac.uk

Figure ESI-1. FTIR spectra of (a) unmodified cellulose nanocrystals, (b) chlorinated cellulose nanocrystals, (c) azidated cellulose nanocrystals, and (d) ferrocenyl cellulose nanocrystals.

Figure ESI-2. Transmission electron micrograph of unstained ferrocenyl cellulose nanocrystals.

Figure ESI-3. AFM image (with (A) = height, (B) = phase, (C) = topography) of a ferrocenyl-cellulose film on ITO substrate. Similar images are obtained for cellulose films without ferrocene functionalization.