## Supporting Information

## Optimization of (2,3-Dihydro-1-Benzofuran-3-yl)acetic Acids:

# Discovery of a Non-Free Fatty Acid-Like, Highly Bioavailable <br> G Protein-Coupled Receptor 40/Free Fatty Acid Receptor 1 

Agonist as a Glucose-Dependent Insulinotropic Agent

Nobuyuki Negoro, ${ }^{\dagger}$ Shinobu Sasaki, ${ }^{\dagger}$ Satoshi Mikami, ${ }^{\dagger}$ Masahiro Ito, ${ }^{\dagger}$ Yoshiyuki Tsujihata, ${ }^{\dagger}$ Ryo Ito, ${ }^{\dagger}$ Masami Suzuki, ${ }^{\dagger}$ Koji Takeuchi, ${ }^{\dagger}$ Nobuhiro Suzuki, ${ }^{\star}$ Junichi Miyazaki, ${ }^{\star}$ Takashi Santou, ${ }^{\dagger}$ Tomoyuki Odani, ${ }^{\dagger}$ Naoyuki Kanzaki, ${ }^{\dagger}$ Miyuki Funami, ${ }^{\dagger}$ Akio Morohashi, ${ }^{\dagger}$ Masami Nonaka, ${ }^{\dagger}$ Shinichiro Matsunaga, ${ }^{\dagger}$ Tsuneo Yasuma, ${ }^{*, \dagger}$ and Yu Momose ${ }^{\dagger}$<br>${ }^{\dagger}$ Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan;<br>${ }^{\dagger}$ Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan

## Table of Contents:

Abbreviations of the solvents and reagents: Page S2
Experimental for compounds: Page S2-S13
X-Ray Crystallographic Data for Compound 16: Page S14-S16
A. Crystal Data
B. Intensity Measurements
C. Structure Solution and Refinement

Abbreviations of the solvents and reagents are used as follows: $\mathrm{CDCl}_{3}$, deuterochloroform; DMSO- $d_{6}$, hexadeuterodimethyl sulfoxide; AcOEt, ethyl acetate; MeOH, methanol; EtOH, ethanol; IPA, 2-propanol; DMF, $N, N$-dimethylformamide; DMSO, dimethyl sulfoxide; THF, tetrahydrofuran; $\mathrm{Et}_{2} \mathrm{O}$, diethyl ether; DME, 1,2-dimethoxyethane; $\mathrm{CH}_{3} \mathrm{CN}$, acetonitrile; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dichloromethane; $\mathrm{NaBH}_{4}$, sodium borohydride; $\mathrm{LiAlH}_{4}$, lithium aluminum hydride; $\mathrm{AlCl}_{3}$, aluminum chloride; NaOH , sodium hydroxide; HCl , hydrochloric acid; $\mathrm{NH}_{4} \mathrm{Cl}$, ammonium chloride; $\mathrm{NaHCO}_{3}$, sodium hydrogen carbonate; $\mathrm{MgSO}_{4}$, magnesium sulfate; $\mathrm{Na}_{2} \mathrm{SO}_{4}$, sodium sulfate; $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, sodium thiosulfate; $\mathrm{K}_{2} \mathrm{CO}_{3}$, potassium carbonate; $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, cesium carbonate; $\mathrm{K}_{3} \mathrm{PO}_{4}$, potassium phosphate; TBAF, tetrabutylammonium fluoride; KI, potassium iodine; $m$-CPBA, $m$-chloroperbenzoic acid; $\mathrm{Pd} / \mathrm{C}$, palladium on carbon; $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, tetrakis(triphenylphosphine)palladium(0); $n$ - $\mathrm{BuLi}, n$-butyl lithium; $\mathrm{B}(i-\mathrm{PrO})_{3}$, triisopropyl borate; ADDP, $1,1^{\prime}$-(azodicarbonyl)dipiperidine; $\mathrm{P}(n-\mathrm{Bu})_{3}$, tributylphosphine; $\mathrm{PPh}_{3}$, triphenylphosphine; DEAD, diethyl azodicarboxylate; $p-\mathrm{TsCl}, p$-toluenesulfonyl chloride; $\mathrm{Et}_{3} \mathrm{~N}$, triethylamine; TBSCl, tert-butyldimethylchlorosilane; $n$ - $\mathrm{Bu}_{4} \mathrm{NBr}_{3}$, tetrabutylammonium tribromide; $\mathrm{TiCl}_{4}$, titanium (IV) chloride; $\mathrm{Br}_{2}$, bromine; AcOH , acetic acid; $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) complex with dichloromethane; NCS, N -chlorosuccinimide.

The following compounds 7-13 were also prepared from appropriate phenols $\mathbf{4 a - c}$ and alcohols $\mathbf{5 a - c}$ by a method similar to that described for $\mathbf{6}$.

## [(3R)-6-\{[4'-(2-Ethoxyethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy\}-2,3-dihydro-1-benzofur

 an-3-yl]acetic Acid (7).Step 1: Methyl [(3R)-6-\{[4'-(2-ethoxyethoxy)-2', $6^{\prime}$-dimethylbiphenyl-3-yl]methoxy\}-2,3-dihydro-1-benzofuran-3-yl]acetate in $89 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.98(\mathrm{~s}, 6 \mathrm{H}), 2.50-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.74-3.85(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (s, 2H), 6.44-6.51 (m, 2H), $6.68(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{s}, 1 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 2 \mathrm{H}) . \quad$ MS $m / z 491(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm}) 100.0 \%$.

Step 2: 7 in $80 \%$ yield as colorless crystals (hexane-AcOEt). mp $59-60^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}-7.5^{\circ}(\mathrm{c} 0.31$, $\mathrm{CH}_{3} \mathrm{CN}$ ). $99.8 \%$ ee [column: CHIRALPAK AD, $4.6 \mathrm{mmID} \times 250 \mathrm{mmL}$; mobile phase: hexane/IPA/TFA ( $85 / 15 / 0.1$ ) ( $\mathrm{v} / \mathrm{v} / \mathrm{v}$ ) by isocratic elution; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; detection: UV 220 nm ; temperature: room temperature]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 6 \mathrm{H})$, $2.55-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 3 \mathrm{H}), 4.14(\mathrm{t}, J=5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H})$, $6.68(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 477(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm}) 100.0 \%$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{6}$ : C, $73.09 ; \mathrm{H}, 6.77$. Found: C, 73.02; H, 6.77.
[6-(\{2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (8).

Step 1: Methyl [6-(\{2',6'-dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $89 \%$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}$, $3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.49-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}$, $2 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{t}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J=7.1,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 503(\mathrm{M}+\mathrm{H})^{+}$.
Step 2: 8 in $65 \%$ yield as colorless crystals (hexane-AcOEt). mp $150-151{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.55-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.04$ (s, 2H), $4.28(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 7.01-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H})$, 7.34-7.46 (m, 2H). MS m/z $489(\mathrm{M}+\mathrm{H})^{+}$. HPLC purity ( 220 nm ) 99.9\%. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6}$ : C, 73.75; H, 6.60. Found: C, 73.53; H, 6.61.

## [(3S)-6-(\{2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\}methoxy)-2,3-dihyd

 ro-1-benzofuran-3-yl]acetic Acid (9).Step 1: Methyl [(3S)-6-(\{2',6'-dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $95 \%$ yield as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.50-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.86$ (m, 1H), $4.04(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.05-7.11 (m, 1H), $7.17(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad$ MS $m / z$ not detected.

Step 2: 9 in $66 \%$ yield as colorless crystals (hexane-AcOEt). mp $140-142{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}+5.6^{\circ}(\mathrm{c}$ $0.30, \mathrm{CH}_{3} \mathrm{CN}$ ). $99.8 \%$ ee [column: CHIRALPAK OD, $4.6 \mathrm{mmID} \times 250 \mathrm{mmL}$; mobile phase: hexane/IPA/TFA (80/20/0.1) (v/v/v) by isocratic elution; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; detection: UV 220 nm ; temperature: $\left.30{ }^{\circ} \mathrm{C}\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.56-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.76-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}$, $2 \mathrm{H}), 7.02-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 489(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm}) 98.0 \%$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6}$ : C, 73.75; H, 6.60. Found: C, 73.50; H, 6.73.
[(3R)-6-(\{2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\}methoxy)-2,3-dihyd ro-1-benzofuran-3-yl]acetic Acid (10).

Step 1: Methyl [(3R)-6-(\{2',6'-dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $90 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.50-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 1 \mathrm{H})$,
4.04 (s, 2H), 4.26 (dd, $J=9.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.64$ (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.75$ $(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dt}, J$ $=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z$ not detected.

Step 2: 10 in $56 \%$ yield as colorless crystals (hexane-AcOEt). mp $136-138^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}-5.6^{\circ}$ (c $0.31, \mathrm{CH}_{3} \mathrm{CN}$ ). $99.4 \%$ ee [column: CHIRALPAK OD, $4.6 \mathrm{mmID} \times 250 \mathrm{mmL}$; mobile phase: hexane/IPA/TFA ( $80 / 20 / 0.1$ ) ( $\mathrm{v} / \mathrm{v} / \mathrm{v}$ ) by isocratic elution; flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$; detection: UV 220 nm ; temperature: $\left.30{ }^{\circ} \mathrm{C}\right] .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.55-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.75-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~s}$, $2 \mathrm{H}), 7.02-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 489(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6}$ : C, 73.75; H, 6.60. Found: C, 73.58; H, 6.77.

## [6-(\{4'-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2',6'-dimethylbiphenyl-3-yl\}methoxy

 )-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (11).Step 1: Methyl [6-(\{4'-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2',6'-dimethylbiphenyl-3-yl\}-methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $93 \%$ yield as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.31-2.60(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.89-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.52(\mathrm{~m}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=$ $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.50(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dt}, J=7.1$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} \mathrm{m} / z 551(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm})$ 99.6\%.

Step 2: $\mathbf{1 1}$ in $80 \%$ yield as colorless crystals (hexane-AcOEt). mp $159-161{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.31-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.56-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.00(\mathrm{~m}$, 2H), 3.39-3.52 (m, 2H), 3.75-3.87 (m, 1H), 4.29 (dd, $J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.76$ $(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H})$, 7.35-7.46 (m, 2H). MS m/z $537(\mathrm{M}+\mathrm{H})^{+}$. HPLC purity $(220 \mathrm{~nm}) 100.0 \%$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 67.14 ; \mathrm{H}, 6.01$. Found: C, 66.97; H, 6.12.

## [(3S)-6-(\{4'-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2',6'-dimethylbiphenyl-3-yl\}met

 hoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (12).Step 1: Methyl [(3S)-6-(\{4'-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2',6'-dimethyl biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $79 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.31-2.60(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.89-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.52$ $(\mathrm{m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{t}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.50(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.09$ $(\mathrm{m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 551(\mathrm{M}+\mathrm{H})^{+}$.

Step 2: 12 in $85 \%$ yield as colorless crystals (heptane-AcOEt). mp $154-155^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}+6.1^{\circ}(\mathrm{c}$ $\left.0.30, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.67$ (m, 1H), 2.75-2.86 (m, 1H), 2.89-3.00 (m, 2H), 3.38-3.52 (m, 2H), 3.75-3.87 (m, 1H), 4.29 (dd, $J=$ $9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.67$ $(\mathrm{s}, 2 \mathrm{H}), 7.02-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 537(\mathrm{M}+\mathrm{H})^{+}$. HPLC purity $(220 \mathrm{~nm}) 99.8 \%$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 67.14 ; \mathrm{H}, 6.01$. Found: C, 67.10; H, 6.06.
[(3R)-6-(\{4'-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2',6'-dimethylbiphenyl-3-yl\}met hoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (13).
Step 1: Methyl [(3R)-6-(\{4'-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2',6'-dimethyl biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $86 \%$ yield as a colorless foam. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.61(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.99(\mathrm{~m}, 2 \mathrm{H})$, $3.38-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.69(\mathrm{~m}$, $1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.42-6.50(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 6.99-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.16$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.35-7.46 (m, 2H).
Step 2: 13 in $92 \%$ yield as colorless crystals (heptane-AcOEt). mp $156-157{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}-4.4^{\circ}(\mathrm{c}$ $\left.0.30, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.74-2.86$ $(\mathrm{m}, 1 \mathrm{H}), 2.89-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.10$ $(\mathrm{m}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 537(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm}) 99.8 \%$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 67.14 ; \mathrm{H}, 6.01$. Found: C, 66.94; H, 6.02.

The following compound $\mathbf{1 7 b}$ was prepared from $\mathbf{4 b}$ and $\mathbf{5 h}$ by a method similar to that described for 17a.

## Methyl \{(3S)-6-[(3'-Chloro-4'-hydroxy-2',6'-dimethylbiphenyl-3-yl)methoxy]-2,3-dihydro-1-benzofuran-3-yl\}acetate (17b).

Step 1: Methyl $\left\{(3 S)-6-\left[\left(4^{\prime}-\{[\right.\right.\right.$ tert-butyl(dimethyl)silyl]oxy\}-3'-chloro-2',6'-dimethylbiphenyl-3-yl)methoxy]-2,3-dihydro-1-benzofuran-3-yl \}acetate in $77 \%$ yield as colorless crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.26(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.79(\mathrm{~m}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}$, $2 \mathrm{H}), 6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.99-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} \mathrm{m} / \mathrm{z}$ $567(\mathrm{M}+\mathrm{H})^{+}$.
Step 2: 17b in $88 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $2.49-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 6.43-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.99-7.07$ (m, 2H), $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.47(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 453(\mathrm{M}+\mathrm{H})^{+}$.

The following compounds 20 and 21 were also prepared from $\mathbf{1 7 a}$ and appropriate alcohols by a method similar to that described for $\mathbf{1 8}$.
[(3S)-6-(\{4'-[(2,4-Dimethyl-1,3-thiazol-5-yl)methoxy]-2',6'-dimethylbiphenyl-3-yl\}methoxy)-2 ,3-dihydro-1-benzofuran-3-yl]acetic Acid (20).

Step 1: Methyl [(3S)-6-(\{4'-[(2,4-dimethyl-1,3-thiazol-5-yl)methoxy]-2',6'-dimethylbiphenyl-3yl \}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate as a crude product (a colorless oil). MS $m / z$ $544(\mathrm{M}+\mathrm{H})^{+}$.

Step 2: $\mathbf{2 0}$ in $24 \%$ yield (from 17a) as colorless crystals (hexane-AcOEt). mp $158-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.74(\mathrm{~m}, 1 \mathrm{H}), 4.18$ (dd, $J=9.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 6.42-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.77$ $(\mathrm{s}, 2 \mathrm{H}), 7.02-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.49(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 530(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm})$ 99.1\%.
[(3S)-6-\{[4'-(Imidazo[1,2-a]pyridin-5-ylmethoxy)-2', $\mathbf{6}^{\prime}$-dimethylbiphenyl-3-yl]methoxy\}-2,3-d ihydro-1-benzofuran-3-yl]acetic Acid (21).

Step 1: Methyl [(3S)-6-\{[4'-(imidazo[1,2-a]pyridin-5-ylmethoxy)-2',6'-dimethylbiphenyl-3-yl] methoxy \}-2,3-dihydro-1-benzofuran-3-yl]acetate as a crude product (a colorless oil). MS m/z 549 $(\mathrm{M}+\mathrm{H})^{+}$.

Step 2: 21 in $16 \%$ yield (from 17a) as colorless crystals (hexane-AcOEt). mp 204-205 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta 1.93(\mathrm{~s}, 6 \mathrm{H}), 2.38(\mathrm{dd}, J=16.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=16.5,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56-3.71(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H})$, 6.41-6.49 (m, 2H), $6.90(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=9.0,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 535(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm}) 99.3 \%$.

The following compounds $\mathbf{2 2} \mathbf{- 2 6}$ were also prepared from $\mathbf{4 b}$ and appropriate alcohols $\mathbf{5 i} \mathbf{- m}$ by a method similar to that described for $\mathbf{6}$.
[(3S)-6-(\{2',6'-Diethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (22).

Step 1: Methyl [(3S)-6-(\{2',6'-diethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $93 \%$ yield as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.22-2.43(\mathrm{~m}, 6 \mathrm{H}), 2.49-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.33(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=9.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.43-6.49(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.11(\mathrm{~m}$, $1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 567(\mathrm{M}+\mathrm{H})^{+}$.

Step 2: 22 in $81 \%$ yield as colorless crystals (heptane-AcOEt). mp $87-89^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}+5.5^{\circ}$ (c $\left.0.30, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.22-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.55-2.66(\mathrm{~m}$, $1 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.28(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 6.43-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}$, $2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 553(\mathrm{M}$ $+\mathrm{H})^{+}$. HPLC purity $(220 \mathrm{~nm}) 99.9 \%$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~S} \cdot 0.15$ heptane: C, 67.81; H, 6.82. Found: C, 67.88; H, 6.84.
[(3S)-6-(\{4'-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2', $\mathbf{3}^{\prime}, 5^{\prime}, 6^{\prime}$-tetramethylbiphenyl-3 -yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (23).

Step 1: Methyl [(3S)-6-(\{4'-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-tetramethyl biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $81 \%$ yield as a colorless amorphous powder. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.60(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.79$ $(\mathrm{m}, 1 \mathrm{H}), 2.95-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.03(\mathrm{~m}, 1 \mathrm{H})$, $4.26(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.06$ (m, 2H), $7.12(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 579(\mathrm{M}+\mathrm{H})^{+}$.
Step 2: 23 in $64 \%$ yield as colorless crystals (heptane-AcOEt). mp $143-145{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}+2.8^{\circ}(\mathrm{c}$ $\left.0.30, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 2.29-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.55-2.67(\mathrm{~m}$, $1 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.04(\mathrm{~m}$, $1 \mathrm{H}), 4.28(\mathrm{dd}, J=9.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 7.00-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad$ MS $m / z 565(\mathrm{M}+\mathrm{H})^{+}$. HPLC purity $(220 \mathrm{~nm}) 99.6 \%$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 68.06 ; \mathrm{H}, 6.43$. Found: C, 67.80; H, 6.40.

## [(3S)-6-(\{2', $3^{\prime}, 5^{\prime}, 6^{\prime}$-Tetramethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methoxy)-2,3-d

 ihydro-1-benzofuran-3-yl]acetic Acid (24).Step 1: Methyl [(3S)-6-(\{2', 3',5', $6^{\prime}$-tetramethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl $\}$ methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $82 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H})$, $3.35-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.90(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.43-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS}$ $m / z 567(\mathrm{M}+\mathrm{H})^{+}$.

Step 2: 24 in $94 \%$ yield as colorless crystals (heptane-AcOEt). mp $160-162{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}+6.3^{\circ}(\mathrm{c}$ $\left.0.30, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.87(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.66(\mathrm{~m}$, $1 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.89(\mathrm{~m}, 3 \mathrm{H}), 4.28(\mathrm{dd}, J=9.1,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.52(\mathrm{~m}, 2 \mathrm{H}), 7.01-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H})$, 7.35-7.45 (m, 2H). MS m/z $553(\mathrm{M}+\mathrm{H})^{+}$. HPLC purity ( 220 nm ) 99.3\%. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 67.37$; H, 6.57. Found: C, 67.39; H, 6.64.
[(3S)-6-(\{4'-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-3'-fluoro-2',6'-dimethylbiphenyl -3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (25).

Step 1: Methyl [(3S)-6-(\{4'-[(1,1-dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-3'-fluoro-2',6'-dimethylbiphenyl-3-yl\} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate as a crude product (a colorless oil). MS $m / z 569(\mathrm{M}+\mathrm{H})^{+}$.

Step 2: $\mathbf{2 5}$ in $15 \%$ yield (from 43c) as colorless crystals (hexane-diisopropyl ether). mp 112-113 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.89-1.97(\mathrm{~m}, 6 \mathrm{H}), 2.29-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=$ $16.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=16.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-3.01(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.86$ (m, 1H), $4.29(\mathrm{dd}, J=9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H})$, $6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.48(\mathrm{~m}, 2 \mathrm{H})$. MS $m / z 535(\mathrm{M}+\mathrm{H})^{+}$. HPLC purity $(220 \mathrm{~nm}) 99.4 \%$.
[6-(\{3'-Fluoro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methoxy)-2,3-dihy dro-1-benzofuran-3-yl]acetic Acid (26).

Step 1: Methyl [(3S)-6-(\{3'-fluoro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $77 \%$ yield as colorless crystals (heptane-AcOEt). mp 101-103 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.90-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, $2.33-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=16.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$, $3.28-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.29(\mathrm{~m}, 3 \mathrm{H}), 4.75(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.46$ (m, 2H). MS m/z $557(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{FO}_{7} \mathrm{~S}: \mathrm{C}, 64.73 ; \mathrm{H}, 5.98$. Found: C, 64.75; H, 5.90.

Step 2: $\mathbf{2 6}$ in $90 \%$ yield as colorless crystals (heptane-AcOEt). mp $115-117{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}+5.9^{\circ}(\mathrm{c}$ $\left.0.30, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.89-1.98(\mathrm{~m}, 6 \mathrm{H}), 2.32-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=16.8,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=16.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (s, 3H), 3.27-3.35 (m, 2H), 3.73-3.86 (m, 1H), 4.20 (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=9.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.51$ (m, 2H), $6.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS} m / z 543$ $(\mathrm{M}+\mathrm{H})^{+}$. HPLC purity $(220 \mathrm{~nm}) 99.9 \%$. Anal. $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{FO}_{7} \mathrm{~S}: \mathrm{C}, 64.19 ; \mathrm{H}, 5.76$. Found: C, 64.40; H, 5.92.

The following compound $\mathbf{2 8}$ was prepared from $\mathbf{4 b}$ and $\mathbf{5 n}$ by a similar to that described for $\mathbf{6}$.
[(3S)-6-(\{3',5'-Dichloro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methoxy) -2,3-dihydro-1-benzofuran-3-yl]acetic Acid (28).

Step 1: Methyl [(3S)-6-(\{3',5'-dichloro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in $89 \%$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{~s}, 6 \mathrm{H}), 2.35-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H})$, $3.43-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.43-6.50(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H})$, 7.39-7.49 (m, 2H). MS m/z $607(\mathrm{M}+\mathrm{H})^{+}$.

Step 2: 28 in $86 \%$ yield as colorless crystals (heptane-AcOEt). mp $115-116{ }^{\circ} \mathrm{C} . \quad[\alpha]_{\mathrm{D}}+4.7^{\circ}$ (c $\left.0.30, \mathrm{CH}_{3} \mathrm{CN}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{~s}, 6 \mathrm{H}), 2.36-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.85$ $(\mathrm{m}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=$ $9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 6.44-6.51(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.11$ $(\mathrm{s}, 1 \mathrm{H}), 7.39-7.49(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 593(\mathrm{M}+\mathrm{H})^{+} . \quad$ HPLC purity $(220 \mathrm{~nm}) 99.8 \%$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 58.69 ; \mathrm{H}, 5.09$. Found: C, 58.69; H, 4.99.

## \{4'-[2-(Ethylthio)ethoxy]-2',6'-dimethylbiphenyl-3-yl\}methanol (5e).

The title compound was prepared from 32 and 2 -chloroethyl ethyl sulfide by a method similar to that described for $\mathbf{5 a}$ in $47 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.67(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 6 \mathrm{H}), 2.67(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{dt}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H})$, $7.30-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 299(\mathrm{M}-18+\mathrm{H})^{+}$.

Compounds 33a-c were prepared from 31 and appropriate alkylating agents (30a, 1-oxa-6-thiaspiro[2.5]octane, or $\mathbf{3 0 b}$ ) by a method similar to that described for $\mathbf{5 a}$.

## 2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-carbaldehyde (33a).

$98 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 2 \mathrm{H}), 7.42(\mathrm{dt}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dt}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 333(\mathrm{M}+$ $\mathrm{Na})^{+}$.

4'-[(4-Hydroxytetrahydro-2H-thiopyran-4-yl)methoxy]-2',6'-dimethylbiphenyl-3-carbaldehy de (33b).
$89 \%$ yield as colorless crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.70(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.90(\mathrm{~m}, 2 \mathrm{H})$, $2.01(\mathrm{~s}, 6 \mathrm{H}), 2.05-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H})$, $4.73(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.

## 2',6'-Dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-carbaldehyde (33c).

$77 \%$ yield as colorless crystals. $\quad \mathrm{mp} 91-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.42(\mathrm{~m}$, $2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.32(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.41(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H})$. MS $m / z 347(\mathrm{M}+\mathrm{H})^{+} . \quad$ Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 65.87 ; \mathrm{H}, 6.40$. Found: C, 65.82; H, 6.47.

Compounds $\mathbf{5 b}, \mathbf{d}, \mathbf{f}$, and $\mathbf{g}$ were prepared from 33a-d by a method similar to that described for 32.
\{2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\}methanol (5b).
$92 \%$ yield as colorless crystals. $\mathrm{mp} 82^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$. MS $m / z 313(M+H)^{+}$. HPLC purity (220 nm) 98.0\%. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 76.89$; H , 7.74. Found: C, 76.71; H, 7.87.

## 4-(\{[3'-(Hydroxymethyl)-2,6-dimethylbiphenyl-4-yl]oxy\}methyl)tetrahydro-2H-thiopyran-4-

 ol (5d).$94 \%$ yield as colorless crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.70(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.90(\mathrm{~m}, 2 \mathrm{H})$, $2.01(\mathrm{~s}, 6 \mathrm{H}), 2.05-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H})$, $4.73(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.02-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.

## \{2',6'-Dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methanol (5f).

$97 \%$ yield as colorless crystals. $\mathrm{mp} 96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00(\mathrm{~s}, 6 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.31(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J$ $=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1H). MS m/z $331(\mathrm{M}-18+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 65.49 ; \mathrm{H}, 6.94$. Found: C, 65.25; H, 7.19.
(4'-\{tert-Butyl(dimethyl)silyl\}oxy)-2',6'-dimethylbiphenyl-3-yl)methnol (5g).
$94 \%$ yield as colorless crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.23(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}), 4.73$ (s, 2H), $6.58(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H})$.

Compound 42a-c was prepared from 38a-c and 3-formylphenylboronic acid by a method similar to that described for $\mathbf{5 b}$-step 1 .

## 2',6'-Diethyl-4'-hydroxybiphenyl-3-carbaldehyde (42a).

$68 \%$ yield as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.25(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H})$, $4.92(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 7.44(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 255(\mathrm{M}+\mathrm{H})^{+}$.

## 4'-Hydroxy-2', $\mathbf{3}^{\prime}, \mathbf{5}^{\prime}, \mathbf{6}^{\prime}$-tetramethylbiphenyl-3-carbaldehyde (42b).

$79 \%$ yield as colorless crystals. mp 136-137 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.90(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H})$, $4.73(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dt}$, $J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 255(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, 80.28$; H, 7.13. Found: C, 80.36; H, 7.20.

## 3'-Fluoro-4'-hydroxy-2',6'-dimethylbiphenyl-3-carbaldehyde (42c).

$49 \%$ yield as colorless crystals (heptane-AcOEt). mp $116-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $1.91-1.97(\mathrm{~m}, 6 \mathrm{H}), 5.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.06(\mathrm{~s}, 1 \mathrm{H})$. MS $m / z 245(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{2}: \mathrm{C}, 73.76 ; \mathrm{H}, 5.36$. Found: C, 73.64; H, 5.29.

Compounds $\mathbf{4 3 b} \mathbf{- c}$ were prepared from $\mathbf{4 2 b}-\mathbf{c}$ by a method similar to that described for $\mathbf{3 2}$.

## $\mathbf{3}^{\prime}$-(Hydroxymethyl)-2,3,5,6-tetramethylbiphenyl-4-ol (43b).

$93 \%$ yield as colorless crystals (heptane-AcOEt). mp $152-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.65(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-7.06(\mathrm{~m}, 1 \mathrm{H})$, $7.08-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 239(\mathrm{M}-18+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}$ : C, 79.65; H, 7.86. Found: C, 79.32; H, 7.97.

## 3-Fluoro-3'-(hydroxymethyl)-2,6-dimethylbiphenyl-4-ol (43c).

$65 \%$ yield as colorless crystals. mp $123-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.97(\mathrm{~m}, 6 \mathrm{H}), 4.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.00-7.07 (m, 1H), $7.11(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.46(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 229(\mathrm{M}-18+\mathrm{H})^{+}$.

Compounds $\mathbf{5 j - 1}$ were prepared from $\mathbf{4 3 b}-\mathbf{c}$ and appropriate tosylates (1,1-dioxidotetrahydro-2H-thiopyran-4-yl 4-methylbenzenesulfonate or 30b) by a method similar to that described for $\mathbf{5 a}$.

## \{4'-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-2', $\mathbf{3}^{\prime}, 5^{\prime}, 6^{\prime}$-tetramethylbiphenyl-3-yl\}met

 hanol (5j).$88 \%$ yield as colorless crystals (heptane-AcOEt). mp 203-205 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.67(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 2.29-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.96-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.44(\mathrm{~m}$,

2H), 3.95-4.04 (m, 1H), 4.74 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (s, 1H), 7.32-7.37 $(\mathrm{m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) . \quad \mathrm{MS} \mathrm{m} / z 371(\mathrm{M}-18+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 68.01; H, 7.26. Found: C, 67.93; H, 7.32.

## \{2',3', $\mathbf{5}^{\prime}, \mathbf{6}^{\prime}$-Tetramethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methanol (5k).

$85 \%$ yield as colorless crystals (heptane-AcOEt). mp 132-134 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.66(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.86$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dt}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.36$ $(\mathrm{m}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 359(\mathrm{M}-18+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 66.99; H, 7.50. Found: C, 66.67; H, 7.32.
\{4'-[(1,1-Dioxidotetrahydro-2H-thiopyran-4-yl)oxy]-3'-fluoro-2',6'-dimethylbiphenyl-3-yl\}me thanol (51).

A crude product (quantitative) as a colorless oil. MS $m / z 361(\mathrm{M}-18+\mathrm{H})^{+}$.

4'-\{\{tert-Butyl(dimethyl)silyl]oxy\}-3'-chloro-2',6'-dimethylbiphenyl-3-carbaldehyde (44a).
The title compound was prepared from 42d by a method similar to that described for 31d in $88 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.27(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $6.68(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.90(\mathrm{~m}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}) . \quad \mathrm{MS} m / \mathrm{z} 375$ $(M+H)^{+}$.

Compounds 44b-d were prepared from tosylate 30b and phenols 42a, 42c, or 42e by a method similar to that described for $\mathbf{5 a}$.

## 2',6'-Diethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-carbaldehyde (44b).

$80 \%$ yield as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.27(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $4 \mathrm{H}), 2.32-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.33(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.69$ (s, 2H), $7.40-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H})$. MS $m / z 375(\mathrm{M}+\mathrm{H})^{+}$.

## 3'-Fluoro-2', $\mathbf{6}^{\prime}$ 'dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-carbaldehyde (44c).

$95 \%$ yield as colorless crystals (heptane-AcOEt). mp 117-118 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.93$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.36(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dt}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{dt}, J=7.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.06(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS} \mathrm{m} / \mathrm{z} 365(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{4} \mathrm{~S}: \mathrm{C}, 62.62 ; \mathrm{H}$, 5.81. Found: C, 62.66; H, 5.81.

3',5'-Dichloro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-carbaldehyde (44d).
$53 \%$ yield as colorless crystals (heptane-AcOEt). mp 135-136 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.03$ (s, $6 \mathrm{H}), 2.37-2.48(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.51(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.61-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.94(\mathrm{~m}, 1 \mathrm{H}), 10.06(\mathrm{~s}, 1 \mathrm{H}) . \quad \mathrm{MS} m / z 415(\mathrm{M}+\mathrm{H})^{+} . \quad$ Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 54.94 ; \mathrm{H}, 4.85$. Found: C, $54.93 ; \mathrm{H}, 4.89$.

Compounds $\mathbf{5 h}, \mathbf{i}, \mathbf{m}$, and $\mathbf{n}$ were prepared from 44a-d by a method similar to that described for 32.
(4'-\{[tert-Butyl(dimethyl)silyl]oxy\}-3'-chloro-2',6'-dimethylbiphenyl-3-yl)methanol (5h).
$97 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.26(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93$ $(\mathrm{s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 7.01-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.45$ (m, 2H). MS m/z $377(\mathrm{M}+\mathrm{H})^{+}$.

## \{2',6'-Diethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methanol (5i).

$84 \%$ yield as colorless crystals (heptane-AcOEt). mp 115-116 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.01(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.66(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.33(\mathrm{~m}, 2 \mathrm{H}), 4.16$ $(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 7.06-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 1 \mathrm{H})$, 7.32-7.43 (m, 2H). MS m/z $359(\mathrm{M}-18+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 66.99 ; \mathrm{H}, 7.50$. Found: C, 66.92; H, 7.46.

## \{3'-Fluoro-2', $\mathbf{6}^{\prime}$-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methanol (5m).

$94 \%$ yield as colorless crystals (heptane-AcOEt). mp $62-63{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.70(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.37(\mathrm{~m}$, $2 \mathrm{H}), 4.20(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.08(\mathrm{~m}, 1 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS} m / z 349(\mathrm{M}-18+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{FO}_{4} \mathrm{~S}: \mathrm{C}$, 62.27; H, 6.33. Found: C, 62.63; H, 6.65.
\{3',5'-Dichloro-2', $\mathbf{6}^{\prime}$-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl\}methanol (5n).
$98 \%$ yield as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.76(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H}), 2.36-2.47$ $(\mathrm{m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.48(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS} m / z 417(\mathrm{M}+\mathrm{H})^{+}$.

## X-Ray Crystallographic Data for Compound 16

A. Crystal Data

| Empirical Formula | $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{~S} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ |
| :--- | :--- |
| Formula Weight | 533.64 |
| Crystal Color, Habit | colorless, platelet |
| Crystal Dimensions | $0.30 \times 0.20 \times 0.05 \mathrm{~mm}$ |
| Crystal System | triclinic |
| Lattice Type | Primitive |
| No. of Reflections Used for Unit |  |
| Cell Determination (2 $\theta$ range $)$ | $25654\left(7.3-136.5^{\circ}\right)$ |
| Indexing Images | 3 oscillations at 3.0 minutes |
| Camera Radius | 127.40 mm |
| Lattice Parameters | $\mathrm{a}=7.912(2) \AA$ |
|  | $\mathrm{b}=9.698(3) \AA$ |
|  | $\mathrm{c}=36.602(9) \AA$ |
|  | $\alpha=91.59(2)^{\circ}$ |
|  | $\beta=92.35(2)^{\circ}$ |
|  | $\gamma=107.59(2)^{\circ}$ |
| Space Group | $\mathrm{V}=2672(4) \AA^{3}$ |
| Z value | $\mathrm{P} 1(\# 1)$ |
| $\mathrm{D}_{\text {calc }}$ | 4 |
| $\mathrm{~F}_{000}$ | $1.326 \mathrm{~g} / \mathrm{cm}^{3}$ |
| $\mu(\mathrm{CuK} \alpha)$ | 1132.00 |
|  | $14.80 \mathrm{~cm}^{-1}$ |

B. Intensity Measurements

| Diffractometer | Rigaku RAXIS-RAPID Imaging Plate |
| :--- | :--- |
| Radiation | $\mathrm{CuK} \alpha(\lambda=1.54186 ~$ <br> 路 <br> graphite monochromated |
| Temperature | $-173.0^{\circ} \mathrm{C}$ |
| Voltage, Current | $50 \mathrm{kV}, 100 \mathrm{~mA}$ |
| Collimator Size | 0.5 mm |
| Detector Aperture | $460.0 \mathrm{~mm} \times 256.0 \mathrm{~mm}$ |
| Data Images | 45 exposures at 1.5 minutes per degree |
| Oscillation Range $\left(\phi=0.0^{\circ}, \chi=50.0^{\circ}\right)$ | $\omega 50.0-230.0^{\circ}$ with $20.0^{\circ}$ step |


| Oscillation Range $\left(\phi=90.0^{\circ}, \chi=50.0^{\circ}\right)$ | $\omega 50.0-230.0^{\circ}$ with $20.0^{\circ}$ step |
| :--- | :--- |
| Oscillation Range $\left(\phi=195.0^{\circ}, \chi=50.0^{\circ}\right)$ | $\omega 50.0-230.0^{\circ}$ with $20.0^{\circ}$ step |
| Oscillation Range $\left(\phi=270.0^{\circ}, \chi=50.0^{\circ}\right)$ | $\omega 50.0-230.0^{\circ}$ with $20.0^{\circ}$ step |
| Oscillation Range $\left(\phi=60.0^{\circ}, \chi=10.0^{\circ}\right)$ | $\omega 50.0-230.0^{\circ}$ with $20.0^{\circ}$ step |
| Camera Radius | 127.40 mm |
| Pixel Size | 0.100 mm |
| $2 \theta_{\max }$ | $136.5^{\circ}$ |
| No. of Reflections Measured | Total: 27623 <br> Unique: $8873\left(\mathrm{R}_{\text {int }}=0.040\right)$ |
| Corrections | Lorentz-polarization <br> Absorption <br> (trans. factors: $0.6381-0.9287)$ |

C. Structure Solution and Refinement

| Structure Solution | Direct Methods (SIR92) |
| :--- | :--- |
| Refinement | Full-matrix least-squares (SHELXL-97) |
| Function Minimized | $\sum \omega\left(F o^{2}-F c^{2}\right)^{2}$ |
| Least Squares Weights | $\omega=\left[\sigma^{2}\left(F o^{2}\right)+(0.0587 \mathrm{P})^{2}+0.0000 \mathrm{P}\right]^{-1}$ <br> where $P=\left(F o^{2}+2 F c^{2}\right) / 3$ |
| No. of Reflections | 12146 |
| No. Variables | 1348 |
| Reflection/Parameter Ratio | 9.01 |
| Residuals: R; Rw | $0.063 ; 0.166$ |
| Goodness of Fit Indicator | 1.01 |
| Max Shift/Error in Final Cycle | 0.00 |
| Maximum peak in Final Diff. Map | $0.70 \mathrm{e}^{-} / A^{3}$ |
| Minimum peak in Final Diff. Map | $-0.55 \mathrm{e}^{-/} / A^{3}$ |
| Flack Parameter | $-0.05(2)$ |

