Supporting Information

Optimization of (2,3-Dihydro-1-Benzofuran-3-yl)acetic Acids:
Discovery of a Non-Free Fatty Acid-Like, Highly Bioavailable
G Protein-Coupled Receptor 40/Free Fatty Acid Receptor 1
Agonist as a Glucose-Dependent Insulinotropic Agent

Nobuyuki Negoro,[†] Shinobu Sasaki,[†] Satoshi Mikami,[†] Masahiro Ito,[†] Yoshiyuki Tsujihata,[†] Ryo Ito,[†] Masami Suzuki,[†] Koji Takeuchi,[†] Nobuhiro Suzuki,[‡] Junichi Miyazaki,[‡] Takashi Santou,[†] Tomoyuki Odani,[†] Naoyuki Kanzaki,[†] Miyuki Funami,[‡] Akio Morohashi,[†] Masami Nonaka,[†] Shinichiro Matsunaga,[†] Tsuneo Yasuma,^{*,‡} and Yu Momose[†]

†Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan;

[‡]Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan

Table of Contents:

Abbreviations of the solvents and reagents: Page S2

Experimental for compounds: Page S2-S13

X-Ray Crystallographic Data for Compound 16: Page S14–S16

- A. Crystal Data
- B. Intensity Measurements
- C. Structure Solution and Refinement

Abbreviations of the solvents and reagents are used as follows: CDCl₃, deuterochloroform; DMSO-d₆, hexadeuterodimethyl sulfoxide; AcOEt, ethyl acetate; MeOH, methanol; EtOH, ethanol; IPA, 2-propanol; DMF, N,N-dimethylformamide; DMSO, dimethyl sulfoxide; THF, tetrahydrofuran; Et₂O, diethyl ether; DME, 1,2-dimethoxyethane; CH₃CN, acetonitrile; CH₂Cl₂, dichloromethane; NaBH₄, sodium borohydride; LiAlH₄, lithium aluminum hydride; AlCl₃, aluminum chloride; NaOH, sodium hydroxide; HCl, hydrochloric acid; NH₄Cl, ammonium chloride; NaHCO₃, sodium hydrogen carbonate; MgSO₄, magnesium sulfate; Na₂SO₄, sodium sulfate; Na₂S₂O₃, sodium thiosulfate; K₂CO₃, potassium carbonate; Cs₂CO₃, cesium carbonate; K₃PO₄, potassium phosphate; TBAF, tetrabutylammonium fluoride; KI, potassium iodine; m-CPBA, m-chloroperbenzoic acid; Pd/C, palladium on carbon; Pd(PPh₃)₄, tetrakis(triphenylphosphine)palladium(0); n-BuLi, n-butyl lithium; $B(i-PrO)_3$, triisopropyl borate; ADDP, 1,1'-(azodicarbonyl)dipiperidine; $P(n-Bu)_3$, tributylphosphine; PPh₃, triphenylphosphine; DEAD, diethyl azodicarboxylate; p-TsCl, p-toluenesulfonyl chloride; Et₃N, triethylamine; TBSCl, tert-butyldimethylchlorosilane; n-Bu₄NBr₃, tetrabutylammonium tribromide; TiCl₄, titanium (IV) chloride; Br₂, bromine; AcOH, acetic acid; PdCl₂(dppf)·CH₂Cl₂, [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) complex with dichloromethane; NCS, *N*-chlorosuccinimide.

The following compounds 7–13 were also prepared from appropriate phenols 4a–c and alcohols 5a–c by a method similar to that described for 6.

[(3R)-6- $\{[4'$ -(2-Ethoxyethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy}-2,3-dihydro-1-benzofur an-3-yl]acetic Acid (7).

Step 1: Methyl [(3R)-6- $\{[4'$ -(2-ethoxyethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy $\}$ -2,3-dihydro-1-benzofuran-3-yl]acetate in 89% yield as a colorless oil. ¹H NMR (CDCl₃) δ 1.25 (t, J = 7.1 Hz, 3H), 1.98 (s, 6H), 2.50–2.61 (m, 1H), 2.69–2.79 (m, 1H), 3.62 (q, J = 7.1 Hz, 2H), 3.71 (s, 3H), 3.74–3.85 (m, 3H), 4.11–4.16 (m, 2H), 4.26 (dd, J = 9.1, 6.1 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.05 (s, 2H), 6.44–6.51 (m, 2H), 6.68 (s, 2H), 7.01 (d, J = 8.1 Hz, 1H), 7.08 (dt, J = 7.2, 1.6 Hz, 1H), 7.16 (s, 1H), 7.34–7.45 (m, 2H). MS m/z 491 (M + H) $^+$. HPLC purity (220 nm) 100.0%.

Step 2: 7 in 80% yield as colorless crystals (hexane–AcOEt). mp 59–60 °C. [α]_D –7.5° (c 0.31, CH₃CN). 99.8% ee [column: CHIRALPAK AD, 4.6 mmID × 250 mmL; mobile phase: hexane/IPA/TFA (85/15/0.1) (v/v/v) by isocratic elution; flow rate: 0.5 mL/min; detection: UV 220 nm; temperature: room temperature]. ¹H NMR (CDCl₃) δ 1.25 (t, J = 7.0 Hz, 3H), 1.98 (s, 6H), 2.55–2.67 (m, 1H), 2.76–2.85 (m, 1H), 3.62 (q, J = 7.0 Hz, 2H), 3.75–3.86 (m, 3H), 4.14 (t, J = 5.0 Hz, 2H), 4.28 (dd, J = 9.1, 6.1 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.05 (s, 2H), 6.44–6.52 (m, 2H), 6.68 (s, 2H), 7.02–7.11 (m, 2H), 7.16 (s, 1H), 7.34–7.45 (m, 2H). MS m/z 477 (M + H)⁺. HPLC purity (220 nm) 100.0%. Anal. Calcd for C₂₉H₃₂O₆: C, 73.09; H, 6.77. Found: C, 73.02; H, 6.77.

[6-({2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (8).

Step 1: Methyl [6-($\{2',6'\text{-dimethyl-4'-}[(3\text{-methyloxetan-3-yl})\text{methoxy}]$ biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 89% yield as a yellow oil. ¹H NMR (CDCl₃) δ 1.45 (s, 3H), 2.00 (s, 6H), 2.49–2.61 (m, 1H), 2.69–2.80 (m, 1H), 3.71 (s, 3H), 3.74–3.86 (m, 1H), 4.04 (s, 2H), 4.26 (dd, J = 9.1, 6.1 Hz, 1H), 4.47 (d, J = 5.9 Hz, 2H), 4.64 (d, J = 5.9 Hz, 2H), 4.75 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.51 (m, 2H), 6.70 (s, 2H), 7.02 (d, J = 8.1 Hz, 1H), 7.08 (dt, J = 7.1, 1.5 Hz, 1H), 7.17 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 503 (M + H)⁺.

Step 2: **8** in 65% yield as colorless crystals (hexane–AcOEt). mp 150–151 °C. ¹H NMR (CDCl₃) δ 1.45 (s, 3H), 2.00 (s, 6H), 2.55–2.67 (m, 1H), 2.75–2.86 (m, 1H), 3.75–3.87 (m, 1H), 4.04 (s, 2H), 4.28 (dd, J = 9.1, 6.0 Hz, 1H), 4.48 (d, J = 5.9 Hz, 2H), 4.65 (d, J = 5.9 Hz, 2H), 4.76 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.52 (m, 2H), 6.70 (s, 2H), 7.01–7.11 (m, 2H), 7.17 (s, 1H), 7.34–7.46 (m, 2H). MS m/z 489 (M + H)⁺. HPLC purity (220 nm) 99.9%. Anal. Calcd for $C_{30}H_{32}O_6$: C, 73.75; H, 6.60. Found: C, 73.53; H, 6.61.

[(3S)-6-({2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl}methoxy)-2,3-dihyd ro-1-benzofuran-3-yl]acetic Acid (9).

Step 1: Methyl [(3*S*)-6-({2',6'-dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 95% yield as a pale yellow oil. ¹H NMR (CDCl₃) δ 1.45 (s, 3H), 2.00 (s, 6H), 2.50–2.60 (m, 1H), 2.70–2.79 (m, 1H), 3.72 (s, 3H), 3.74–3.86 (m, 1H), 4.04 (s, 2H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.47 (d, J = 5.8 Hz, 2H), 4.64 (d, J = 5.8 Hz, 2H), 4.75 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.51 (m, 2H), 6.70 (s, 2H), 7.02 (d, J = 8.1 Hz, 1H), 7.05–7.11 (m, 1H), 7.17 (s, 1H), 7.35–7.46 (m, 2H). MS m/z not detected.

Step 2: **9** in 66% yield as colorless crystals (hexane–AcOEt). mp 140–142 °C. $[\alpha]_D$ +5.6° (c 0.30, CH₃CN). 99.8% ee [column: CHIRALPAK OD, 4.6 mmID × 250 mmL; mobile phase: hexane/IPA/TFA (80/20/0.1) (v/v/v) by isocratic elution; flow rate: 0.5 mL/min; detection: UV 220 nm; temperature: 30 °C]. ¹H NMR (CDCl₃) δ 1.45 (s, 3H), 2.00 (s, 6H), 2.56–2.67 (m, 1H), 2.76–2.85 (m, 1H), 3.75–3.86 (m, 1H), 4.04 (s, 2H), 4.29 (dd, J = 9.1, 6.0 Hz, 1H), 4.48 (d, J = 5.9 Hz, 2H), 4.65 (d, J = 5.9 Hz, 2H), 4.76 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.52 (m, 2H), 6.70 (s, 2H), 7.02–7.11 (m, 2H), 7.17 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 489 (M + H)⁺. HPLC purity (220 nm) 98.0%. Anal. Calcd for C₃₀H₃₂O₆: C, 73.75; H, 6.60. Found: C, 73.50; H, 6.73.

$[(3R)-6-(\{2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl\}methoxy)-2,3-dihyd ro-1-benzofuran-3-yl]acetic Acid (10).$

Step 1: Methyl [(3*R*)-6-({2',6'-dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 90% yield as a colorless oil. 1 H NMR (CDCl₃) δ 1.45 (s, 3H), 2.00 (s, 6H), 2.50–2.61 (m, 1H), 2.70–2.80 (m, 1H), 3.72 (s, 3H), 3.74–3.86 (m, 1H),

4.04 (s, 2H), 4.26 (dd, J = 9.0, 6.1 Hz, 1H), 4.47 (d, J = 5.8 Hz, 2H), 4.64 (d, J = 5.8 Hz, 2H), 4.75 (t, J = 9.0 Hz, 1H), 5.06 (s, 2H), 6.44–6.51 (m, 2H), 6.70 (s, 2H), 7.02 (d, J = 7.9 Hz, 1H), 7.08 (dt, J = 7.1, 1.6 Hz, 1H), 7.17 (s, 1H), 7.35–7.46 (m, 2H). MS <math>m/z not detected.

Step 2: **10** in 56% yield as colorless crystals (hexane–AcOEt). mp 136–138 °C. [α]_D –5.6° (c 0.31, CH₃CN). 99.4% ee [column: CHIRALPAK OD, 4.6 mmID × 250 mmL; mobile phase: hexane/IPA/TFA (80/20/0.1) (v/v/v) by isocratic elution; flow rate: 0.5 mL/min; detection: UV 220 nm; temperature: 30 °C]. ¹H NMR (CDCl₃) δ 1.45 (s, 3H), 2.00 (s, 6H), 2.55–2.67 (m, 1H), 2.75–2.86 (m, 1H), 3.75–3.87 (m, 1H), 4.04 (s, 2H), 4.29 (dd, J = 9.2, 6.0 Hz, 1H), 4.48 (d, J = 5.8 Hz, 2H), 4.65 (d, J = 6.0 Hz, 2H), 4.76 (t, J = 9.0 Hz, 1H), 5.06 (s, 2H), 6.44–6.52 (m, 2H), 6.71 (s, 2H), 7.02–7.11 (m, 2H), 7.17 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 489 (M + H)⁺. Anal. Calcd for $C_{30}H_{32}O_6$: C, 73.75; H, 6.60. Found: C, 73.58; H, 6.77.

[6-({4'-[(1,1-Dioxidotetrahydro-2*H*-thiopyran-4-yl)oxy]-2',6'-dimethylbiphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (11).

Step 1: Methyl [6-($\{4'$ -[(1,1-dioxidotetrahydro-2*H*-thiopyran-4-yl)oxy]-2',6'-dimethylbiphenyl-3-yl}-methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 93% yield as a pale yellow oil. ¹H NMR (CDCl₃) δ 1.99 (s, 6H), 2.31–2.60 (m, 5H), 2.70–2.79 (m, 1H), 2.89–3.00 (m, 2H), 3.39–3.52 (m, 2H), 3.72 (s, 3H), 3.75–3.86 (m, 1H), 4.26 (dd, J = 9.1, 6.1 Hz, 1H), 4.64–4.70 (m, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.50 (m, 2H), 6.67 (s, 2H), 7.02 (d, J = 7.9 Hz, 1H), 7.07 (dt, J = 7.1, 1.5 Hz, 1H), 7.16 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 551 (M + H)⁺. HPLC purity (220 nm) 99.6%.

Step 2: **11** in 80% yield as colorless crystals (hexane–AcOEt). mp 159–161 °C. ¹H NMR (CDCl₃) δ 1.99 (s, 6H), 2.31–2.56 (m, 4H), 2.56–2.67 (m, 1H), 2.76–2.85 (m, 1H), 2.90–3.00 (m, 2H), 3.39–3.52 (m, 2H), 3.75–3.87 (m, 1H), 4.29 (dd, J = 9.1, 6.0 Hz, 1H), 4.64–4.70 (m, 1H), 4.76 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.52 (m, 2H), 6.67 (s, 2H), 7.03–7.10 (m, 2H), 7.16 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 537 (M + H)⁺. HPLC purity (220 nm) 100.0%. Anal. Calcd for $C_{30}H_{32}O_7S$: C, 67.14; H, 6.01. Found: C, 66.97; H, 6.12.

$[(3S)-6-(\{4'-[(1,1-\text{Dioxidotetrahydro-}2H-\text{thiopyran-}4-yl)\text{oxy}]-2',6'-\text{dimethylbiphenyl-}3-yl\}$ met hoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (12).

Step 1: Methyl $[(3S)-6-(\{4'-[(1,1-\text{dioxidotetrahydro-}2H-\text{thiopyran-}4-yl)\text{oxy}]-2',6'-\text{dimethyl}$ biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 79% yield as a colorless oil. ^{1}H NMR (CDCl₃) δ 1.99 (s, 6H), 2.31–2.60 (m, 5H), 2.70–2.79 (m, 1H), 2.89–3.00 (m, 2H), 3.39–3.52 (m, 2H), 3.72 (s, 3H), 3.75–3.86 (m, 1H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.64–4.69 (m, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.50 (m, 2H), 6.67 (s, 2H), 7.02 (d, J = 7.9 Hz, 1H), 7.04–7.09 (m, 1H), 7.16 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 551 (M + H) $^+$.

Step 2: **12** in 85% yield as colorless crystals (heptane–AcOEt). mp 154–155 °C. [α]_D +6.1° (c 0.30, CH₃CN). ¹H NMR (CDCl₃) δ 1.99 (s, 6H), 2.30–2.44 (m, 2H), 2.45–2.56 (m, 2H), 2.56–2.67 (m, 1H), 2.75–2.86 (m, 1H), 2.89–3.00 (m, 2H), 3.38–3.52 (m, 2H), 3.75–3.87 (m, 1H), 4.29 (dd, J = 9.1, 6.1 Hz, 1H), 4.63–4.70 (m, 1H), 4.76 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.52 (m, 2H), 6.67 (s, 2H), 7.02–7.10 (m, 2H), 7.16 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 537 (M + H)⁺. HPLC purity (220 nm) 99.8%. Anal. Calcd for C₃₀H₃₂O₇S: C, 67.14; H, 6.01. Found: C, 67.10; H, 6.06.

$[(3R)-6-(\{4'-[(1,1-\text{Dioxidotetrahydro-}2H-\text{thiopyran-}4-yl)\text{oxy}]-2',6'-\text{dimethylbiphenyl-}3-yl\}$ met hoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (13).

Step 1: Methyl [(3R)-6- $(\{4'-[(1,1-\text{dioxidotetrahydro-}2H-\text{thiopyran-}4-\text{yl})\text{oxy}]$ -2',6'-dimethyl biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 86% yield as a colorless foam.
¹H NMR (CDCl₃) δ 1.99 (s, 6H), 2.30–2.61 (m, 5H), 2.70–2.79 (m, 1H), 2.89–2.99 (m, 2H), 3.38–3.52 (m, 2H), 3.72 (s, 3H), 3.74–3.86 (m, 1H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.63–4.69 (m, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.42–6.50 (m, 2H), 6.67 (s, 2H), 6.99–7.10 (m, 2H), 7.16 (s, 1H), 7.35–7.46 (m, 2H).

Step 2: **13** in 92% yield as colorless crystals (heptane–AcOEt). mp 156–157 °C. [α]_D –4.4° (c 0.30, CH₃CN). ¹H NMR (CDCl₃) δ 1.99 (s, 6H), 2.30–2.44 (m, 2H), 2.45–2.67 (m, 3H), 2.74–2.86 (m, 1H), 2.89–3.00 (m, 2H), 3.38–3.52 (m, 2H), 3.75–3.87 (m, 1H), 4.29 (dd, J = 9.1, 6.0 Hz, 1H), 4.63–4.69 (m, 1H), 4.76 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.52 (m, 2H), 6.67 (s, 2H), 7.02–7.10 (m, 2H), 7.16 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 537 (M + H)⁺. HPLC purity (220 nm) 99.8%. Anal. Calcd for C₃₀H₃₂O₇S: C, 67.14; H, 6.01. Found: C, 66.94; H, 6.02.

The following compound **17b** was prepared from **4b** and **5h** by a method similar to that described for **17a**.

Methyl {(3S)-6-[(3'-Chloro-4'-hydroxy-2',6'-dimethylbiphenyl-3-yl)methoxy]-2,3-dihydro-1-benzofuran-3-yl}acetate (17b).

Step 1: Methyl $\{(3S)\text{-}6\text{-}[(4'\text{-}\{[tert\text{-}butyl(dimethyl)silyl]oxy}\}\text{-}3'\text{-}chloro\text{-}2',6'\text{-}dimethylbiphenyl}\text{-}3-yl)$ methoxy]-2,3-dihydro-1-benzofuran-3-yl}acetate in 77% yield as colorless crystals. ¹H NMR (CDCl₃) δ 0.26 (s, 6H), 1.06 (s, 9H), 1.92 (s, 3H), 2.04 (s, 3H), 2.50–2.61 (m, 1H), 2.70–2.79 (m, 1H), 3.71 (s, 3H), 3.75–3.86 (m, 1H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.05 (s, 2H), 6.44–6.51 (m, 2H), 6.65 (s, 1H), 6.99–7.07 (m, 2H), 7.14 (s, 1H), 7.36–7.46 (m, 2H). MS m/z 567 (M + H)⁺.

Step 2: **17b** in 88% yield as a colorless oil. ¹H NMR (CDCl₃) δ 1.94 (s, 3H), 2.04 (s, 3H), 2.49–2.61 (m, 1H), 2.69–2.80 (m, 1H), 3.71 (s, 3H), 3.74–3.86 (m, 1H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 5.55 (s, 1H), 6.43–6.51 (m, 2H), 6.81 (s, 1H), 6.99–7.07 (m, 2H), 7.13 (s, 1H), 7.36–7.47 (m, 2H). MS m/z 453 (M + H)⁺.

The following compounds 20 and 21 were also prepared from 17a and appropriate alcohols by a method similar to that described for 18.

[(3S)-6-({4'-[(2,4-Dimethyl-1,3-thiazol-5-yl)methoxy]-2',6'-dimethylbiphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl|acetic Acid (20).

Step 1: Methyl $[(3S)-6-(\{4'-[(2,4-dimethyl-1,3-thiazol-5-yl)methoxy]-2',6'-dimethylbiphenyl-3-yl\}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate as a crude product (a colorless oil). MS <math>m/z$ 544 (M + H) $^+$.

Step 2: **20** in 24% yield (from **17a**) as colorless crystals (hexane–AcOEt). mp 158–159 °C. 1 H NMR (CDCl₃) δ 1.91 (s, 6H), 2.34 (s, 3H), 2.59 (s, 3H), 2.61–2.80 (m, 2H), 3.56–3.74 (m, 1H), 4.18 (dd, J = 9.0, 6.8 Hz, 1H), 4.68 (t, J = 9.0 Hz, 1H), 5.09 (s, 2H), 5.20 (s, 2H), 6.42–6.56 (m, 2H), 6.77 (s, 2H), 7.02–7.16 (m, 3H), 7.35–7.49 (m, 2H). MS m/z 530 (M + H)⁺. HPLC purity (220 nm) 99.1%.

[(3S)-6-{[4'-(Imidazo[1,2-a]pyridin-5-ylmethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy}-2,3-d ihydro-1-benzofuran-3-yl]acetic Acid (21).

Step 1: Methyl $[(3S)-6-\{[4'-(imidazo[1,2-a]pyridin-5-ylmethoxy)-2',6'-dimethylbiphenyl-3-yl]$ methoxy $\}-2,3$ -dihydro-1-benzofuran-3-yl]acetate as a crude product (a colorless oil). MS m/z 549 $(M+H)^+$.

Step 2: **21** in 16% yield (from **17a**) as colorless crystals (hexane–AcOEt). mp 204–205 °C. ¹H NMR (DMSO- d_6) δ 1.93 (s, 6H), 2.38 (dd, J = 16.5, 9.0 Hz, 1H), 2.62 (dd, J = 16.5, 5.5 Hz, 1H), 3.56–3.71 (m, 1H), 4.16 (dd, J = 9.0, 6.9 Hz, 1H), 4.66 (t, J = 9.0 Hz, 1H), 5.09 (s, 2H), 5.46 (s, 2H), 6.41–6.49 (m, 2H), 6.90 (s, 2H), 7.03–7.12 (m, 2H), 7.12–7.17 (m, 2H), 7.31 (dd, J = 9.0, 6.8 Hz, 1H), 7.35–7.48 (m, 2H), 7.60–7.71 (m, 2H), 7.93 (s, 1H). MS m/z 535 (M + H)⁺. HPLC purity (220 nm) 99.3%.

The following compounds 22–26 were also prepared from 4b and appropriate alcohols 5i–m by a method similar to that described for 6.

[(3S)-6-({2',6'-Diethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (22).

Step 1: Methyl [(3*S*)-6-({2',6'-diethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 93% yield as a yellow oil. 1 H NMR (CDCl₃) δ 0.98 (t, J = 7.5 Hz, 6H), 2.22–2.43 (m, 6H), 2.49–2.60 (m, 1H), 2.70–2.78 (m, 1H), 2.97 (s, 3H), 3.25–3.33 (m, 2H), 3.71 (s, 3H), 3.74–3.85 (m, 1H), 4.12–4.18 (m, 2H), 4.25 (dd, J = 9.0, 6.1 Hz, 1H), 4.74 (t, J = 9.0 Hz, 1H), 5.06 (s, 2H), 6.43–6.49 (m, 2H), 6.66 (s, 2H), 7.00 (d, J = 8.1 Hz, 1H), 7.07–7.11 (m, 1H), 7.18 (s, 1H), 7.36–7.44 (m, 2H). MS m/z 567 (M + H) $^{+}$.

Step 2: **22** in 81% yield as colorless crystals (heptane–AcOEt). mp 87–89 °C. [α]_D +5.5° (c 0.30, CH₃CN). ¹H NMR (CDCl₃) δ 0.98 (t, J = 7.5 Hz, 6H), 2.22–2.42 (m, 6H), 2.55–2.66 (m, 1H), 2.75–2.85 (m, 1H), 2.97 (s, 3H), 3.25–3.33 (m, 2H), 3.74–3.86 (m, 1H), 4.15 (t, J = 5.7 Hz, 2H), 4.28 (dd, J = 9.1, 6.1 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.07 (s, 2H), 6.43–6.51 (m, 2H), 6.66 (s, 2H), 7.04 (d, J = 8.3 Hz, 1H), 7.06–7.12 (m, 1H), 7.18 (s, 1H), 7.35–7.45 (m, 2H). MS m/z 553 (M + H)⁺. HPLC purity (220 nm) 99.9%. Anal. Calcd for C₂₉H₃₂O₈S·0.15 heptane: C, 67.81; H, 6.82. Found: C, 67.88; H, 6.84.

[(3S)-6-({4'-[(1,1-Dioxidotetrahydro-2*H*-thiopyran-4-yl)oxy]-2',3',5',6'-tetramethylbiphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl|acetic Acid (23).

Step 1: Methyl [(3*S*)-6-({4'-[(1,1-dioxidotetrahydro-2*H*-thiopyran-4-yl)oxy]-2',3',5',6'-tetramethyl biphenyl-3-yl} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 81% yield as a colorless amorphous powder. 1 H NMR (CDCl₃) δ 1.87 (s, 6H), 2.20 (s, 6H), 2.30–2.60 (m, 5H), 2.70–2.79 (m, 1H), 2.95–3.08 (m, 2H), 3.31–3.43 (m, 2H), 3.72 (s, 3H), 3.75–3.86 (m, 1H), 3.94–4.03 (m, 1H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.05 (s, 2H), 6.44–6.51 (m, 2H), 6.99–7.06 (m, 2H), 7.12 (s, 1H), 7.35–7.45 (m, 2H). MS m/z 579 (M + H)⁺.

Step 2: **23** in 64% yield as colorless crystals (heptane–AcOEt). mp 143–145 °C. [α]_D +2.8° (c 0.30, CHCl₃). ¹H NMR (CDCl₃) δ 1.87 (s, 6H), 2.20 (s, 6H), 2.29–2.55 (m, 4H), 2.55–2.67 (m, 1H), 2.75–2.85 (m, 1H), 2.95–3.08 (m, 2H), 3.31–3.44 (m, 2H), 3.74–3.87 (m, 1H), 3.94–4.04 (m, 1H), 4.28 (dd, J = 9.1, 6.1 Hz, 1H), 4.76 (t, J = 9.1 Hz, 1H), 5.05 (s, 2H), 7.00–7.08 (m, 2H), 7.12 (s, 1H), 7.35–7.46 (m, 2H). MS m/z 565 (M + H)⁺. HPLC purity (220 nm) 99.6%. Anal. Calcd for $C_{32}H_{36}O_7S$: C, 68.06; H, 6.43. Found: C, 67.80; H, 6.40.

[(3S)-6-({2',3',5',6'-Tetramethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-yl}methoxy)-2,3-d ihydro-1-benzofuran-3-yl|acetic Acid (24).

Step 1: Methyl [(3*S*)-6-({2',3',5',6'-tetramethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 82% yield as a colorless oil. 1 H NMR (CDCl₃) δ 1.87 (s, 6H), 2.19 (s, 6H), 2.32–2.43 (m, 2H), 2.50–2.61 (m, 1H), 2.70–2.79 (m, 1H), 3.00 (s, 3H), 3.35–3.43 (m, 2H), 3.71 (s, 3H), 3.74–3.90 (m, 3H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.05 (s, 2H), 6.43–6.51 (m, 2H), 6.99–7.07 (m, 2H), 7.13 (s, 1H), 7.35–7.45 (m, 2H). MS m/z 567 (M + H) $^+$.

Step 2: **24** in 94% yield as colorless crystals (heptane–AcOEt). mp 160–162 °C. [α]_D +6.3° (c 0.30, CH₃CN). ¹H NMR (CDCl₃) δ 1.87 (s, 6H), 2.19 (s, 6H), 2.32–2.43 (m, 2H), 2.56–2.66 (m, 1H), 2.75–2.85 (m, 1H), 3.00 (s, 3H), 3.35–3.43 (m, 2H), 3.75–3.89 (m, 3H), 4.28 (dd, J = 9.1, 6.0 Hz, 1H), 4.76 (t, J = 9.1 Hz, 1H), 5.05 (s, 2H), 6.44–6.52 (m, 2H), 7.01–7.07 (m, 2H), 7.13 (s, 1H), 7.35–7.45 (m, 2H). MS m/z 553 (M + H)⁺. HPLC purity (220 nm) 99.3%. Anal. Calcd for $C_{31}H_{36}O_7S$: C, 67.37; H, 6.57. Found: C, 67.39; H, 6.64.

[(3S)-6-({4'-[(1,1-Dioxidotetrahydro-2*H*-thiopyran-4-yl)oxy]-3'-fluoro-2',6'-dimethylbiphenyl -3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetic Acid (25).

Step 1: Methyl $[(3S)-6-(\{4'-[(1,1-\text{dioxidotetrahydro-}2H-\text{thiopyran-}4-yl)\text{oxy}]-3'-\text{fluoro-}2',6'-\text{dimethylbiphenyl-}3-yl\}\text{methoxy})-2,3-\text{dihydro-}1-\text{benzofuran-}3-yl]\text{acetate}$ as a crude product (a colorless oil). MS m/z 569 (M + H) $^+$.

Step 2: **25** in 15% yield (from **43c**) as colorless crystals (hexane–diisopropyl ether). mp 112–113 °C. 1 H NMR (CDCl₃) δ 1.89–1.97 (m, 6H), 2.29–2.45 (m, 2H), 2.46–2.56 (m, 2H), 2.61 (dd, J = 16.8, 9.0 Hz, 1H), 2.81 (dd, J = 16.8, 5.7 Hz, 1H), 2.90–3.01 (m, 2H), 3.46–3.59 (m, 2H), 3.75–3.86 (m, 1H), 4.29 (dd, J = 9.2, 6.0 Hz, 1H), 4.56–4.64 (m, 1H), 4.76 (t, J = 9.2 Hz, 1H), 5.06 (s, 2H), 6.44–6.51 (m, 2H), 6.74 (d, J = 8.3 Hz, 1H), 7.02–7.08 (m, 2H), 7.14 (s, 1H), 7.37–7.48 (m, 2H). MS m/z 535 (M + H) $^{+}$. HPLC purity (220 nm) 99.4%.

[6-({3'-Fluoro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihy dro-1-benzofuran-3-yl]acetic Acid (26).

Step 1: Methyl [(3*S*)-6-({3'-fluoro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl} methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 77% yield as colorless crystals (heptane–AcOEt). mp 101–103 °C. 1 H NMR (CDCl₃) δ 1.90–1.93 (m, 3H), 1.96 (s, 3H), 2.33–2.44 (m, 2H), 2.55 (dd, J = 16.5, 5.7 Hz, 1H), 2.75 (dd, J = 16.5, 9.0 Hz, 1H), 2.98 (s, 3H), 3.28–3.35 (m, 2H), 3.72 (s, 3H), 3.74–3.86 (m, 1H), 4.17–4.29 (m, 3H), 4.75 (t, J = 9.0 Hz, 1H), 5.06 (s, 2H), 6.44–6.51 (m, 2H), 6.70 (d, J = 8.3 Hz, 1H), 6.99–7.07 (m, 2H), 7.13 (s, 1H), 7.36–7.46 (m, 2H). MS m/z 557 (M + H) $^{+}$. Anal. Calcd for $C_{30}H_{33}FO_{7}S$: C, 64.73; H, 5.98. Found: C, 64.75; H, 5.90.

Step 2: **26** in 90% yield as colorless crystals (heptane–AcOEt). mp 115–117 °C. [α]_D +5.9° (c 0.30, CH₃CN). ¹H NMR (CDCl₃) δ 1.89–1.98 (m, 6H), 2.32–2.44 (m, 2H), 2.60 (dd, J = 16.8, 9.0 Hz, 1H), 2.80 (dd, J = 16.8, 5.4 Hz, 1H), 2.98 (s, 3H), 3.27–3.35 (m, 2H), 3.73–3.86 (m, 1H), 4.20 (t, J = 5.7 Hz, 2H), 4.28 (dd, J = 9.2, 6.0 Hz, 1H), 4.75 (t, J = 9.2 Hz, 1H), 5.06 (s, 2H), 6.44–6.51 (m, 2H), 6.70 (d, J = 8.1 Hz, 1H), 7.02–7.08 (m, 2H), 7.13 (s, 1H), 7.37–7.46 (m, 2H). MS m/z 543 (M + H)⁺. HPLC purity (220 nm) 99.9%. Anal. C₂₉H₃₁FO₇S: C, 64.19; H, 5.76. Found: C, 64.40; H, 5.92.

The following compound 28 was prepared from 4b and 5n by a similar to that described for 6.

[(3S)-6-({3',5'-Dichloro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy) -2,3-dihydro-1-benzofuran-3-yl]acetic Acid (28).

Step 1: Methyl [(3S)-6-({3',5'-dichloro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methoxy)-2,3-dihydro-1-benzofuran-3-yl]acetate in 89% yield as a yellow oil. ¹H NMR

(CDCl₃) δ 2.02 (s, 6H), 2.35–2.47 (m, 2H), 2.50–2.61 (m, 1H), 2.70–2.79 (m, 1H), 3.00 (s, 3H), 3.43–3.52 (m, 2H), 3.72 (s, 3H), 3.75–3.86 (m, 1H), 4.16 (t, J = 5.7 Hz, 2H), 4.26 (dd, J = 9.1, 6.0 Hz, 1H), 4.75 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.43–6.50 (m, 2H), 6.99–7.05 (m, 2H), 7.11 (s, 1H), 7.39–7.49 (m, 2H). MS m/z 607 (M + H)⁺.

Step 2: **28** in 86% yield as colorless crystals (heptane–AcOEt). mp 115–116 °C. $[\alpha]_D$ +4.7° (c 0.30, CH₃CN). ¹H NMR (CDCl₃) δ 2.02 (s, 6H), 2.36–2.47 (m, 2H), 2.56–2.67 (m, 1H), 2.76–2.85 (m, 1H), 3.00 (s, 3H), 3.43–3.52 (m, 2H), 3.75–3.87 (m, 1H), 4.16 (t, J = 5.7 Hz, 2H), 4.29 (dd, J = 9.1, 6.0 Hz, 1H), 4.76 (t, J = 9.1 Hz, 1H), 5.06 (s, 2H), 6.44–6.51 (m, 2H), 7.00–7.08 (m, 2H), 7.11 (s, 1H), 7.39–7.49 (m, 2H). MS m/z 593 (M + H)⁺. HPLC purity (220 nm) 99.8%. Anal. Calcd for C₂₉H₃₀Cl₂O₇S: C, 58.69; H, 5.09. Found: C, 58.69; H, 4.99.

{4'-[2-(Ethylthio)ethoxy]-2',6'-dimethylbiphenyl-3-yl}methanol (5e).

The title compound was prepared from **32** and 2-chloroethyl ethyl sulfide by a method similar to that described for **5a** in 47% yield as a colorless oil. ¹H NMR (CDCl₃) δ 1.31 (t, J = 7.3 Hz, 3H), 1.67 (t, J = 5.8 Hz, 1H), 2.00 (s, 6H), 2.67 (q, J = 7.3 Hz, 2H), 2.92 (t, J = 7.0 Hz, 2H), 4.16 (t, J = 7.0 Hz, 2H), 4.73 (d, J = 5.8 Hz, 2H), 6.66 (s, 2H), 7.06 (dt, J = 7.3, 1.3 Hz, 1H), 7.12 (s, 1H), 7.30–7.36 (m, 1H), 7.41 (t, J = 7.3 Hz, 1H). MS m/z 299 (M – 18 + H)⁺.

Compounds 33a-c were prepared from 31 and appropriate alkylating agents (30a, 1-oxa-6-thiaspiro[2.5]octane, or 30b) by a method similar to that described for 5a.

2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy|biphenyl-3-carbaldehyde (33a).

98% yield as a colorless oil. ¹H NMR (CDCl₃) δ 1.46 (s, 3H), 2.01 (s, 6H), 4.06 (s, 2H), 4.48 (d, J = 5.8 Hz, 2H), 4.65 (d, J = 5.8 Hz, 2H), 6.73 (s, 2H), 7.42 (dt, J = 7.6, 1.4 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.67 (t, J = 1.4 Hz, 1H), 7.87 (dt, J = 7.6, 1.4 Hz, 1H), 10.05 (s, 1H). MS m/z 333 (M + Na)⁺.

4'-[(4-Hydroxytetrahydro-2*H*-thiopyran-4-yl)methoxy]-2',6'-dimethylbiphenyl-3-carbaldehy de (33b).

89% yield as colorless crystals. ¹H NMR (CDCl₃) δ 1.70 (t, J = 5.8 Hz, 1H), 1.76–1.90 (m, 2H), 2.01 (s, 6H), 2.05–2.16 (m, 2H), 2.20 (s, 1H), 2.40–2.53 (m, 2H), 3.03–3.18 (m, 2H), 3.80 (s, 2H), 4.73 (d, J = 5.8 Hz, 2H), 6.67 (s, 2H), 7.02–7.09 (m, 1H), 7.12 (s, 1H), 7.31–7.37 (m, 1H), 7.41 (t, J = 7.4 Hz, 1H).

2',6'-Dimethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-carbaldehyde (33c).

77% yield as colorless crystals. mp 91–94 °C. ¹H NMR (CDCl₃) δ 1.99 (s, 6H), 2.30–2.42 (m, 2H), 2.97 (s, 3H), 3.24–3.32 (m, 2H), 4.14 (t, J = 5.7 Hz, 2H), 6.67 (s, 2H), 7.41 (dt, J = 7.6, 1.5 Hz,

1H), 7.59 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 1.5 Hz, 1H), 7.87 (dt, J = 7.6, 1.5 Hz, 1H), 10.05 (s, 1H). MS m/z 347 (M + H)⁺. Anal. Calcd for $C_{19}H_{22}O_4S$: C, 65.87; H, 6.40. Found: C, 65.82; H, 6.47.

Compounds **5b**, **d**, **f**, and **g** were prepared from **33a-d** by a method similar to that described for **32**.

{2',6'-Dimethyl-4'-[(3-methyloxetan-3-yl)methoxy]biphenyl-3-yl}methanol (5b).

92% yield as colorless crystals. mp 82 °C. 1 H NMR (CDCl₃) δ 1.45 (s, 3H), 1.68 (t, J = 5.9 Hz, 1H), 2.01 (s, 6H), 4.05 (s, 2H), 4.47 (d, J = 5.9 Hz, 2H), 4.65 (d, J = 5.9 Hz, 2H), 4.74 (d, J = 5.9 Hz, 2H), 6.71 (s, 2H), 7.07 (d, J = 7.5 Hz, 1H), 7.13 (s, 1H), 7.32–7.37 (m, 1H), 7.41 (t, J = 7.5 Hz, 1H). MS m/z 313 (M + H) $^{+}$. HPLC purity (220 nm) 98.0%. Anal. Calcd for $C_{20}H_{24}O_3$: C, 76.89; H, 7.74. Found: C, 76.71; H, 7.87.

$4-(\{[3'-(Hydroxymethyl)-2,6-dimethylbiphenyl-4-yl]oxy\}$ methyl)tetrahydro-2H-thiopyran-4-ol (5d).

94% yield as colorless crystals. ¹H NMR (CDCl₃) δ 1.70 (t, J = 5.8 Hz, 1H), 1.76–1.90 (m, 2H), 2.01 (s, 6H), 2.05–2.16 (m, 2H), 2.20 (s, 1H), 2.40–2.53 (m, 2H), 3.03–3.18 (m, 2H), 3.80 (s, 2H), 4.73 (d, J = 5.8 Hz, 2H), 6.67 (s, 2H), 7.02–7.09 (m, 1H), 7.12 (s, 1H), 7.31–7.37 (m, 1H), 7.41 (t, J = 7.4 Hz, 1H).

{2',6'-Dimethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methanol (5f).

97% yield as colorless crystals. mp 96–98 °C. ¹H NMR (CDCl₃) δ 1.68 (t, J = 5.9 Hz, 1H), 2.00 (s, 6H), 2.30–2.40 (m, 2H), 2.97 (s, 3H), 3.24–3.31 (m, 2H), 4.13 (t, J = 5.7 Hz, 2H), 4.73 (d, J = 5.9 Hz, 2H), 6.64 (s, 2H), 7.03–7.08 (m, 1H), 7.12 (s, 1H), 7.31–7.37 (m, 1H), 7.41 (t, J = 7.5 Hz, 1H). MS m/z 331 (M – 18 + H)⁺. Anal. Calcd for C₁₉H₂₄O₄S: C, 65.49; H, 6.94. Found: C, 65.25; H, 7.19.

(4'-{tert-Butyl(dimethyl)silyl}oxy)-2',6'-dimethylbiphenyl-3-yl)methnol (5g).

94% yield as colorless crystals. 1 H NMR (CDCl₃) δ 0.23 (s, 6H), 1.00 (s, 9H), 1.96 (s, 6H), 4.73 (s, 2H), 6.58 (s, 2H), 7.07 (d, J = 7.5 Hz, 1H), 7.13 (s, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H).

Compound **42a**–**c** was prepared from **38a**–**c** and 3-formylphenylboronic acid by a method similar to that described for **5b**-step 1.

2',6'-Diethyl-4'-hydroxybiphenyl-3-carbaldehyde (42a).

68% yield as a yellow oil. ¹H NMR (CDCl₃) δ 1.00 (t, J = 7.5 Hz, 6H), 2.25 (q, J = 7.5 Hz, 4H), 4.92 (s, 1H), 6.65 (s, 2H), 7.44 (dt, J = 7.6, 1.5 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 1.5 Hz, 1H), 7.87 (dt, J = 7.6, 1.5 Hz, 1H), 10.05 (s, 1H). MS m/z 255 (M + H)⁺.

4'-Hydroxy-2',3',5',6'-tetramethylbiphenyl-3-carbaldehyde (42b).

79% yield as colorless crystals. mp 136–137 °C. ¹H NMR (CDCl₃) δ 1.90 (s, 6H), 2.22 (s, 6H), 4.73 (s, 1H), 7.39 (dt, J = 7.6, 1.5 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.63 (t, J = 1.5 Hz, 1H), 7.86 (dt, J = 7.6, 1.5 Hz, 1H), 10.05 (s, 1H). MS m/z 255 (M + H)⁺. Anal. Calcd for C₁₇H₁₈O₂: C, 80.28; H, 7.13. Found: C, 80.36; H, 7.20.

3'-Fluoro-4'-hydroxy-2',6'-dimethylbiphenyl-3-carbaldehyde (42c).

49% yield as colorless crystals (heptane–AcOEt). mp 116–117 °C. ¹H NMR (CDCl₃) δ 1.91–1.97 (m, 6H), 5.10 (d, J = 4.7 Hz, 1H), 6.78 (d, J = 8.9 Hz, 1H), 7.40 (dt, J = 7.6, 1.5 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 1.5 Hz, 1H), 7.88 (dt, J = 7.6, 1.5 Hz, 1H), 10.06 (s, 1H). MS m/z 245 (M + H)⁺. Anal. Calcd for C₁₅H₁₃FO₂: C, 73.76; H, 5.36. Found: C, 73.64; H, 5.29.

Compounds 43b-c were prepared from 42b-c by a method similar to that described for 32.

3'-(Hydroxymethyl)-2,3,5,6-tetramethylbiphenyl-4-ol (43b).

93% yield as colorless crystals (heptane–AcOEt). mp 152–153 °C. 1 H NMR (CDCl₃) δ 1.65 (t, J = 5.9 Hz, 1H), 1.91 (s, 6H), 2.21 (s, 6H), 4.68 (s, 1H), 4.73 (d, J = 5.9 Hz, 2H), 7.01–7.06 (m, 1H), 7.08–7.10 (m, 1H), 7.31–7.36 (m, 1H), 7.40 (t, J = 7.4 Hz, 1H). MS m/z 239 (M – 18 + H) $^{+}$. Anal. Calcd for $C_{17}H_{20}O_2$: C, 79.65; H, 7.86. Found: C, 79.32; H, 7.97.

3-Fluoro-3'-(hydroxymethyl)-2,6-dimethylbiphenyl-4-ol (43c).

65% yield as colorless crystals. mp 123–124 °C. ¹H NMR (CDCl₃) δ 1.68 (t, J = 6.0 Hz, 1H), 1.90–1.97 (m, 6H), 4.74 (d, J = 6.0 Hz, 2H), 5.04 (d, J = 4.7 Hz, 1H), 6.75 (d, J = 8.9 Hz, 1H), 7.00–7.07 (m, 1H), 7.11 (s, 1H), 7.32–7.46 (m, 2H). MS m/z 229 (M – 18 + H)⁺.

Compounds **5j–l** were prepared from **43b–c** and appropriate tosylates (1,1-dioxidotetrahydro-2*H*-thiopyran-4-yl 4-methylbenzenesulfonate or **30b**) by a method similar to that described for **5a**.

$\{4'-[(1,1-\text{Dioxidotetrahydro-}2H-\text{thiopyran-}4-yl)oxy]-2',3',5',6'-\text{tetramethylbiphenyl-}3-yl\}$ met hanol (5j).

88% yield as colorless crystals (heptane–AcOEt). mp 203–205 °C. 1 H NMR (CDCl₃) δ 1.67 (t, J = 5.9 Hz, 1H), 1.88 (s, 6H), 2.21 (s, 6H), 2.29–2.55 (m, 4H), 2.96–3.08 (m, 2H), 3.31–3.44 (m,

2H), 3.95–4.04 (m, 1H), 4.74 (d, J = 5.9 Hz, 2H), 7.02 (d, J = 7.4 Hz, 1H), 7.08 (s, 1H), 7.32–7.37 (m, 1H), 7.41 (t, J = 7.4 Hz, 1H). MS m/z 371 (M – 18 + H)⁺. Anal. Calcd for $C_{22}H_{28}O_4S$: C, 68.01; H, 7.26. Found: C, 67.93; H, 7.32.

{2',3',5',6'-Tetramethyl-4'-[3-(methylsulfonyl)propoxy]biphenyl-3-yl}methanol (5k).

85% yield as colorless crystals (heptane–AcOEt). mp 132–134 °C. ¹H NMR (CDCl₃) δ 1.66 (t, J = 5.9 Hz, 1H), 1.88 (s, 6H), 2.20 (s, 6H), 2.32–2.43 (m, 2H), 3.00 (s, 3H), 3.35–3.43 (m, 2H), 3.86 (t, J = 5.8 Hz, 2H), 4.73 (d, J = 5.9 Hz, 2H), 7.03 (dt, J = 7.3, 1.3 Hz, 1H), 7.09 (s, 1H), 7.31–7.36 (m, 1H), 7.41 (t, J = 7.3 Hz, 1H). MS m/z 359 (M – 18 + H)⁺. Anal. Calcd for C₂₁H₂₈O₄S: C, 66.99; H, 7.50. Found: C, 66.67; H, 7.32.

$\{4'-[(1,1-\text{Dioxidotetrahydro-}2H-\text{thiopyran-}4-yl)\text{oxy}]-3'-\text{fluoro-}2',6'-\text{dimethylbiphenyl-}3-yl\}$ me thanol (5l).

A crude product (quantitative) as a colorless oil. MS m/z 361 (M – 18 + H)⁺.

4'-{[tert-Butyl(dimethyl)silyl]oxy}-3'-chloro-2',6'-dimethylbiphenyl-3-carbaldehyde (44a).

The title compound was prepared from **42d** by a method similar to that described for **31d** in 88% yield as a colorless oil. 1 H NMR (CDCl₃) δ 0.27 (s, 6H), 1.06 (s, 9H), 1.92 (s, 3H), 2.04 (s, 3H), 6.68 (s, 1H), 7.37–7.42 (m, 1H), 7.56–7.66 (m, 2H), 7.85–7.90 (m, 1H), 10.05 (s, 1H). MS m/z 375 (M + H)⁺.

Compounds 44b-d were prepared from tosylate 30b and phenols 42a, 42c, or 42e by a method similar to that described for 5a.

2',6'-Diethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-carbaldehyde (44b).

80% yield as a pale yellow oil. ¹H NMR (CDCl₃) δ 1.00 (t, J = 7.5 Hz, 6H), 2.27 (q, J = 7.5 Hz, 4H), 2.32–2.43 (m, 2H), 2.98 (s, 3H), 3.24–3.33 (m, 2H), 4.17 (t, J = 5.9 Hz, 2H), 6.69 (s, 2H), 7.40–7.46 (m, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.65–7.70 (m, 1H), 7.84–7.90 (m, 1H), 10.05 (s, 1H). MS m/z 375 (M + H)⁺.

3'-Fluoro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-carbaldehyde (44c).

95% yield as colorless crystals (heptane–AcOEt). mp 117–118 °C. ¹H NMR (CDCl₃) δ 1.93 (d, J = 2.8 Hz, 3H), 1.97 (s, 3H), 2.34–2.45 (m, 2H), 2.99 (s, 3H), 3.28–3.36 (m, 2H), 4.22 (t, J = 5.7 Hz, 2H), 6.73 (d, J = 8.3 Hz, 1H), 7.39 (dt, J = 7.6, 1.4 Hz, 1H), 7.58–7.66 (m, 2H), 7.89 (dt, J = 7.6, 1.4 Hz, 1H), 10.06 (s, 1H). MS m/z 365 (M + H)⁺. Anal. Calcd for C₁₉H₂₁FO₄S: C, 62.62; H, 5.81. Found: C, 62.66; H, 5.81.

3',5'-Dichloro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-carbaldehyde (44d).

53% yield as colorless crystals (heptane–AcOEt). mp 135–136 °C. 1 H NMR (CDCl₃) δ 2.03 (s, 6H), 2.37–2.48 (m, 2H), 3.00 (s, 3H), 3.44–3.51 (m, 2H), 4.18 (t, J = 5.7 Hz, 2H), 7.34–7.39 (m, 1H), 7.61–7.68 (m, 2H), 7.89–7.94 (m, 1H), 10.06 (s, 1H). MS m/z 415 (M + H) $^{+}$. Anal. Calcd for C₁₉H₂₀Cl₂O₄S: C, 54.94; H, 4.85. Found: C, 54.93; H, 4.89.

Compounds **5h**, **i**, **m**, and **n** were prepared from **44a-d** by a method similar to that described for **32**.

(4'-{[tert-Butyl(dimethyl)silyl]oxy}-3'-chloro-2',6'-dimethylbiphenyl-3-yl)methanol (5h).

97% yield as a colorless oil. 1 H NMR (CDCl₃) δ 0.26 (s, 6H), 1.06 (s, 9H), 1.69 (br s, 1H), 1.93 (s, 3H), 2.05 (s, 3H), 4.74 (s, 2H), 6.66 (s, 1H), 7.01–7.07 (m, 1H), 7.09–7.13 (m, 1H), 7.32–7.45 (m, 2H). MS m/z 377 (M + H)⁺.

{2',6'-Diethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-yl}methanol (5i).

84% yield as colorless crystals (heptane–AcOEt). mp 115–116 °C. ¹H NMR (CDCl₃) δ 1.01 (t, J = 7.5 Hz, 6H), 1.66 (t, J = 5.9 Hz, 1H), 2.24–2.42 (m, 6H), 2.97 (s, 3H), 3.25–3.33 (m, 2H), 4.16 (t, J = 5.7 Hz, 2H), 4.73 (d, J = 5.9 Hz, 2H), 6.67 (s, 2H), 7.06–7.10 (m, 1H), 7.12–7.16 (m, 1H), 7.32–7.43 (m, 2H). MS m/z 359 (M – 18 + H)⁺. Anal. Calcd for C₂₁H₂₈O₄S: C, 66.99; H, 7.50. Found: C, 66.92; H, 7.46.

{3'-Fluoro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-yl}methanol (5m).

94% yield as colorless crystals (heptane–AcOEt). mp 62–63 °C. 1 H NMR (CDCl₃) δ 1.70 (t, J = 5.9 Hz, 1H), 1.93 (d, J = 3.0 Hz, 3H), 1.97 (s, 3H), 2.32–2.45 (m, 2H), 2.98 (s, 3H), 3.27–3.37 (m, 2H), 4.20 (t, J = 5.8 Hz, 2H), 4.74 (d, J = 5.9 Hz, 2H), 6.70 (d, J = 8.3 Hz, 1H), 6.99–7.08 (m, 1H), 7.10 (s, 1H), 7.32–7.47 (m, 2H). MS m/z 349 (M – 18 + H) $^{+}$. Anal. Calcd for C₁₉H₂₃FO₄S: C, 62.27; H, 6.33. Found: C, 62.63; H, 6.65.

{3',5'-Dichloro-2',6'-dimethyl-4'-[3-(methylsulfonyl)propoxy|biphenyl-3-yl}methanol (5n).

98% yield as a colorless oil. ¹H NMR (CDCl₃) δ 1.76 (t, J = 5.7 Hz, 1H), 2.03 (s, 6H), 2.36–2.47 (m, 2H), 3.00 (s, 3H), 3.43–3.51 (m, 2H), 4.16 (t, J = 5.7 Hz, 2H), 4.75 (d, J = 5.7 Hz, 2H), 6.97–7.03 (m, 1H), 7.07–7.08 (m, 1H), 7.36–7.48 (m, 2H). MS m/z 417 (M + H)⁺.

X-Ray Crystallographic Data for Compound 16

A. Crystal Data

Empirical Formula	C ₂₉ H ₃₂ O ₇ S·1/2H ₂ O
Formula Weight	533.64
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.30 x 0.20 x 0.05 mm
Crystal System	triclinic
Lattice Type	Primitive
No. of Reflections Used for Unit	
Cell Determination (2θ range)	25654 (7.3–136.5°)
Indexing Images	3 oscillations at 3.0 minutes
Camera Radius	127.40 mm
Lattice Parameters	a = 7.912(2) Å
	b = 9.698(3) Å
	c = 36.602(9) Å
	$\alpha = 91.59(2)^{\circ}$
	$\beta = 92.35(2)^{\circ}$
	$\gamma = 107.59(2)^{\circ}$
	$V = 2672(4) \text{Å}^3$
Space Group	P1(#1)
Z value	4
D _{calc}	1.326 g/cm ³
F ₀₀₀	1132.00
μ(CuKα)	14.80 cm ⁻¹

B. Intensity Measurements

3	
Diffractometer	Rigaku RAXIS-RAPID Imaging Plate
Radiation	$CuK\alpha (\lambda = 1.54186 \text{ Å})$
	graphite monochromated
Temperature	−173.0 °C
Voltage, Current	50 kV, 100 mA
Collimator Size	0.5 mm
Detector Aperture	460.0 mm x 256.0 mm
Data Images	45 exposures at 1.5 minutes per degree
Oscillation Range ($\phi = 0.0^{\circ}, \chi = 50.0^{\circ}$)	ω50.0–230.0° with 20.0° step

Oscillation Range ($\phi = 90.0^{\circ}, \chi = 50.0^{\circ}$)	ω50.0–230.0° with 20.0° step
Oscillation Range ($\phi = 195.0^{\circ}, \chi = 50.0^{\circ}$)	ω50.0–230.0° with 20.0° step
Oscillation Range ($\phi = 270.0^{\circ}, \chi = 50.0^{\circ}$)	ω50.0-230.0° with 20.0° step
Oscillation Range ($\phi = 60.0^{\circ}, \chi = 10.0^{\circ}$)	ω50.0–230.0° with 20.0° step
Camera Radius	127.40 mm
Pixel Size	0.100 mm
$2 heta_{ m max}$	136.5°
No. of Reflections Measured	Total: 27623
	Unique: 8873 ($R_{int} = 0.040$)
Corrections	Lorentz-polarization
	Absorption
	(trans. factors: 0.6381-0.9287)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares (SHELXL-97)
Function Minimized	$\Sigma \omega (Fo^2 - Fc^2)^2$
Least Squares Weights	$\omega = [\sigma^2(Fo^2) + (0.0587P)^2 + 0.0000P]^{-1}$
	where $P = (Fo^2 + 2Fc^2)/3$
No. of Reflections	12146
No. Variables	1348
Reflection/Parameter Ratio	9.01
Residuals: R; Rw	0.063 ; 0.166
Goodness of Fit Indicator	1.01
Max Shift/Error in Final Cycle	0.00
Maximum peak in Final Diff. Map	$0.70 \mathrm{e}^{-1}/\mathring{A}^{3}$
Minimum peak in Final Diff. Map	$-0.55 \text{ e}^{-1}/\mathring{A}^3$
Flack Parameter	-0.05(2)