Cytotoxic Diterpenoids from Sapium insigne

Hong-Bing Liu, Hua Zhang, Jin-Hai Yu, Cheng-Hui Xu, Jian Ding, and Jian-Min Yue*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China

- **S1.** SRB assay for A-549 cell Line
- **S2.** MTT assay for HL-60 cell Line
- **S3.** C₁₈ HPLC-DAD (254 nm) chromatograms of compounds **1** and **2**, and their co-injection (1.0 mL/min, 50–80% MeCN/H₂O over 15 min)
- **Figure S1.** ¹H NMR spectrum of **1** in CDCl₃
- **Figure S2.** ¹³C NMR spectrum of **1** in CDCl₃
- Figure S3. HSQC spectrum of 1 in CDCl₃
- **Figure S4.** HMBC spectrum of **1** in CDCl₃
- **Figure S5.** $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of **1** in CDCl₃
- Figure S6. ROESY spectrum of 1 in CDCl₃
- Figure S7. IR spectrum of 1
- Figure S8. Positive HRESIMS spectrum of 1
- **Figure S9.** ¹H NMR spectrum of **2** in $CDCl_3$
- **Figure S10.** 13 C NMR spectrum of **2** in CDCl₃
- Figure S11. HSQC spectrum of 2 in CDCl₃
- Figure S12. HMBC spectrum of 2 in CDCl₃
- Figure S13. ROESY spectrum of 2 in CDCl₃
- Figure S14. IR spectrum of 2
- Figure S15. Positive HRESIMS spectrum of 2
- **Figure S16.** ¹H NMR spectrum of **3** in CDCl₃
- **Figure S17.** 13 C NMR spectrum of **3** in CDCl₃
- Figure S18. HSQC spectrum of 3 in CDCl₃
- Figure S19. HMBC spectrum of 3 in CDCl₃
- **Figure S20.** ${}^{1}H-{}^{1}H$ COSY spectrum of **3** in CDCl₃
- Figure S21. ROESY spectrum of 3 in CDCl₃
- Figure S22. IR spectrum of 3
- Figure S23. Positive HRESIMS spectrum of 3
- **Figure S24.** ¹H NMR spectrum of **4** in CDCl₃
- Figure S25. ¹³C NMR spectrum of 4 in CDCl₃
- **Figure S26.** HSQC spectrum of **4** in CDCl₃
- Figure S27. HMBC spectrum of 4 in CDCl₃
- **Figure S28.** ${}^{1}\text{H}-{}^{1}\text{H}$ COSY spectrum of **4** in CDCl₃
- Figure S29. ROESY spectrum of 4 in CDCl₃
- Figure S30. IR spectrum of 4

^{*} Corresponding author. Tel: +86-21-50806718. Fax: +86-21-50806718. E-mail: jmyue@mail.shcnc.ac.cn

Figure S31. Positive HRESIMS spectrum of 4 Figure S32. ¹H NMR spectrum of **1a** in CDCl₃ ¹³C NMR spectrum of **1a** in CDCl₃ Figure S33. HSQC spectrum of **1a** in CDCl₃ Figure S34. Figure S35. HMBC spectrum of 1a in CDCl₃ Figure S36. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of **1a** in CDCl₃ Figure S37. IR spectrum of 1a Figure S38. LR-EI-MS spectrum of 1a Figure S39. HR-EI-MS spectrum of 1a Figure S40. ¹H NMR spectrum of **2a** in CDCl₃ Figure S41. LR-EI-MS spectrum of 2a Figure S42. HR-EI-MS spectrum of 2a Figure S43. ¹H NMR spectrum of **5** in C_5D_5N 13 C NMR spectrum of **5** in C₅D₅N Figure S44. Figure S45. HSQC spectrum of 5 in C₅D₅N Figure S46. HMBC spectrum of 5 in C_5D_5N Figure S47. $^{1}\text{H}-^{1}\text{H}$ COSY spectrum of **5** in C₅D₅N Figure S48. ROESY spectrum of 5 in C₅D₅N Figure S49. IR spectrum of 5 Figure S50. Negative HRESIMS spectrum of 5 Figure S51. ¹H NMR spectrum of **6** in CDCl₃ ¹³C NMR spectrum of **6** in CDCl₃ Figure S52. Figure S53. HSQC spectrum of 6 in CDCl₃ Figure S54. HMBC spectrum of 6 in CDCl₃ Figure S55. $^{1}H-^{1}H COSY$ spectrum of 6 in CDCl₃ ROESY spectrum of 6 in CDCl₃ Figure S56. Figure S57. IR spectrum of 6 Figure S58. LR-EI-MS spectrum of 6 Figure S59. HR-EI-MS spectrum of 6 Figure S60. ¹H NMR spectrum of **7** in CDCl₃ Figure S61. ¹³C NMR spectrum of **7** in CDCl₃ Figure S62. HSQC spectrum of 7 in CDCl₃ Figure S63. HMBC spectrum of 7 in CDCl₃ $^{1}H^{-1}H$ COSY spectrum of 7 in CDCl₃ Figure S64. Figure S65. ROESY spectrum of 7 in CDCl₃ Figure S66. IR spectrum of 7 Figure S67. Positive HRESIMS spectrum of 7 Figure S68. ¹H NMR spectrum of (S)-MTPA ester of compound **1a** Figure S69. ¹H NMR spectrum of (R)-MTPA ester of compound **1a**

S1. SRB assay for A-549 cell Line.

Inhibition on the A-549 cell growth of the tested compounds was measured using the SRB (sulforhodamine B) assay. Briefly, optimal amount of A-549 cells in 90 μ L of culture medium were seeded in triplicate into 96-well plates (Falcon, CA) and allowed 24 h to adhere (culture medium only wells as blank). The cells were then treated with 10 μ L of grade concentrations of tested compounds for 72 h at 37°C in 5% CO₂ in culture incubator. The medium was then removed and the cells adhered to the plate were then fixed with 10% trichloroacetic acid in 4 °C for 1 h and washed for 5 times before stained with 4 mg/mL sulforhodamine B (Sigma) in 1% acetum for 15 min. After 5 washings using 1% acetum and dried in air, sulforhodamine B was dissolved in 150 μ L buffer containing 10 mM Tris-base. The OD values were measured at 560 nm using a multi-well spectrophotometer (VERSAmax, Molecular Devices, Sunnyvale, CA). Average values determined from triplicate readings were used for the inhibitory rate calculation by the formula: (OD_{control well} – OD_{treated well})/OD_{control well} × 100%. The IC₅₀ was calculated using Logistic regression from three independent tests.

S2. MTT assay for HL-60 cell Line.

The growth inhibitory effect of tested compounds on the HL-60 cell line was evaluated by MTT assay (microculture tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Briefly, optimal amount of cells in 90 μ L of culture medium were seeded in triplicate into 96-well plates (Falcon, CA) and cultured for 24 h (culture medium only wells as blank), followed by the addition of 10 μ L of grade concentrations of tested compounds. The plates were then incubated for 72 h at 37°C in 5% CO₂, and a 20 μ L aliquot of MTT solution (5 mg/mL in saline solution) was subsequently added to all the appropriate wells. After another 4 h incubation, 100 μ L of "triplex solution" (10% SDS/5% isobutanol/10 mM HCl) was added, and the plates were incubated at 37°C in 5% CO₂ overnight. The OD values were measured by a plate reader at 570 nm (VERSA Max, Molecular Devices). Average values determined from triplicate readings were used for the inhibitory rate calculation by the formula: (OD_{control well} – OD_{treated well})/OD_{control well}-OD_{blank well} × 100%. The IC₅₀ was calculated using Logistic regression from three independent tests.

S3. C_{18} HPLC-DAD (254 nm) chromatograms of compounds **1** and **2**, and their co-injection (1.0 mL/min, 50–80% MeCN/H₂O over 15 min)

Figure S1. ¹H NMR spectrum of 1 in CDCl₃

Figure S2. 13 C NMR spectrum of **1** in CDCl₃

Figure S3. HSQC spectrum of 1 in CDCl₃

Figure S4. HMBC spectrum of **1** in CDCl₃

Figure S5. ${}^{1}H-{}^{1}H$ COSY spectrum of **1** in CDCl₃

Figure S6. ROESY spectrum of 1 in CDCl₃

Figure S7. IR spectrum of 1

Figure S8. HR-ESI(+)MS spectrum of 1

Figure S10. ¹³C NMR spectrum of 2 in CDCl₃

Figure S11. HSQC spectrum of **2** in CDCl₃

Figure S12. HMBC spectrum of 2 in CDCl₃

Figure S13. ROESY spectrum of $\mathbf{2}$ in CDCl₃

Figure S16. ¹H NMR spectrum of 3 in CDCl₃

Figure S15. HR-ESI(+)MS spectrum of 2

Figure S18. HSQC spectrum of 3 in CDCl₃

Figure S19. HMBC spectrum of 3 in CDCl₃

Figure S20. ${}^{1}H-{}^{1}H$ COSY spectrum of **3** in CDCl₃

Figure S21. ROESY spectrum of 3 in CDCl₃

Figure S23. HR-ESI(+)MS spectrum of 3

Figure S24. ¹H NMR spectrum of 4 in CDCl₃

-3022.53	-2904.80	2446,02 2446,02 2445,40 2445,40 22445,40 22445,40 22245,25 22255,25 22555,25 22555,25 22555,25 22555,25 22555,2	1651.20 1639.79 1615.23 1615.23 1605.32 1605.43 1596.92 1574.09	-1301.15	$\overline{\sim}^{1228.08}_{1221.11}$	21030.50 21011.26 289.57 970.57	846.80 823.64 809.44 794.44 581 , 15 696.30	642. 59	<u>528.46</u> 499.76	-437.55	252.92 346.49 339.48
----------	----------	---	--	----------	---------------------------------------	--	--	---------	-------------------------	---------	----------------------------

Figure S26. HSQC spectrum of 4 in CDCl₃

Figure S25. ¹³C NMR spectrum of 4 in CDCl₃

Figure S28. $^{1}H^{-1}H$ COSY spectrum of **4** in CDCl₃

Figure S29. ROESY spectrum of 4 in CDCl₃

Figure S31. HR-ESI(+)MS spectrum of 4

Figure S32. ¹H NMR spectrum of 1a in CDCl₃

Figure S34. HSQC spectrum of 1a in CDCl₃

Figure S35. HMBC spectrum of 1a in CDCl₃

Figure S36. ${}^{1}H-{}^{1}H$ COSY spectrum of **1a** in CDCl₃

Figure S37. IR spectrum of 1a

Figure S38. LR-EI-MS spectrum of 1a

Figure S40. ¹H NMR spectrum of 2a in CDCl₃

Figure S42. HR-EI-MS spectrum of 2a

Figure S43. ¹H NMR spectrum of **5** in C_5D_5N

Figure S44. 13 C NMR spectrum of **5** in C₅D₅N

Figure S45. HSQC spectrum of **5** in C_5D_5N

Figure S46. HMBC spectrum of 5 in C_5D_5N

Figure S49. IR spectrum of 5

Figure S50. HR-ESI(–)MS spectrum of 5

Figure S51. ¹H NMR spectrum of 6 in CDCl₃

Figure S52. 13 C NMR spectrum of **6** in CDCl₃

Figure S53. HSQC spectrum of 6 in CDCl₃

Figure S54. HMBC spectrum of 6 in CDCl₃

Figure S56. ROESY spectrum of 6 in CDCl₃

Figure S57. IR spectrum of 6

Figure S60. ¹H NMR spectrum of **7** in CDCl₃

Figure S61. 13 C NMR spectrum of **7** in CDCl₃

Figure S62. HSQC spectrum of 7 in CDCl₃

Figure S64. ${}^{1}H-{}^{1}H$ COSY spectrum of **7** in CDCl₃

Figure S67. HR-ESI(+)MS spectrum of 7

Figure S68. ¹H NMR spectrum of (*S*)-MTPA ester of compound 1a

