## **Supporting Information**

## Identification of particulate matter sources in a wood burning community on an hourly time-scale

Travis Ancelet $^{a,b*}$ , Perry K. Davy $^a$ , William J. Trompetter $^a$ , Andreas Markwitz $^a$  and David C. Weatherburn $^b$ 

This supporting information contains nine pages featuring three tables and eight figures.

<sup>&</sup>lt;sup>a</sup> GNS Science, 30 Gracefield Road, PO Box 31312, Lower Hutt, New Zealand

<sup>&</sup>lt;sup>b</sup> School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand

<sup>\*</sup> Corresponding author. Tel.: +64-4-570 4668; fax: +64-4-570 4657. E-mail address: t.ancelet@gns.cri.nz





**Figure S1.** Location of Masterton (a) and locations of the sampling sites (indicated by stars) within Masterton (b)



Figure S2. Streaker sampler filter showing individual hourly samples (dark bands)

**Table S1.** Parameters used for PMF analyses and diagnostics obtained from the analyses for Wairarapa College and Chanel College

|                               | Wairarapa College | Chanel College |  |  |
|-------------------------------|-------------------|----------------|--|--|
| Extra modeling uncertainty    |                   |                |  |  |
| (%)                           | 15                | 15             |  |  |
| Number of base runs           | 20                | 20             |  |  |
| Base run seed                 | Random            | Random         |  |  |
| Number of bootstraps          | 200               | 200            |  |  |
| Minimum correlation R-        |                   |                |  |  |
| value                         | 0.6               | 0.6            |  |  |
| Bootstrap seed                | Random            | Random         |  |  |
| Block size                    | 24                | 24             |  |  |
| Theoretical Q <sup>a</sup>    | 7613              | 8806           |  |  |
| Robust Q                      | 6097              | 5900           |  |  |
| True Q                        | 6098              | 5901           |  |  |
| Number of bootstrapped        |                   |                |  |  |
| factors mapped to original    |                   |                |  |  |
| factor 1                      | 200               | 200            |  |  |
| Number of bootstrapped        |                   |                |  |  |
| factors mapped to original    |                   |                |  |  |
| factor 2                      | 200               | 197            |  |  |
| Number of bootstrapped        |                   |                |  |  |
| factors mapped to original    |                   |                |  |  |
| factor 3                      | 200               | 200            |  |  |
| Number of bootstrapped        |                   |                |  |  |
| factors mapped to original    |                   |                |  |  |
| factor 4                      | 199               | 200            |  |  |
| Number of bootstrapped        |                   |                |  |  |
| factors mapped to no original |                   |                |  |  |
| factor                        | 1                 | 2              |  |  |
| Maximum D value <sup>b</sup>  | 0.4               | 0.6            |  |  |

<sup>&</sup>lt;sup>a</sup> Calculated based on the method reported by Paatero et al. (1)

<sup>&</sup>lt;sup>b</sup> From the matrix containing the sum of squares between paired residuals (2)



**Figure S3.** Wind rose plot over the entire sampling period from the Wairarapa College site. The radial dimensions indicate the frequency (%) of winds from each direction.



**Figure S4.** Hourly pollution roses from the Chanel College site (produced using the Openair package (Carlslaw and Ropkins, 2011)) indicating wind directions contributing the most to average hourly  $PM_{10}$  concentrations. The radial dimensions

indicate the percentage of the total pollution that arrives from each wind sector during each one-hour period.

Table S2.  $PM_{10}~(\mu g~m^{-3})$ , BC  $(ng~m^{-3})$  and elemental  $(ng~m^{-3})$  data from the Wairarapa College site

|                  | Average | Maximum | Minimum | Median | Standard<br>Deviation | Average<br>Uncertainty | Average<br>LOD | Number > LOD |
|------------------|---------|---------|---------|--------|-----------------------|------------------------|----------------|--------------|
| PM <sub>10</sub> | 25      | 213     | 0       | 14     | 30                    | Circulativy            | LOD            | , resp       |
| Fine             |         |         |         |        |                       |                        |                |              |
| BC               | 3144    | 21652   | 157     | 1566   | 3797                  | 611                    | 800            | 552          |
| Fine S           | 234     | 1549    | 97      | 210    | 129                   | 32                     | 28             | 571          |
| Fine K           | 231     | 2036    | 0       | 117    | 273                   | 113                    | 27             | 565          |
| Fine<br>Ca       | 104     | 770     | 0       | 81     | 91                    | 109                    | 24             | 565          |
| Fine<br>Fe       | 38      | 376     | 0       | 29     | 35                    | 115                    | 9              | 553          |
| Fine<br>As       | 7       | 91      | 0       | 0      | 15                    | 108                    | 35             | 41           |
| Coarse<br>Na     | 1544    | 57044   | 0       | 718    | 2779                  | 283                    | 567            | 466          |
| Coarse<br>Al     | 375     | 17901   | 0       | 71     | 1578                  | 340                    | 77             | 374          |
| Coarse<br>Si     | 475     | 9453    | 121     | 302    | 638                   | 31                     | 51             | 571          |
| Coarse<br>S      | 197     | 4767    | 0       | 101    | 303                   | 150                    | 39             | 520          |
| Coarse<br>Cl     | 1555    | 51507   | 0       | 386    | 2914                  | 119                    | 36             | 571          |
| Coarse<br>K      | 134     | 3099    | 0       | 83     | 179                   | 157                    | 37             | 532          |
| Coarse<br>Ca     | 764     | 25749   | 114     | 351    | 2468                  | 25                     | 32             | 512          |
| Coarse<br>Fe     | 137     | 7428    | 0       | 52     | 383                   | 78                     | 18             | 539          |

Table S3.  $PM_{10}~(\mu g~m^{-3}),~BC~(ng~m^{-3})$  and elemental (ng m $^{-3})$  data from the Chanel College site

|             |         |         |         |        | Standard  | Average     | Average | Number |
|-------------|---------|---------|---------|--------|-----------|-------------|---------|--------|
|             | Average | Maximum | Minimum | Median | Deviation | Uncertainty | LOD     | > LOD  |
| $PM_{10}$   | 32      | 484     | 0       | 19     | 39        | •           |         |        |
| Fine        |         |         |         |        |           |             |         |        |
| BC          | 3716    | 20449   | 139     | 2011   | 4007      | 623         | 800     | 631    |
| Fine S      | 236     | 645     | 106     | 228    | 71        | 22          | 37      | 680    |
| Fine K      | 148     | 891     | 0       | 82     | 163       | 15          | 25      | 601    |
| Fine        | 5.6     | 220     | 0       | 48     | 20        | 21          | 22      | 554    |
| Ca<br>Fine  | 56      | 339     | U       | 40     | 38        | 21          | 22      | 334    |
| Fine        | 38      | 2774    | 0       | 22     | 152       | 11          | 8       | 554    |
| Fine        |         |         |         |        |           |             |         |        |
| As          | 6       | 110     | 0       | 0      | 14        | 31          | 34      | 38     |
| Coarse      |         |         |         |        |           |             |         |        |
| Na          | 508     | 13098   | 0       | 300    | 713       | 294         | 499     | 322    |
| Coarse      |         |         |         |        |           |             |         |        |
| Al          | 110     | 2297    | 25      | 81     | 163       | 36          | 55      | 612    |
| Coarse      |         |         |         |        |           |             |         |        |
| Si          | 168     | 2498    | 62      | 113    | 190       | 32          | 42      | 680    |
| Coarse      |         |         | _       |        |           |             |         |        |
| S           | 71      | 1510    | 0       | 49     | 89        | 34          | 51      | 410    |
| Coarse      | 642     | 17110   | 0       | 200    | 1046      | 57          | 4.1     | 672    |
| Cl          | 643     | 17110   | 0       | 280    | 1046      | 57          | 41      | 672    |
| Coarse<br>K | 42      | 1916    | 0       | 29     | 81        | 21          | 32      | 465    |
| Coarse      | 42      | 1910    | U       | 29     | 01        | 21          | 32      | 403    |
| Coarse      | 164     | 5565    | 40      | 106    | 387       | 27          | 28      | 680    |
| Coarse      | 104     | 3303    | 70      | 100    | 301       | 21          | 20      | 000    |
| Fe          | 54      | 4172    | 0       | 14     | 232       | 14          | 13      | 498    |



**Figure S5.** Plot of biomass burning contributions at Chanel College versus biomass burning contributions at Wairarapa College



Proportion contribution to the mean (%)

**Figure S6.** Hourly motor vehicle source roses from the Chanel College site indicating wind directions contributing the most to average hourly  $PM_{10}$  concentrations. The radial dimensions indicate the percentage of the total motor vehicle contribution that arrives from each wind sector during each one-hour period.



**Figure S7.** Hourly marine aerosol source roses from the Chanel College site indicating wind directions contributing the most to average hourly  $PM_{10}$ 

concentrations. The radial dimensions indicate the percentage of the total marine aerosol contribution that arrives from each wind sector during each one-hour period.



Proportion contribution to the mean (%)

**Figure S8.** Hourly crustal matter source roses from the Chanel College site indicating wind directions contributing the most to average hourly  $PM_{10}$  concentrations. The radial dimensions indicate the percentage of the total crustal matter contribution that arrives from each wind sector during each one-hour period.

## References

- (1) Paatero, P.; Hopke, P. K., Discarding or downweighting high-noise variables in factor analytic models. *Analytica Chimica Acta* 2003, 490, (1-2), 277-289.
- (2) EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals and User Guide. USEPA National Exposure Research Laboratory, Research Triangle Park, NC, 2008.