Supporting Information for

Design and synthesis of skeletal analogues of gambierol: Attenuation of amyloid- β and tau pathology with voltage-gated potassium channel and *N*-methyl-D-aspartate receptor implications

Eva Alonso[†], Haruhiko Fuwa[#], Carmen Vale[†], Yuto Suga[#], Tomomi Goto[#], Yu Konno[#], Makoto Sasaki[#], Frank M. LaFerla[£], Mercedes R. Vieytes⁺, Lydia Giménez-Llort[¶], and Luis M. Botana[†],*

[†]Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain, [#]Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, [£]Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA, [†]Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003 Lugo, Spain, and [¶]Departamento de Psiquiatría y Medicina Legal, Instituto de Neurociencias, Universidad Autonoma de Barcelona, 08193 Bellaterra, Spain.

*Corresponding Author. E-mail: Luis.Botana@usc.es, Phone/Fax:+34982252242.

Contents

General remarks for synthetic chemistry	S2
Experimental procedure and characterization data for all new compounds Copies of ¹ H and ¹³ C NMR spectra for all new compounds	S3
	S37

General remarks for synthetic chemistry. All reactions sensitive to moisture and/or air were carried out under an atmosphere of argon in dry, freshly distilled solvents under anhydrous conditions using oven-dried glassware unless otherwise noted. Anhydrous dichloromethane (CH₂Cl₂) was purchased from Kanto Chemical Co. Inc. and used directly without further drying. Anhydrous tetrahydrofuran (THF), diethyl ether (Et₂O), and toluene were purchased from Wako Pure Chemical Industries, Ltd. and further purified by a Glass Contour solvent purification system under an atmosphere of argon immediately prior to use. Hexamethylphosphoramide (HMPA) was distilled from calcium hydride under reduced pressure. All other chemicals were purchased at highest commercial grade and used directly. Analytical thin-layer chromatography (TLC) and preparative TLC were performed using E. Merck silica gel 60 F₂₅₄ plates (0.25-mm thickness). Flash column chromatography was carried out using Kanto Chemical silica gel 60N (40-100 mesh, spherical, neutral) or Fuji Silysia silica gel BW-300 (200-400 mesh). Melting points are uncorrected. Chemical shift values of ¹H and ¹³C NMR spectra are reported in ppm (\delta) downfield from tetramethylsilane with reference to internal residual solvent [1 H NMR, CHCl₃ (7.24), C_6HD_5 (7.15); ¹³C NMR, CDCl₃ (77.0), C_6D_6 (128.0)] unless otherwise noted. Coupling constants (J) are reported in Hertz (Hz). The following abbreviations were used to designate the multiplicities: s = singlet; d = doublet; t = triplet; m = multiplet; br =broad.

Experimental procedure and characterization data for all new compounds.

Alcohol 6. To a solution of methyl ester 4 (2.31 g, 5.86 mmol) in CH_2Cl_2 (60 mL) at -78 °C was added DIBALH (1.02 M solution in *n*-hexane, 6.03 mL, 6.15 mmol), and the resultant solution was stirred at -78 °C for 35 min. The reaction was quenched with MeOH. The mixture was diluted with EtOAc and saturated aqueous potassium sodium tartrate solution and stirred vigorously at room temperature until the layers became clear. The organic layer was separated and washed with brine, dried (Na₂SO₄), and filtered. Concentration under reduced pressure afforded a crude aldehyde, which was used in the next reaction without further purification.

To a suspension of $Ph_3P^+CH_3Br^-$ (7.32 g, 20.5 mmol) in THF (60 mL) at 0 °C was added NaHMDS (1.0 M solution in THF, 17.6 mL, 17.6 mmol), and the resultant suspension was stirred at 0 °C for 1 h. To this suspension was added a solution of the above crude aldehyde in THF (10mL) via cannula, and the resultant solution was stirred at 0 °C for 2 h. The reaction was quenched with saturated aqueous NH₄Cl solution, and the resultant mixture was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried (Na₂SO₄), and filtered. Concentration under reduced pressure gave olefin **5**, which was used in the next reaction without further purification.

To a solution of the above olefin **5** in THF (40 mL) was added TBAF (1.0 M solution in THF, 15.2 mL, 15.2 mmol). The resultant solution was stirred at room temperature overnight and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (30% EtOAc/hexanes) gave alcohol **6** (1.39 g,

82% for the three steps) as a colorless oil: $[\alpha]_D^{24}$ –40.2 (*c* 1.00, CHCl₃); IR (KBr) 3435, 2978, 2940, 2871, 1115, 1093 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.49—7.47 (m, 2H), 7.37—7.31 (m, 3H), 5.90 (m, 1H), 5.51 (s, 1H), 5.13 (dddd, *J* = 17.2, 1.7, 1.7, 1.4 Hz, 1H), 5.07 (dddd, *J* = 10.0, 1.7, 1.4, 1.0 Hz, 1H), 4.30 (dd, *J* = 10.3, 4.8 Hz, 1H), 3.69 (dd, *J* = 10.3, 10.3 Hz, 1H), 3.54 (ddd, *J* = 13.4, 8.4, 4.1 Hz, 1H), 3.35 (ddd, *J* = 10.3, 9.3, 4.8 Hz, 1H), 3.31 (dd, *J* = 9.3, 3.5 Hz, 1H), 2.44 (ddddd, *J* = 14.8, 8.9, 3.4, 1.4, 1.4 Hz, 1H), 2.20 (dd, *J* = 11.6, 4.1 Hz, 1H), 2.15 (m, 1H), 1.77 (dd, *J* = 12.1, 12.1 Hz, 1H), 1.59 (br s, 1H), 1.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 137.4, 135.6, 129.1, 128.3 (2C), 126.1 (2C), 116.7, 101.7, 84.4, 76.6, 74.3, 71.4, 69.3, 45.0, 33.4, 21.9; HRMS (ESI) calcd for C₁₇H₂₂O₄Na [(M + Na)⁺] 313.1410, found 313.1421.

Dihydropyran 8. To a suspension of $[Ir(cod)Cl]_2$ (1.8 mg, 0.00266 mmol) and Na₂CO₃ (5.6 mg, 0.0531 mmol) in toluene (1 mL) was added a solution of alcohol **6** (25.7 mg, 0.0885 mmol) and vinyl acetate (40 μ L, 0.44 mmol) in toluene (1 mL) via cannula, and the resultant solution was stirred at 100 °C for 10 h. The reaction mixture was quenched with moist Et₂O, and the mixture was concentrated under reduced pressure. The residue was passed through a plug of silica gel (eluted with 2% EtOAc/hexanes) to afford crude vinyl ether **7**, which was used in the next reaction without further purification.

To a solution of the above crude vinyl ether 7 in benzene (2 mL, degassed by repeating freeze-thaw cycle three times) was added the Grubbs second-generation catalyst (1.5 mg, 0.00177 mmol), and the resultant solution was stirred at 60 °C for 16 h.

The reaction was quenched with Et₃N, and the mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (1 to 2% EtOAc/hexanes) afforded dihydropyran **8** (18.6 mg, 73% for the two steps) as a colorless crystals: mp 141—143 °C (hexane/EtOAc); $[\alpha]_D^{26}$ –13.1 (*c* 0.30, CHCl₃); IR (KBr) 1637, 1109, 1078, 1019, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.49—7.47 (m, 2H), 7.38—7.31 (m, 3H), 6.15 (m, 1H), 5.54 (s, 1H), 4.65 (ddd, *J* = 5.8, 5.8, 2.0 Hz, 1H), 4.32 (dd, *J* = 10.3, 4.8 Hz, 1H), 3.73 (dd, *J* = 10.3, 10.3 Hz, 1H), 3.69 (ddd, *J* = 12.1, 9.3, 4.5 Hz, 1H), 3.54 (dd, *J* = 10.7, 5.8 Hz, 1H), 3.47 (ddd, *J* = 10.0, 10.0, 4.8 Hz, 1H), 2.30 (dd, *J* = 11.3, 4.5 Hz, 1H), 2.20 (dddd, *J* = 16.4, 5.1, 5.1, 0.7 Hz, 1H), 1.94 (dddd, *J* = 16.4, 11.0, 2.1, 2.1 Hz, 1H), 1.87 (dd, *J* = 11.7, 11.7 Hz, 1H), 1.28 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 141.3, 138.5, 129.0, 128.3 (2C), 126.7 (2C), 101.9, 97.9, 77.7, 76.8, 75.3, 74.2, 69.3, 42.5, 24.0, 16.9; HRMS (EI) calcd for C₁₇H₂₀O₄ (M⁺) 288.1362, found 288.1365.

Acetal 9. To a solution of dihydropyran 8 (950 mg, 3.29 mmol) in EtOH/THF (2:1, v/v, 25 mL) was added Pd/C (300 mg) suspended in EtOH/THF (2:1, v/v, 5 mL), and the resultant suspension was stirred under an atmosphere of hydrogen (balloon) at room temperature for three days. The catalyst was filtered off, and the filtrate was concentrated under reduced pressure to give a crude diol, which was used in the next reaction without further purification.

To a solution of the above diol in CH_2Cl_2 (25 mL) were added *p*-MeOC₆H₄CH(OMe)₂ (1.12 mL, 6.58 mmol) and PPTS (83 mg, 0.329 mmol), and the resultant solution was stirred at room temperature for 3.5 h. The reaction was quenched with Et₃N, and the mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (10 to 20% EtOAc/hexanes) afforded acetal **9** (950 mg, 90% for the two steps) as a colorless oil: $[\alpha]_D{}^{26}$ –38.7 (*c* 0.16, CHCl₃); IR (KBr) 2941, 2872, 1517, 1249, 1093, 828 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.41—7.38 (m, 2H), 6.88—6.85 (m, 2H), 5.48 (s, 1H), 4.28 (dd, *J* = 10.3, 4.5 Hz, 1H), 3.78 (s, 3H), 3.73—3.67 (m, 3H), 3.61 (m, 1H), 3.47 (ddd, *J* = 9.7, 4.5, 4.5 Hz, 1H), 3.29 (dd, *J* = 12.0, 3.8 Hz, 1H), 2.14 (dd, *J* = 11.3, 4.5 Hz, 1H), 1.88—1.68 (m, 3H), 1.63—1.55 (m, 2H), 1.30 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 160.5, 131.1, 128.1 (2C), 113.7 (2C), 102.1, 82.2, 77.6, 76.2, 73.1, 69.5, 59.5, 54.7, 43.9, 26.2, 24.4, 15.4; HRMS (ESI) calcd for C₁₈H₂₄O₅Na [(M + Na)⁺] 343.1516, found 343.1519.

Iodide 10. To a solution of acetal **9** (950 mg, 2.97 mmol) in CH_2Cl_2 (30 mL) at -40 °C was added DIBALH (1.02 M solution in *n*-hexane, 11.7 mL, 11.9 mmol). The resultant solution was stirred at -40 °C for 10 min and then at 0 °C for 3 h. The reaction was quenched with MeOH and saturated aqueous potassium sodium tartrate solution. The mixture was diluted with EtOAc and stirred vigorously at room temperature until the layers became clear. The organic layer was separated and washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was passed through a plug of silica gel (50% EtOAc/hexanes) to give an alcohol, which was used in the next reaction without further purification.

To a solution of the above alcohol in THF (30 mL) were added imidazole (0.38 g, 5.64 mmol), PPh₃ (1.18 g, 4.51 mmol), and I₂ (0.93 g, 3.67 mmol), and the resultant mixture was stirred at room temperature for 1 h. The reaction was quenched with saturated aqueous Na₂SO₃ solution and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (10 to 20% EtOAc/hexanes) gave iodide 10 (1.19 g, 98% for the two steps) as a colorless oil: $[\alpha]_D^{21}$ +43.3 (c 1.19, CHCl₃); IR (KBr) 2940, 2868, 1611, 1512, 1248, 1093, 1074, 819 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.25–7.21 (m, 2H), 6.88–6.85 (m, 2H), 4.55 (d, J = 11.0 Hz, 1H), 4.40 (d, J = 11.0 Hz, 1H), 3.79 (s, 3H), 3.65 (ddd, J= 11.5, 11.5, 4.0 Hz, 1H), 3.58 (m, 1H), 3.53-3.42 (m, 3H), 3.23 (dd, J = 12.0, 4.0 Hz, 1H), 2.97 (m, 1H), 2.24 (dd, J = 11.5, 5.0 Hz, 1H), 1.77 (m, 1H), 1.73—1.64 (m, 2H), 1.61—1.49 (m, 2H), 1.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 129.9, 129.6 (2C), 113.9 (2C), 80.4, 79.3, 75.7, 72.4, 70.9, 59.9, 55.3, 43.1, 25.8, 24.1, 15.1, 9.1; HRMS (EI) calcd for $C_{18}H_{25}IO_4$ (M⁺) 432.0798, found 432.0793.

Exocyclic enol ether 11. To a solution of iodide **10** (1.19 g, 2.75 mmol) in THF (30 mL) at 0 °C was added KO*t*-Bu (925 mg, 8.25 mmol), and the resultant solution was stirred at 0 °C for 40 min. The reaction was quenched with H_2O , and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na_2SO_4 , filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (10 to 20% EtOAc/hexanes) gave exocyclic enol

ether **11** (810 mg, 97%) as a colorless oil: $[\alpha]_D^{21}$ –49.1 (*c* 0.91, CHCl₃); IR (KBr) 2938, 2868, 1512, 1246, 1080, 822 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.28—7.22 (m, 2H), 6.88—6.83 (m, 2H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.51 (s, 1H), 4.42 (d, *J* = 11.5 Hz, 1H), 4.34 (s, 1H), 3.97 (dd, *J* = 7.0, 7.0 Hz, 1H), 3.87 (dd, *J* = 12.0, 4.5 Hz, 1H), 3.79 (s, 3H), 3.65—3.55 (m, 2H), 2.12 (dd, *J* = 12.0, 6.5 Hz, 1H), 1.88 (m, 1H), 1.77 (dd, *J* = 13.5, 6.0 Hz, 1H), 1.75—1.54 (m, 3H), 1.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 157.0, 130.2, 129.3 (2C), 113.8 (2C), 92.0, 77.3, 73.4, 72.3, 69.8, 60.3, 55.3, 44.2, 25.3, 24.3, 16.0; HRMS (FAB) calcd for C₁₈H₂₅O₄ [(M + H)⁺] 305.1753, found 305.1751.

Enol ether 14. To a solution of exocyclic enol ether **11** (163 mg, 0.536 mmol) in THF (5 mL) was added a solution of 9-BBN-H dimer (170 mg, 0.697 mmol) in THF (8 mL), and the resultant mixture was stirred at room temperature for 2.5 h. To the solution was added 3 M aqueous Cs_2CO_3 (0.450 mL, 1.35 mmol), and the resulting mixture was vigorously stirred at room temperature for 15 min. To this mixture were added $PdCl_2(dppf)\cdot CH_2Cl_2$ (74 mg, 0.0902 mmol) and a solution of the above crude enol phosphate **13** (275 mg, prepared from the corresponding lactone (185 mg, 0.451 mmol) according to the reported procedure¹ immediately before use) in DMF (5 mL) via cannula, and the resultant mixture was stirred at 50 °C for 10 h. The reaction mixture was extracted with EtOAc, washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash column

¹ Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki, M. J. Am. Chem. Soc. **2002**, 124, 14983.

chromatography on silica gel (10 to 20% EtOAc/hexanes) gave enol ether **14** (277 mg, 88%) as a colorless solid: mp 96—99 °C (hexane/EtOAc); $[\alpha]_D^{26}$ +8.3 (*c* 1.15, CHCl₃); IR (KBr) 2936, 2871, 1513, 1247, 1097, 1068, 819 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 7.20—7.15 (m, 2H), 6.81—6.75 (m, 2H), 5.01 (dd, *J* = 8.0, 2.5 Hz, 1H), 4.42 (m, 1H), 4.16 (m, 1H), 3.90 (dd, *J* = 12.0, 6.0 Hz, 1H), 3.83 (dd, *J* = 9.5, 9.5 Hz, 1H), 3.63 (dd, *J* = 11.0, 8.5 Hz, 1H), 3.47 (ddd, *J* = 8.5, 8.5, 3.5 Hz, 1H), 3.43—3.31 (m, 3H), 3.31—3.18 (m, 5H), 3.16 (dd, *J* = 11.0, 4.0 Hz, 1H), 3.03 (dd, *J* = 12.5, 3.5 Hz, 1H), 2.95 (m, 1H), 2.75 (d, *J* = 15.0 Hz, 1H), 2.41 (m, 1H), 2.24—2.16 (m, 3H), 2.16—2.02 (m, 2H), 2.00—1.88 (m, 2H), 1.87—1.67 (m, 7H), 1.66—1.52 (m, 3H), 1.45 (s, 3H), 1.40—1.33 (m, 2H), 1.30 (s, 3H), 1.27 (s, 3H), 1.16 (s, 3H), 1.15 (s, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 159.7, 151.9, 131.0, 129.5 (2C), 114.0 (2C), 108.3, 98.4, 88.7, 81.1, 80.9, 80.8, 79.9, 77.6, 76.5, 76.0, 73.09. 73.06, 72.6, 72.1, 70.3, 63.4, 59.7, 54.7, 53.9, 44.4, 41.4, 32.4, 30.1, 29.8, 28.8, 27.3, 26.2, 24.8, 23.0, 19.4, 18.9, 16.2, 15.4; HRMS (ESI) calcd for C₄₀H₅₈O₁₀Na [(M + Na)⁺] 721.3928, found 721.3940.

Ketone 15. To a solution of enol ether 14 (1.36 g, 1.95 mmol) in THF (30 mL) at 0 °C was added BH₃·SMe₂ (1.9 M solution in THF, 5.10 mL, 9.75 mmol). After being stirred at room temperature for 5 h, the reaction mixture was treated successively with EtOH, saturated aqueous NaHCO₃ solution, and 30% aqueous H₂O₂ solution, and the resultant mixture was stirred at room temperature for 2 h. The reaction mixture was extracted with EtOAc, and the organic layer was washed successively with H₂O, saturated aqueous Na₂SO₃ solution, and brine. The aqueous layers were extracted with EtOAc.

The combined organic layer was dried (Na_2SO_4), filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (40 to 70% EtOAc/hexanes) afforded an approximately 3:1 mixture of inseparable diastereomeric alcohols (1.26 g, 90%).

To a solution of the above mixture of alcohols (1.26 g, 1.75 mmol) in CH₂Cl₂ (20 mL) were added 4 Å molecular sieves (250 mg), NMO (615 mg, 5.25 mmol), and TPAP (92 mg, 0.26 mmol). After being stirred at room temperature for 30 min, the reaction mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (40% Et₂O/hexanes) afforded ketone 15 (881 mg, 70%) as a colorless oil along with its diastereomer (300 mg, 24%) as a colorless oil. Data for **15**: [α]_D²⁶ –7.8 (*c* 1.32, CHCl₃); IR (KBr) 2943, 2872, 1707, 1513, 1248, 1077, 680 cm⁻¹; ¹H NMR (600 MHz, C_6D_6) δ 7.18—7.16 (m, 2H), 6.80—6.77 (m, 2H), 4.44 (dd, J = 6.5, 5.9 Hz, 1H), 4.38 (d, J = 11.3 Hz, 1H), 4.14 (d, J = 11.3 Hz, 1H), 3.91 (dd, J = 11.3, 5.5 Hz, 1H), 3.75 (ddd, J = 8.9, 8.6, 3.1 Hz, 1H), 3.69 (m, 1H), 3.64(dd, J = 11.3, 8.9 Hz, 1H), 3.47 - 3.30 (m, 5H), 3.28 (s, 3H), 3.26 - 3.19 (m, 2H),3.05–2.99 (m, 2H), 2.59 (ddd, J = 11.3, 11.3, 2.8 Hz, 1H), 2.36 (dd, J = 11.3, 5.0 Hz, 1H), 2.34—2.25 (m, 2H), 2.16—2.04 (m, 2H), 2.01 (d, J = 12.5 Hz, 1H), 1.97—1.88 (m, 3H), 1.79–1.62 (m, 6H), 1.50 (m, 1H), 1.45 (s, 3H), 1.39 (m, 1H), 1.29 (s, 3H), 1.22 (m, 1H), 1.16 (m, 1H), 1.10 (s, 3H), 1.04 (s, 3H), 0.95 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) § 214.7, 130.9, 129.6 (2C), 114.1 (2C), 98.4, 88.5, 81.3, 81.1, 80.9, 77.9, 77.8, 76.9, 76.4, 76.1, 73.0, 72.5, 72.1, 70.3, 63.4, 59.6, 54.7, 53.7, 44.3, 41.9, 38.1, 37.0,

32.3, 30.1, 29.8, 28.8, 26.1, 25.7, 24.5, 22.1, 19.4, 17.3, 16.6, 15.2; HRMS (ESI) calcd for $C_{40}H_{58}O_{11}Na [(M + Na)^{+}]$ 737.3877, found 737.3874. Data for the diastereomer: $\left[\alpha\right]_{D}^{26}$ -11.8 (c 1.10, CHCl₃); IR (KBr) 2948, 2868, 1700, 1511, 1248, 1079, 680 cm⁻¹; ¹H NMR (600 MHz, C_6D_6) δ 7.12—7.09 (m, 2H), 6.74—6.71 (m, 2H), 4.54 (dd, J =11.3, 2.7 Hz, 1H), 4.35 (d, J = 11.3 Hz, 1H), 4.11 (d, J = 11.3 Hz, 1H), 3.95 (dd, J = 11.3 Hz, 1H), 11.3, 5.8 Hz, 1H), 3.77-3.68 (m, 2H), 3.65 (dd, J = 11.3, 8.9 Hz, 1H), 3.47-3.30 (m, 5H), 3.28 (s, 3H), 3.26—3.20 (m, 2H), 3.04 (m, 1H), 2.87 (ddd, J = 10.3, 10.3, 10.3 Hz, 1H), 2.58 (dd, J = 12.7, 3.4 Hz, 1H), 2.38 (dd, J = 11.7, 4.9 Hz, 1H), 2.39 (ddd, J = 12.7, 11.7, 2.4 Hz, 1H), 2.16 (ddd, J = 12.7, 10.3, 2.4 Hz, 1H), 2.07—1.89 (m, 6H), 1.87—1.79 (m, 2H), 1.77—1.60 (m, 6H), 1.56—1.49 (m, 2H), 1.47 (s, 3H), 1.29 (s, 3H), 1.27 (s, 3H), 1.14 (s, 3H), 1.11 (s, 3H); 13 C NMR (150 MHz, C₆D₆) δ 212.9, 131.9, 130.6 (2C), 116.7 (2C), 98.1, 88.5, 82.7, 81.8, 80.9, 78.2, 77.6, 76.3, 76.0, 75.7, 73.0, 72.1, 71.8, 70.7, 64.2, 59.1, 55.7, 53.7, 44.1, 41.7, 38.6, 37.0, 33.5, 31.1, 29.7, 28.8, 27.9, 25.1, 24.0, 20.7, 19.4, 17.9, 15.6, 15.1; HRMS (ESI) calcd for C₄₀H₅₈O₁₁Na [(M + Na)⁺] 737.3877, found 737.3880.

Mixed thioacetal 16. To a solution of ketone **15** (159 mg, 0.222 mmol) in $CH_2Cl_2/pH 7$ phosphate buffer (10:1, v/v, 10 mL) at 0 °C was added DDQ (76 mg, 0.333 mmol), and the resultant solution was stirred at room temperature for 1 h. The reaction was quenched with saturated aqueous NaHCO₃ solution at 0 °C. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was passed through a plug of silica

gel (eluted with 70% EtOAc/hexanes) to afford a hemiacetal, which was used in the next reaction without further purification.

To a solution of the above hemiacetal in CH₂Cl₂ (8 mL) were added EtSH (2 mL) and Zn(OTf)₂ (40.3 mg, 0.111 mmol), and the resultant mixture was stirred at room temperature overnight. The reaction was quenched with Et₃N, and the resulting mixture was concentrated under reduced pressure. The residue was immediately dissolved in CH₂Cl₂ (8 mL) and treated with Et₃N (0.460 mL, 3.33 mmol), Ac₂O (0.420 mL, 4.44 mmol), and DMAP (136 mg, 1.11 mmol). The resultant solution was stirred at room temperature for 45 min. The reaction was quenched with MeOH. The reaction mixture was diluted with EtOAc and washed successively with 1 M aqueous HCl solution, saturated aqueous NaHCO₃ solution, and brine. The organic layer was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (35 to 40% EtOAc/hexanes) gave mixed thioacetal 16 (144 mg, 95% for the three steps) as colorless crystals: mp 109-111 °C (hexanes/EtOAc); $[\alpha]_{D}^{21}$ -40.1 (c 1.11, CHCl₃); IR (KBr) 2943, 2873, 1741, 1234, 1079, 1045, 681 cm⁻¹; ¹H NMR (500 MHz, C_6D_6) δ 5.08 (m, 1H), 4.63 (dd, J = 10.5, 5.5 Hz, 1H), 4.21 (m, 1H), 4.16 (dd, J = 11.0, 6.5 Hz, 1H), 4.03 (dd, J = 11.5, 5.0 Hz, 1H), 3.68 (m, 1H), 3.64 (dd, J = 11.5, 4.5 Hz, 1H), 3.43 - 3.33 (m, 3H), 3.17 (dd, J = 11.5, 4.0 Hz, 1H), 3.11 (ddd, J = 12.0, 10.0, 4.5 Hz, 1H), 3.06–2.99 (m, 2H), 2.43–2.30 (m, 3H), 2.26-2.12 (m, 5H), 2.04-1.97 (m, 2H), 1.86 (dd, J = 11.0, 11.0 Hz, 1H), 1.82-1.70(m, 4H), 1.70–1.51 (m, 11H), 1.50–1.38 (m, 2H), 1.21 (s, 3H), 1.17 (s, 3H), 1.15 (s,

3H), 1.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.9, 169.4, 92.9, 83.4, 82.1, 81.4, 81.1, 80.4, 79.5, 77.3, 74.9, 73.7, 73.44, 73.37, 72.3, 69.1, 65.2, 59.7, 54.1, 44.2, 34.8, 34.7, 32.6, 27.7, 26.4, 25.6, 25.0, 24.6, 20.7, 20.3, 19.9, 17.7, 16.6, 15.6, 15.1; HRMS (FAB) calcd for C₃₅H₅₄O₁₁SNa [(M + Na)⁺] 705.3285, found 705.3294.

Heptacycle 17. To a solution of mixed thioacetal 16 (85.8 mg, 0.125 mmol) in CH₂Cl₂ (5 mL) at -40 °C were added Et₃SiH (0.40 mL, 2.5 mmol), NIS (84 mg, 0.375 mmol), and AgOTf (96 mg, 0.375 mmol), and the resultant solution was stirred at -40 °C for 1.5 h under exclusion of light. The reaction was quenched with saturated aqueous Na₂S₂O₃ solution, and the mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (30 to 40% EtOAc/hexanes) afforded heptacycle 17 (70.2 mg, 90%) as colorless crystals: mp 145—147 °C (hexanes/EtOAc); $\left[\alpha\right]_{D}^{21}$ -4.8 (c 0.54, CHCl₃); IR (KBr) 2946, 2874, 1744, 1082, 1057, 772 cm⁻¹; ¹H NMR (600 MHz, $CDCl_3$) δ 4.98 (m, 1H), 4.12 (dd, J = 11.4, 6.6 Hz, 1H), 4.00 (dd, J = 12.0, 4.0 Hz, 1H), 3.74 (ddd, J = 6.0, 4.2, 4.2 Hz, 1H), 3.67 (ddd, J = 12.0, 12.0, 3.6 Hz, 1H), 3.59 (dd, J = 12.0, 3.6 Hz, 1H), 3.59 (dd,12.0, 5.4 Hz, 1H), 3.44 (m, 2H), 3.36 (dd, J = 11.4, 5.4 Hz, 1H), 3.21 (ddd, J = 11.4, 9.6, 4.8 Hz, 1H), 3.17—3.05 (m, 4H), 3.02 (dd, J = 12.6, 3.6 Hz, 1H), 2.20 (ddd, J = 12.6, 3.6, 3.6 Hz, 1H), 2.06 (s, 3H), 2.04 (s, 3H), 2.04—1.94 (m, 5H), 1.90 (d, J = 13.2 Hz, 1H), 1.79–1.52 (m, 11H), 1.49–1.41 (m, 2H), 1.31 (s, 3H), 1.23 (s, 3H), 1.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 170.1, 84.8, 81.2, 81.1, 80.9, 79.7, 79.6, 78.2,

76.2, 75.8, 73.5, 73.1, 72.9, 72.2, 72.0, 65.0, 59.9, 53.9, 43.5, 37.4, 32.0, 28.5, 27.1, 25.9, 24.8, 24.3, 24.1, 21.2, 20.9, 18.2, 16.1, 15.2; HRMS (ESI) calcd for C₃₃H₅₀O₁₁Na [(M + Na)⁺] 645.3245, found 645.3252.

Alcohol 18. To a solution of heptacycle 17 (278 mg, 0.446 mmol) in MeOH/CH₂Cl₂ (20 mL) was added NaOMe (12.1 mg, 0.223 mmol), and the resultant solution was stirred at room temperature for 9 h. The reaction was neutralized with Amberlyst[®] 15 ion-exchange resin, and the resultant mixture was filtered. The filtrate was concentrated under reduced pressure to afford a crude diol, which was used in the next reaction without further purification.

To a solution of the above material in DMF (20 mL) at 0 °C were added imidazole (304 mg, 4.46 mmol) and TBSCl (336 mg, 2.23 mmol), and the resultant solution was stirred at 0 °C for 30 min. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the mixture was extracted with Et₂O. The organic layer was washed with saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (30 to 40% EtOAc/hexanes) afforded alcohol **18** (233 mg, 80% for the two steps) as colorless crystals: mp 139—140 °C (hexanes/EtOAc); $[\alpha]_D^{26}$ –13.3 (*c* 0.52, CHCl₃); IR (KBr) 3446, 2950, 2875, 1081, 1057 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.89 (m, 1H), 3.74 (dd, *J* = 10.0, 5.5 Hz, 1H), 3.67 (ddd, *J* = 12.4, 12.4, 3.8 Hz, 1H), 3.58 (dd, *J* = 12.4, 5.2 Hz, 1H), 3.50 (dd, *J* = 9.6, 7.9 Hz, 1H), 3.47—3.40 (m, 2H), 3.38—3.33 (m, 2H), 3.21 (ddd, *J* = 11.0, 9.6, 4.4 Hz, 1H), 3.17—3.12 (m, 2H),

3.12—3.05 (m, 2H), 3.02 (dd, J = 12.4, 3.4 Hz, 1H), 2.47 (s, 1H), 2.19 (ddd, J = 12.4, 4.1, 4.1 Hz, 1H), 2.06—1.95 (m, 4H), 1.90—1.42 (m, 15H), 1.31 (s, 3H), 1.21 (s, 6H), 0.87 (s, 9H), 0.06 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 85.1, 84.9, 83.0, 81.2, 80.0, 79.7, 78.3, 76.2, 75.8, 74.3, 73.1, 73.0, 72.2, 72.1, 65.9, 59.9, 53.9, 43.5, 37.4, 32.3, 29.5, 28.6, 27.3, 25.9, 25.8 (3C), 24.3, 24.2, 18.3, 18.2, 16.1, 15.2, -5.4, -5.5; HRMS (ESI) calcd for C₃₅H₆₀O₉SiNa [(M + Na)⁺] 675.3899, found 675.3902.

Ketone 19. To a solution of alcohol 18 (557 mg, 0.853 mmol) in CH₂Cl₂ (20 mL) were added 4 Å molecular sieves (150 mg), NMO (300 mg, 2.56 mmol), and TPAP (45 mg, 0.128 mmol). After being stirred at room temperature for 10 min, the reaction mixture was filtered through a pad of $\text{Celite}^{\mathbb{R}}$ and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (15% EtOAc/hexanes) afforded ketone 19 (531 mg, 96%) as colorless crystals: mp 120—122 °C (hexanes/EtOAc); $[\alpha]_D^{23}$ +18.3 (c 0.87, CHCl₃); IR (KBr) 2950, 2874, 1716, 1081, 838 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.84—3.80 (m, 3H), 3.69—3.63 (m, 2H), 3.58 (dd, J = 12.0, 5.1 Hz, 1H), 3.45 (ddd, J = 10.7, 8.9, 4.8 Hz, 1H), 3.34 (dd, J = 11.3, 5.1 Hz, 1H), 3.16-3.11 (m, 2H), 3.11-3.04 (m, 2H), 2.99 (dd, J = 12.7, 3.8Hz, 1H), 2.97 (m, 1H), 2.85 (ddd, J = 14.0, 12.4, 2.4 Hz, 1H), 2.37 (ddd, J = 12.0, 7.2, 1.7 Hz, 1H), 2.19 (ddd, J = 12.0, 3.8, 3.8 Hz, 1H), 2.09 (ddd, J = 11.6, 3.8, 3.8 Hz, 1H), 2.04-3.11 (m, 3H), 1.78-1.40 (m, 13H), 1.31 (s, 3H), 1.26 (s, 3H), 1.20 (s, 3H), 0.84 (s, 9H), 0.02 (s, 3H), -0.01 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 215.3, 88.3, 84.8, 82.2, 81.2, 79.6, 79.4, 78.2, 76.2, 75.7, 73.1, 72.7, 72.2, 72.1, 65.2, 59.9, 53.7, 43.4, 38.8, 37.4, 31.9, 30.0, 28.5, 25.9, 25.8 (3C), 24.2, 24.1, 18.3, 18.2, 16.0, 15.2, −5.3, −5.4; HRMS (ESI) calcd for C₃₅H₅₉O₉Si [(M + H)⁺] 651.3923, found 651.3928.

Enone 20. To a solution of ketone **19** (531 mg, 0.815 mmol) in THF (20 mL) at -78 °C were added Et₃N (0.900 mL, 6.52 mmol), TMSCI (0.830 mL, 2.44 mmol), and LHMDS (1.0 M solution in THF, 2.44 mL, 2.44 mmol), and the resultant solution was stirred at -78 °C for 30 min. The reaction was quenched with pH 7 phosphate buffer, and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), filtered. The filtrate was concentrated under reduced pressure to afford a crude enol silyl ether, which was used in the next reaction without further purification.

To a solution of the above material in CH₃CN (20 mL) was added Pd(OAc)₂ (548 mg, 2.44 mmol). After being stirred at room temperature for 2 h, the reaction mixture was filtered through a plug of silica gel and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (20 to 30% EtOAc/hexanes) afforded enone **20** (516 mg, 98% for the two steps) as colorless crystals: mp 118—120 °C (hexanes/EtOAc); $[\alpha]_D^{27}$ –37.1 (*c* 0.56, CHCl₃); IR (KBr) 2950, 2875, 1665, 1117, 1059, 774 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) & 6.21 (dd, *J* = 12.7, 2.0 Hz, 1H), 5.98 (dd, *J* = 12.7, 2.8 Hz, 1H), 4.18 (ddd, *J* = 8.9, 2.4, 2.4 Hz, 1H), 4.03 (dd, *J* = 4.5, 2.0 Hz, 1H), 3.96 (dd, *J* = 11.0, 4.9 Hz, 1H), 3.89 (dd, *J* = 10.7, 2.4 Hz, 1H), 3.43—3.34 (m, 4H), 3.17 (dd, *J* = 11.6, 3.8 Hz, 1H), 3.15—3.06 (m, 4H), 2.89 (dd, *J* = 12.7, 6.2 Hz, 1H), 2.44 (ddd, *J* = 12.0, 3.8, 3.8 Hz, 1H), 2.28 (dd, *J* = 11.7, 4.5 Hz, 1H), 2.09—1.98 (m, 5H), 1.83—1.52 (m, 6H), 1.50—1.38 (m, 2H), 1.18 (m,1H), 1.15

(s, 3H), 1.09 (s, 3H), 1.04 (s, 3H), 0.93 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 201.3, 145.1, 128.9, 88.4, 85.3, 81.9, 80.0, 79.6, 79.2, 78.9, 76.8, 76.0, 73.1, 73.0, 72.8 (2C), 65.7, 59.6, 54.2, 44.4, 38.1, 31.9, 29.0, 26.3, 26.0 (3C), 24.7, 24.6, 18.4, 18.2, 15.43, 15.42, -5.19, -5.22; HRMS (ESI) calcd for C₃₅H₅₆O₉SiNa [(M + Na)⁺] 671.3586, found 671.3597.

Alcohol 21. To a solution of α,β -unsaturated ketone 20 (516 mg, 0.795 mmol) in toluene (20 mL) at -78 °C was added MeMgBr (3.0 M solution in Et₂O, 1.06 mL, 3.18 mmol), and the resultant solution was stirred at -78 °C for 50 min. The reaction was quenched with saturated aqueous NH₄Cl solution, and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (20 to 40% EtOAc/hexanes) afforded alcohol 21 (495 mg, 94%) as colorless crystals: mp 125—127 °C (hexanes/EtOAc); $\left[\alpha\right]_{D}^{26}$ -53.9 (c 0.57, CHCl₃; IR (KBr) 3473, 2950, 2876, 1088, 1060, 837 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 5.59 (dd, J = 13.0, 2.7 Hz, 1H), 5.42 (dd, J = 13.0, 1.7 Hz, 1H), 4.21 (s, 1H), 4.10 (m, 1H), 3.78-3.64 (m, 3H), 3.64-3.56 (m, 2H), 3.45 (m, 1H), 3.35 (dd, J = 11.6, 5.5 Hz, 1H), 3.30 (ddd, J = 11.3, 9.7, 5.2 Hz, 1H), 3.17–3.12 (m, 2H), 3.12–3.05 (m, 2H), 3.02 (dd, J = 12.7, 3.8 Hz, 1 H), 2.20 (ddd, J = 12.4, 4.1, 4.1 Hz, 1 H), 2.04 ---1.94 (m,4H), 1.90 (d, J = 12.7 Hz, 1H), 1.78—1.43 (m, 10H), 1.30 (s, 3H), 1.27 (s, 3H), 1.21 (s, 3H), 1.2 3H), 0.88 (s, 3H), 0.087 (s, 3H), 0.085 (s, 3H); 13 C NMR (150 MHz, C₆D₆) δ 139.9, 130.1, 85.2, 84.0, 82.0, 81.9, 80.0, 79.8, 78.9, 76.8, 76.3, 76.1, 73.1, 72.8, 72.2, 72.1, 64.4, 59.6, 54.4, 44.5, 38.2, 32.6, 29.1, 26.4, 25.8 (3C), 24.8, 24.6, 21.7, 18.3, 18.2, 15.6, 15.4, -5.6, -5.7; HRMS (ESI) calcd for C₃₆H₆₀O₉SiNa [(M + Na)⁺] 687.3899, found 687.3907.

Bis-TBS ether 22. To a solution of alcohol 21 (490 mg, 0.737 mmol) in CH₂Cl₂ (15 mL) at 0 °C were added Et₃N (0.500 mL, 3.69 mmol) and TBSOTf (0.500 mL, 2.21 mmol), and the resultant solution was stirred at room temperature for 1.5 h. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (10 to 15% EtOAc/hexanes) gave bis-TBS ether 22 (574 mg, 100%) as colorless crystals: mp 120—122 °C (hexanes/EtOAc); $\left[\alpha\right]_{D}^{23}$ -16.1 (c 0.31, CHCl₃); IR (KBr) 2952, 2857, 1255, 1084, 836 cm⁻¹; ¹H NMR (600 MHz, C_6D_6 δ 5.79 (dd, J = 13.1, 2.4 Hz, 1H), 5.72 (dd, J = 13.1, 1.7 Hz, 1H), 4.33 (ddd, J =9.7, 2.0, 2.0 Hz, 1H), 4.16 (ddd, J = 8.9, 5.5, 5.5 Hz, 1H), 3.77–3.73 (m, 2H), 3.47-3.36 (m, 4H), 3.34 (dd, J = 11.3, 5.5 Hz, 1H), 3.18-3.05 (m, 4H), 3.03 (dd, J = 11.3, 5.5 Hz, 1H), 3.18-3.05 (m, 4H), 3.03 (dd, J = 11.3, 5.5 Hz, 1H), 3.18-3.05 (m, 4H), 3.03 (dd, J = 11.3, 5.5 Hz, 1H), 3.18-3.05 (m, 4H), 3.03 (dd, J = 11.3, 5.5 Hz, 1H), 3.18-3.05 (m, 4H), 3.03 (dd, J = 11.3, 5.5 Hz, 1H), 3.18-3.05 (m, 4H), 3.03 (dd, J = 11.3, 5.5 Hz, 1H), 3.18-3.05 (m, 4H), 3.03 (dd, J = 11.3, 5.5 Hz, 10.3 (m, 10.3) (m, 12.7, 3.8 Hz, 1H), 2.44 (ddd, J = 12.1, 4.4, 4.1 Hz, 1H), 2.39 (ddd, J = 12.1, 4.4, 4.1 Hz, 1H), 2.28 (dd, J = 11.3, 4.1 Hz, 1H), 2.08—1.94 (m, 5H), 1.86 (ddd, J = 11.3, 11.3, 11.3) Hz, 1H), 1.80 (dd, J = 11.3, 11.3 Hz, 1H), 1.75 (ddd, J = 11.3, 11.3, 11.3 Hz, 1H), 1.67—1.52 (m, 3H), 1.49—1.37 (m, 2H), 1.31 (s, 3H), 1.15 (s, 3H), 1.14 (s, 3H), 1.11 (s, 3H), 1.00 (s, 9H), 0.96 (s, 9H), 0.16 (s, 3H), 0.14 (s, 6H), 0.11 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) & 139.3, 129.2, 97.8, 89.1, 84.7, 81.6, 81.2, 79.7, 79.5, 78.2, 78.1, 76.2,

75.8, 73.1, 72.1, 72.0, 63.0, 59.9, 53.8, 43.5, 37.6, 31.8, 29.7, 28.6, 25.9 (3C), 25.7 (3C), 24.3, 24.1, 22.2, 18.3, 18.2, 18.1, 15.6, 15.2, -2.1, -2.3, -5.0, -5.3; HRMS (ESI) calcd for C₄₂H₇₄O₉Si₂Na [(M + Na)⁺] 801.4764, found 801. 4765.

Alcohol 23. To a solution of bis-TBS ether 22 (35.4 mg, 0.0454 mmol) in MeOH/CH₂Cl₂ (1:1, v/v, 2 mL) at 0 °C was added CSA (5.3 mg, 0.0227 mmol), and the resultant solution was stirred at 0 °C for 30 min. The reaction was quenched with Et₃N, and the mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (30% EtOAc/hexanes) afforded alcohol 23 (29.9 mg, 99%) as colorless crystals: mp 123—125 °C (hexanes/EtOAc); $\left[\alpha\right]_{D}^{22}$ –16.4 (c 0.21, CHCl₃); IR (KBr) 3421, 2951, 2876, 1083, 1059 cm⁻¹; ¹H NMR (600 MHz, $CDCl_3$) δ 5.72 (dd, J = 13.0, 2.8 Hz, 1H), 5.38 (dd, J = 13.0, 2.0 Hz, 1H), 4.15 (ddd, J = 13.0, 2.0 9.3, 2.4, 2.4 Hz, 1H), 3.78 (ddd, J = 10.7, 10.3, 2.0 Hz, 1H), 3.66 (ddd, J = 12.4, 12.4, 3.1 Hz, 1H), 3.58 (dd, J = 11.7, 5.2 Hz, 1H), 3.53–3.43 (m, 3H), 3.35 (dd, J = 11.3, 5.5 Hz, 1H), 3.30 (ddd, J = 11.0, 9.3, 4.8 Hz, 1H), 3.18 - 3.12 (m, 2H), 3.12 - 3.04 (m, 2H), 3.02 (dd, J = 12.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.06 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.19 (ddd, J = 11.7, 3.8 Hz, 1H), 2.19 (ddd, J = 12.4, 4.4 Hz, 1H), 2.19 (ddd, J = 11.7, 3.8 Hz, 1H), 2.194.4, 4.1 Hz, 1H), 2.04—1.94 (m, 4H), 1.96 (d, J = 13.1 Hz, 1H), 1.78—1.51 (m, 8H), 1.50—1.43 (m, 2H), 1.31 (s, 3H), 1.23 (s, 3H), 1.22 (s, 3H), 1.20 (s, 3H), 0.83 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 139.4, 129.5, 87.3, 84.8, 81.5, 81.2, 79.7, 79.3, 78.2, 78.0, 76.2, 75.8, 73.1, 72.2, 72.0, 71.7, 61.7, 59.8, 53.7, 43.5, 37.4, 31.8, 28.6, 25.9, 25.7 (3C), 24.2, 24.1, 21.8, 18.2, 18.0, 15.6, 15.2, -2.0, -2.3; HRMS (ESI) calcd for $C_{36}H_{60}O_9SiNa [(M + Na)^+] 687.3899$, found 687.3998.

Dibromoolefin 24. To a solution of alcohol **23** (29.9 mg, 0.045 mmol) in CH₂Cl₂/ DMSO (1:1, v/v, 2 mL) at 0 °C were added Et₃N (25 μ L, 0.18 mmol) and SO₃·pyridine (25 mg, 0.16 mmol), and the resultant mixture was stirred at 0 °C for 4 h. The reaction mixture was diluted with Et₂O, washed with saturated aqueous NH₄Cl solution and brine, dried (Na₂SO₄), and filtered. The filtrate was concentrated under reduced pressure to afford a crude aldehyde (40.0 mg), which was used in the next reaction without further purification.

To a solution of CBr₄ (150 mg, 0.45 mmol) in CH₂Cl₂ (3 mL) at 0 °C was added PPh₃ (235 mg, 0.90 mmol), and the resultant solution was stirred at 0 °C for 15 min. To the solution were added Et₃N (0.25 mL, 1.8 mmol) and a solution of the above crude aldehyde (40.0 mg) in CH₂Cl₂ (1 mL) via cannula. The resultant solution was stirred at 0 °C for 30 min. The reaction was quenched with saturated aqueous NaHCO₃ solution, and the resultant mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (10 to 20% EtOAc/hexanes) afforded dibromoolefin **24** (37.2 mg, 100% for the two steps) as a pale yellow amorphous: $[\alpha]_D^{26}$ –8.1 (*c* 1.42, CHCl₃); IR (KBr) 2950, 2874, 1461, 1377, 1253, 1130, 1082, 1060, 835, 755 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 6.65 (d, *J* = 7.9 Hz, 1H), 5.82 (dd, *J* = 13.0, 2.8 Hz, 1H), 5.71 (dd, *J* = 13.0, 1.0 Hz, 1H), 4.29 (d, *J* = 9.6 Hz, 1H), 4.25 (d, *J* = 7.9 Hz, 1H), 3.47 (ddd, *J* = 11.2, 11.2, 4.8 Hz, 1H), 3.44—3.34 (m, 4H), 3.16 (dd, *J* = 11.6, 3.8 Hz, 1H),

3.14—3.06 (m, 3H), 3.02 (dd, J = 12.7, 3.8 Hz, 1H), 2.43 (m, 1H), 2.30—2.25 (m, 2H), 2.09—1.97 (m, 4H), 1.82—1.71 (m, 3H), 1.68—1.53 (m, 3H), 1.50—1.39 (m, 2H), 1.29 (s, 3H), 1.21 (m, 1H), 1.14 (s, 3H), 1.12 (s, 6H), 0.95 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 139.1, 136.8, 131.2, 128.3, 95.8, 86.6, 85.3, 82.6, 81.9, 80.0, 79.8, 78.9, 78.5, 76.7, 76.1, 73.1, 72.8, 72.32, 72.29, 59.6, 54.5, 44.4, 38.1, 32.2, 29.1, 26.3, 25.9 (3C), 24.8, 24.6, 22.0, 18.3, 15.6, 15.4, -1.9, -2.2; HRMS (ESI) calcd for C₃₇H₅₉Br₂O₈Si [(M + H)⁺] 817.2340, found 817.2364.

(*Z*)-Vinyl bromide 25. To a solution of dibromoolefin 24 (13.2 mg, 0.0161 mmol) in benzene (1 mL) were added *n*-Bu₃SnH (20 mL, 0.081 mmol) and Pd(PPh₃)₄ (3.7 mg, 0.0032 mmol). After being stirred at room temperature for 75 min, the reaction mixture was concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (20 to 30% Et₂O/hexanes) afforded (*Z*)-vinyl bromide 25 (7.9 mg, 66%) as a colorless amorphous: $[\alpha]_D^{23}$ +6.4 (*c* 0.96, CHCl₃); IR (KBr) 2927, 2854, 1444, 1372, 1080 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 6.11 (dd, *J* = 7.6, 7.2 Hz, 1H), 6.03 (d, *J* = 7.2 Hz, 1H), 5.89 (dd, *J* = 13.2, 2.8 Hz, 1H), 5.75 (dd, *J* = 13.2, 2.0 Hz, 1H), 4.51 (d, *J* = 7.6 Hz, 1H), 4.33 (ddd, *J* = 9.7, 2.4, 2.1 Hz, 1H), 3.58 (ddd, *J* = 11.0, 9.6, 4.8 Hz, 1H), 3.43—3.33 (m, 4H), 3.16 (dd, *J* = 12.0, 4.1, 3.8 Hz, 1H), 2.33 (ddd, *J* = 11.7, 4.1, 4.1 Hz, 1H), 2.27 (dd, *J* = 11.0, 3.8 Hz, 1H), 2.09—1.95 (m, 5H), 1.81—1.72 (m, 3H), 1.67—1.52 (m, 3H), 1.48—1.37 (m, 5H), 1.14 (s, 3H), 1.12 (s, 3H), 1.11 (s, 3H), 0.93 (s, 9H), 0.11 (s, 3H), 0.07 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ

139.3, 132.8, 131.1, 113.0, 85.1, 84.2, 82.5, 81.9, 80.0, 79.9, 78.9, 78.6, 76.7, 76.1, 73.1, 72.7, 72.5, 72.3, 59.6, 54.5, 44.4, 38.2, 32.4, 29.1, 26.4, 26.0 (3C), 24.7, 24.6, 22.2, 18.33, 18.27, 15.7, 15.4, -1.8, -2.1; HRMS (ESI) calcd for C₃₇H₆₀BrO₈Si [(M + H)⁺] 739.3235, found 739.3233.

Alcohol 26. To a solution of (Z)-vinyl bromide 25 (44.7 mg, 0.0604 mmol) in THF (3 mL) was added HF pyridine (0.5 mL), and the resultant solution was stirred at room temperature for 17 h. The reaction mixture was carefully poured into saturated aqueous NaHCO₃ solution (20 mL) at 0 °C, and the resultant mixture was extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (40% EtOAc/hexanes) gave alcohol 26 (37.0 mg, 98%) as a colorless amorphous: $[\alpha]_{D}^{23}$ +28.2 (c 0.37, CHCl₃); IR (KBr) 3512, 2945, 2869, 1458, 1380, 1079 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.47 (d, J = 7.6 Hz, 1H), 6.22 (dd, J = 7.6, 7.6 Hz, 1H), 5.75 (dd, J = 13.1, 2.8 Hz, 1H), 5.50 (dd, J = 13.1, 1.7 Hz, 1H), 4.36 (d, J= 7.9 Hz, 1H), 4.21 (ddd, J = 9.6, 2.4, 2.1 Hz, 1H), 3.67 (ddd, J = 12.0, 12.0, 3.4 Hz, 1H), 3.59 (dd, J = 12.0, 5.1 Hz, 1H), 3.49–3.37 (m, 3H), 3.35 (dd, J = 11.6, 5.5 Hz, 1H), 3.17—3.06 (m, 4H), 3.05 (dd, J = 12.7, 3.5 Hz, 1H), 2.20 (ddd, J = 12.0, 4.4, 3.8Hz, 1H), 2.12 (ddd, J = 11.7, 4.8, 3.8 Hz, 1H), 1.91 (d, J = 13.0 Hz, 1H), 1.78—1.41 (m, 13H), 1.314 (s, 3H), 1.309 (s, 3H), 1.22 (s, 3H), 1.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) & 139.1, 132.3, 131.5, 112.2, 85.2, 84.3, 82.1, 81.9, 80.0, 79.8, 78.9, 76.7, 76.1, 75.8, 73.1, 72.7, 72.4, 72.2, 59.6, 54.4, 44.4, 38.1, 32.3, 29.1, 26.3, 24.7, 24.6, 21.4,

18.2, 15.6, 15.4; HRMS (ESI) calcd for $C_{31}H_{46}BrO_8$ [(M + H)⁺] 625.2371, found 625.2377.

Heptacyclic analogue 2. To a solution of alcohol 26 (3.4 mg, 0.00543 mmol) and vinyl stannane 27 (51.5 mg, 0.144 mmol) in degassed DMSO/THF (1:1, v/v, 2 mL) were added CuCl (32.0 mg, 0.326 mmol), LiCl (17.0 mg, 0.391 mmol), and Pd(PPh₃)₄ (5.0 mg, 0.0043 mmol). The resultant solution was stirred at 60 °C for 72 h. The reaction was quenched with 3% NH₄OH solution, and the mixture was extracted with EtOAc. The organic layer was washed with 3% NH₄OH solution and brine, dried (Na₂SO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography on silica gel (20 to 30% EtOAc/hexanes) afforded heptacyclic analogue 2 (2.1 mg, 63%) as a colorless amorphous: $\left[\alpha\right]_{D}^{23}$ +36.3 (c 0.20, C₆H₆); IR (KBr) 3442, 2929, 2873, 1453, 1383, 1130, 1083, 1061, 835 cm⁻¹; ¹H NMR (600 MHz, C_6D_6) δ 6.51 (ddd, J = 11.4, 11.4, 0.6 Hz, 1H), 6.31 (dd, J = 11.4, 11.4 Hz, 1H), 5.96 (dd, J = 13.2, 1.8 Hz, 1H), 5.80 (dd, J = 13.2, 1.8 Hz, 1H), 5.68 (dddd, J = 17.4, 9.6, 6.6, 1.4 Hz, 1H)6.0 Hz, 1H), 5.51–5.45 (m, 2H), 5.01 (dd, J = 17.4, 1.8 Hz, 1H), 4.96 (dd, J = 10.2, 1.8 Hz, 1H), 4.51 (d, *J* = 6.4 Hz, 1H), 4.39 (m, 1H), 3.44–3.34 (m, 5H), 3.18 (dd, *J* = 11.4, 4.2 Hz, 1H), 3.15-3.04 (m, 3H), 3.01 (dd, J = 13.2, 3.6 Hz, 1H), 2.76-2.72 (m, 2H), 2.46 (ddd, J = 12.0, 4.2, 3.6 Hz, 1H), 2.30 (dd, J = 11.4, 4.2 Hz, 1H), 2.11–1.94 (m, 6H), 1.85–1.74 (m, 3H), 1.68–1.52 (m, 4H), 1.48–1.41 (m, 2H), 1.30 (s, 3H), 1.17 (s, 3H), 1.13 (s, 3H), 1.11 (s, 3H); 13 C NMR (150 MHz, C₆D₆) δ 138.8, 136.2, 131.42, 131.39, 128.5, 127.0, 125.3, 115.4, 85.2, 83.1, 81.9, 81.8, 80.0, 79.9, 78.9, 76.7, 76.3,

76.1, 73.1, 72.8, 72.4, 72.1, 59.6, 54.5, 44.4, 38.1, 32.6, 31.8, 29.0, 26.3, 24.8, 24.6, 21.9, 18.2, 15.6, 15.4; HRMS (ESI) calcd for $C_{36}H_{53}O_8$ [(M + H)⁺] 613.3735, found 613.3740.

Olefin 29. To a solution of ester **28** (1.29 g, 2.58 mmol) in toluene (30 mL) at -78 °C was added DIBALH (0.94 M solution in *n*-hexane, 3.00 mL, 2.82 mmol), and the resultant solution was stirred at -78 °C for 20 min. The reaction was quenched with saturated aqueous potassium sodium tartrate solution at -78 °C. The resultant mixture was diluted with EtOAc and stirred vigorously at room temperature until the layers became clear. The layers were separated, and the aqueous layer was extracted with EtOAc. The organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude aldehyde thus obtained was used in the next reaction without further purification.

To a suspension of Ph₃P⁺CH₃Br⁻ (2.77 g, 7.75 mmol) in THF (20 mL) at 0 °C was added NaHMDS (1.0 M solution in THF, 7.20 mL, 7.20 mmol), and the resultant suspension was stirred at 0 °C for 20 min. To this suspension was added a solution of the above aldehyde in THF (5 mL + 5 mL rinse), and the resultant mixture was stirred at 0 °C for 30 min. The reaction was quenched with saturated aqueous NH₄Cl solution at 0 °C. The resultant mixture was diluted with EtOAc, washed with H₂O and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (5 to 10% EtOAc/hexanes) gave olefin **29** (1.18 g, 100% for the two steps) as colorless crystals: mp 131—133 °C (hexanes/EtOAc); $[\alpha]_D^{23}$ -12.5 (*c* 0.61, benzene); IR (KBr) 3434, 2978, 2940, 2871, 1116, 1094 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 6.13 (m, 1H), 5.22 (dd, *J* = 17.5, 1.5 Hz, 1H), 5.13 (d, *J* = 10.5 Hz, 1H), 3.94 (dd, *J* = 11.5, 5.5 Hz, 1H), 3.71 (m, 1H), 3.64 (dd, *J* = 11.5, 9.5 Hz, 1H), 3.48 (dd, *J* = 9.0, 4.0 Hz, 1H), 3.44 (dd, *J* = 11.0, 2.5 Hz, 1H), 3.25 (ddd, *J* = 9.5, 9.0, 5.5 Hz, 1H), 2.99 (dd, *J* = 12.5, 3.5 Hz, 1H), 2.89 (m, 1H), 2.52 (dd, *J* = 14.0, 7.5 Hz, 1H), 2.21 (m, 1H), 2.10 (d, *J* = 12.0 Hz, 1H), 2.04 (ddd, *J* = 11.5, 5.0, 3.5 Hz, 1H), 2.00—1.90 (m, 3H), 1.81—1.72 (m, 2H), 1.69 (ddd, *J* = 12.0, 12.0, 12.0 Hz, 1H), 1.46 (s, 3H), 1.29 (s, 3H), 1.20 (s, 3H), 1.14 (s, 3H), 0.10 (s, 9H); ¹³C NMR (125 MHz, C₆D₆) δ 136.9, 116.1, 98.4, 87.9, 81.0, 80.5, 75.9, 74.3, 73.3, 73.1, 71.9, 63.5, 55.3, 33.7, 33.3, 30.2, 29.8, 28.9, 25.1, 19.4, 16.0, 2.7 (3C): HRMS (ESI) calcd for C₂₄H₄₂O₆SiNa [(M + Na)⁺] 477.2643, found 477.2633.

Diene 30. To a solution of olefin **29** (1.15 g, 2.53 mmol) in THF (25 mL) was added TBAF (1.0 M solution in THF, 7.60 mL, 7.60 mmol), and the resultant solution was stirred at room temperature for 35 min. The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel (40 to 50% EtOAc/hexanes) to give an alcohol, which was used in the next reaction without further purification.

To a suspension of KH (30% in mineral oil, 1.00 g) in THF (10 mL) at 0 °C was added a solution of the above alcohol in THF (10 mL + 5 mL rinse), and the resultant mixture was stirred at 0 °C for 10 min. To the mixture was added allyl bromide (0.292 mL, 3.37 mmol), and the resultant mixture was stirred at room temperature for 3.5 h.

The reaction was quenched with MeOH and saturated aqueous NH₄Cl solution. The resultant mixture was extracted with EtOAc, and the organic layer was washed with H₂O and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (5 to 15% EtOAc/hexanes) gave diene **30** (1.02 g, 96% for the two steps) as a colorless oil: $[\alpha]_D^{23}$ -13.0 (c 0.32, benzene); IR (KBr) 1638, 1109, 1078, 1019, 700 cm⁻¹; ¹H NMR (600 MHz, C_6D_6) δ 6.13 (m, 1H), 5.81 (m, 1H), 5.24 (dd, J = 16.8, 1.2 Hz, 1H), 5.19 (d, J =17.4 Hz, 1H), 5.12 (d, J = 9.6 Hz, 1H), 5.02 (dd, J = 10.8, 1.8 Hz, 1H), 3.95 (dd, J =11.4, 5.4 Hz, 1H), 3.75—3.60 (m, 4H), 3.51 (dd, J = 10.2, 1.8 Hz, 1H), 3.47 (ddd, J =9.0, 8.4, 3.6 Hz, 1H), 3.26 (ddd, J = 9.0, 9.0, 6.0 Hz, 1H), 2.92 (dd, J = 12.6, 3.6 Hz, 1H), 2.86 (ddd, J = 10.2, 9.0, 4.8 Hz, 1H), 2.56 (dd, J = 14.4, 7.2 Hz, 1H), 2.20 (m, 1H), 2.04-1.92 (m, 4H), 1.83-1.74 (m, 3H), 1.68 (ddd, J = 12.6, 12.0, 12.0 Hz, 1H), 1.47(s, 3H), 1.29 (s, 3H), 1.11 (s, 3H), 1.06 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 136.7, 136.2, 116.1, 114.9, 98.3, 86.3, 80.9, 80.2, 75.7, 74.6, 73.2, 73.0, 71.8, 63.3, 62.1, 50.4, 33.8, 32.1, 30.1, 29.8, 28.8, 20.7, 19.2, 15.9; HRMS (ESI) calcd for $C_{24}H_{38}O_6Na$ [(M + Na)⁺] 445.2561, found 445.2551.

Oxepene 31. To a solution of diene **30** (0.70 g, 1.7 mmol) in CH_2Cl_2 (66 mL) was added the Grubbs first-generation catalyst (136.6 mg, 0.1660 mmol), and the resultant solution was stirred at room temperature for 7 h. The reaction was quenched with Et_3N , and the resultant mixture was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (10 to 20% EtOAc/hexanes) gave

oxepene **31** (0.58 g, 89%) as a colorless solid: $[\alpha]_D^{23}$ +19.8 (*c* 0.49, benzene); IR (KBr) 2941, 2872, 1517, 1250, 1093, 828 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 5.57—5.46 (m, 2H), 4.22—4.10 (m, 2H), 3.86 (dd, *J* = 11.4, 5.4 Hz, 1H), 3.72 (m, 1H), 3.57 (dd, *J* = 11.4, 9.0 Hz, 1H), 3.50—3.42 (m, 2H), 3.34 (ddd, *J* = 9.6, 9.0, 6.0 Hz, 1H), 3.25 (ddd, *J* = 10.8, 9.0, 4.8 Hz, 1H), 3.09 (dd, *J* = 12.6, 3.6 Hz, 1H), 2.50 (m, 1H), 2.18 (m, 1H), 2.09—1.99 (m, 2H), 1.84—1.69 (m, 3H), 1.57 (m, 1H), 1.42 (s, 3H), 1.35 (s, 3H), 1.27 (s, 3H), 1.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 129.9, 123.2, 98.5, 85.0, 80.9, 79.4, 75.7, 75.5, 72.72, 72.65, 71.8, 63.2, 62.8, 53.0, 32.2, 31.8, 29.7, 29.3, 28.4, 19.5, 16.4, 16.1; HRMS (ESI) calcd for C₂₂H₃₄O₆Na [(M + Na)⁺] 417.2248, found 417.2250.

Pentacycle 32. To a solution of oxepene **31** (77.4 mg, 0.196 mmol) in EtOAc (10 mL) were added Et₃N (0.060 mL, 0.43 mmol) and 10% Pd/C (24 mg), and the resultant suspension was stirred at room temperature under an atmosphere of hydrogen (ballon) overnight. The suspension was filtered through a pad of Celite[®], and the filtrate was concentrated under reduced pressure to give pentacycle **32** (76.8 mg, 99%) as colorless crystals: mp 147—148 °C (hexanes/EtOAc); $[\alpha]_D^{23}$ +4.7 (*c* 0.24, benzene); IR (KBr) 2950, 2875, 1081, 1057 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) & 3.85 (dd, *J* = 11.5, 5.5 Hz, 1H), 3.74—3.64 (m, 3H), 3.57 (dd, *J* = 11.5, 9.0 Hz, 1H), 3.47 (ddd, *J* = 9.0, 9.0, 4.0 Hz, 1H), 3.41 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.33 (ddd, *J* = 9.5, 9.0, 6.0 Hz, 1H), 3.23 (ddd, *J* = 10.5, 9.0, 5.0 Hz, 1H), 3.05 (dd, *J* = 12.5, 3.5 Hz, 1H), 2.06 (m, 1H), 2.01 (m, 1H), 1.96—1.85 (m, 3H), 1.82—1.52 (m, 9H), 1.41 (s, 3H), 1.34 (s, 3H), 1.29 (s, 3H), 1.21 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) & 98.5, 86.0, 80.9, 80.3, 76.0, 75.7, 72.7, 72.6, 71.9,

64.2, 63.2, 53.6, 31.8, 29.9, 29.7, 29.3, 29.2, 28.4, 22.0, 19.53, 19.49, 16.1; HRMS (ESI) calcd for C₂₂H₃₆O₆Na [(M + Na)⁺] 419.2404, found 419.2395.

Ketone 33. To a solution of pentacycle **32** (76.8 mg, 0.194 mmol) in MeOH/CHCl₃ (2:1, v/v, 6 mL) was added CSA (10 mg), and the resultant solution was stirred at room temperature for 1.5 h. The reaction was quenched with Et₃N, and the resultant mixture was concentrated under reduced pressure. The residue was passed through a pad of silica gel (eluted with 5% MeOH/CHCl₃) to give a diol, which was used in the next reaction without further purification.

To a solution of the above diol in DMF (6 mL) at 0 °C were added imidazole (132.0 mg, 1.939 mmol) and TBSCl (87.7 mg, 0.582 mmol), and the resultant solution was stirred at 0 °C for 1 h. The reaction was quenched with saturated aqueous NaHCO₃ solution. The resultant mixture was diluted with EtOAc, washed with H₂O and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (30 to 45% EtOAc/hexanes) gave an alcohol, which was used in the next reaction without further purification..

To a solution of the above alcohol in CH₂Cl₂ (6 mL) were added 4 Å molecular sieves (100 mg), NMO (113.6 mg, 0.9697 mmol), and TPAP (ca. 10 mg). The resultant mixture was stirred at room temperature for 80 min and then filtered through a pad of silica gel (eluted with EtOAc). The filtrate was concentrated under reduced pressure to give ketone **33** (82.0 mg, 90% for the three steps) as a colorless oil: $[\alpha]_D^{23}$ +54.7 (*c* 0.20, benzene); IR (KBr) 2952, 2873, 1714, 1081, 838 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ

3.84 (dd, J = 10.5, 4.0 Hz, 1H), 3.76 (dd, J = 10.5, 2.5 Hz, 1H), 3.67—3.54 (m, 3H), 3.50—3.41 (m, 2H), 2.95 (dd, J = 12.5, 3.5 Hz, 1H), 2.78—2.66 (m, 2H), 2.30 (m, 1H), 2.13 (m, 1H), 2.12 (d, J = 12.5 Hz, 1H), 2.06 (d, J = 12.5 Hz, 1H), 1.97 (m, 1H), 1.85 (m, 1H), 1.80 (ddd, J = 13.0, 11.5, 11.0 Hz, 1H), 1.59 (m, 1H), 1.50—1.35 (m, 3H), 1.34—1.22 (m, 2H), 1.17 (s, 3H), 1.15 (s, 3H), 0.92 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 213.3, 88.5, 86.6, 82.6, 80.6, 76.1, 73.3, 72.3, 65.6, 64.2, 54.5, 39.2, 32.5, 30.4, 30.2, 29.5, 26.0 (3C), 22.2, 19.3, 18.5, 16.3, -5.2, -5.4; HRMS (ESI) calcd for C₂₅H₄₄O₆SiNa [(M + Na)⁺] 491.2799, found 491.2791.

Alcohol 34. To a solution of ketone 33 (82.0 mg, 0.175 mmol) in THF (5 mL) at - 78 °C were added Et₃N (0.243 mL, 1.751 mmol), TMSCI (0.223 mL, 1.745 mmol), and LHMDS (1.0 M solution in THF, 0.524 mL, 0.524 mmol), and the resultant solution was stirred at -78 °C for 30 min. The reaction was quenched with aqueous pH 7 buffer solution. The resultant mixture was extracted with EtOAc, and the organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure to give an enol silane. This material was immediately used in the next reaction without further purification.

To a solution of the above enol silane in CH_3CN (5 mL) was added $Pd(OAc)_2$ (117.5 mg, 0.5234 mmol), and the resultant mixture was stirred at room temperature for 40 min. Insoluble materials were filtered off, and the filtrate was concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (15%) EtOAc/hexanes) gave an enone, which was used in the next reaction without further purification.

To a solution of the above enone in toluene (5 mL) at -78 °C was added MeMgBr (3.0 M solution in Et₂O, 0.175 mL, 0.525 mmol), and the resultant solution was stirred at -78 ° C for 0.5 h. The reaction was quenched with saturated aqueous NH₄Cl solution. The resultant mixture was diluted with EtOAc, washed with H₂O and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (20 to 25% EtOAc/hexanes) gave alcohol **34** (88.9 mg, 100% for the three steps) as a colorless oil: $\left[\alpha\right]_{D}^{23}$ -8.0 (c 0.70, benzene); IR (KBr) 3473, 2950, 2875, 1088, 1060, 836 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) & 5.87 (dd, J = 12.5, 2.5 Hz, 1H), 5.78 (d, J = 12.5 Hz, 1H), 4.34 (d, J = 9.5 Hz, 1H), 3.89 (dd, J = 12.5 Hz, 1H), 3.8J = 10.0, 7.5 Hz, 1H), 3.81 - 3.73 (m, 2H), 3.65 - 3.58 (m, 2H), 3.48 - 3.40 (m, 2H), 3.37 (ddd, J = 11.5, 10.5, 5.5 Hz, 1H), 3.07 (dd, J = 12.5, 3.0 Hz, 1H), 2.20-2.10 (m, J = 12.5, 2.10 Hz, 2.10 Hz,3H), 1.92 (m, 1H), 1.82 (ddd, J = 12.0, 12.0, 11.5 Hz, 1H), 1.58 (m, 1H), 1.49–1.37 (m, 5H), 1.33–1.22 (m, 2H), 1.18 (s, 3H), 1.17 (s, 3H), 0.89 (s, 9H), -0.016 (s, 3H), -0.023 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 139.8, 130.2, 86.5, 84.1, 82.1, 80.5, 76.3, 76.1, 72.3, 64.4, 64.1, 54.4, 32.7, 30.2, 29.5, 25.8 (3C), 22.2, 21.7, 19.4, 18.2, 15.9, -5.6, -5.7 (one carbon missing presumably due to overlapping of signals); HRMS (ESI) calcd for $C_{26}H_{46}O_6SiNa [(M + Na)^+] 505.2956$, found 505.2931.

Dibromoolefin 35. To a solution of alcohol **34** (740 mg, 1.54 mmol) in THF (15 mL) was added TBAF (1.0 M solution in THF, 4.62 mL, 4.62 mmol), and the resultant

solution was stirred at room temperature overnight. The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel (50 to 80% EtOAc/hexanes) to give a diol (505 mg, 89%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 5.64 (dd, J = 13.0, 3.0 Hz, 1H), 5.47 (d, J = 13.0 Hz, 1H), 4.17 (d, J = 10.0 Hz, 1H), 3.80 (dd, J = 11.0, 5.0 Hz, 1H), 3.74—3.63 (m, 2H), 3.59 (dd, J = 11.5, 9.0 Hz, 1H), 3.54 (dd, J = 7.0, 4.5 Hz, 1H), 3.40 (dd, J = 11.0, 4.0 Hz, 1H), 3.33 (ddd, J = 11.0, 9.5, 5.0 Hz, 1H), 3.05 (dd, J = 12.5, 3.5 Hz, 1H), 2.92—2.40 (br m, 2H), 2.08 (ddd, J = 11.5, 4.5, 4.0 Hz, 1H), 1.94—1.84 (m, 2H), 1.74—1.56 (m, 7H), 1.30 (s, 3H), 1.24 (s, 3H), 1.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.1, 130.5, 86.1, 85.7, 81.6, 80.0, 76.1, 75.7, 72.1, 71.6, 64.2, 62.1, 53.4, 31.9, 29.8, 29.1, 21.9, 20.8, 19.4, 15.7.

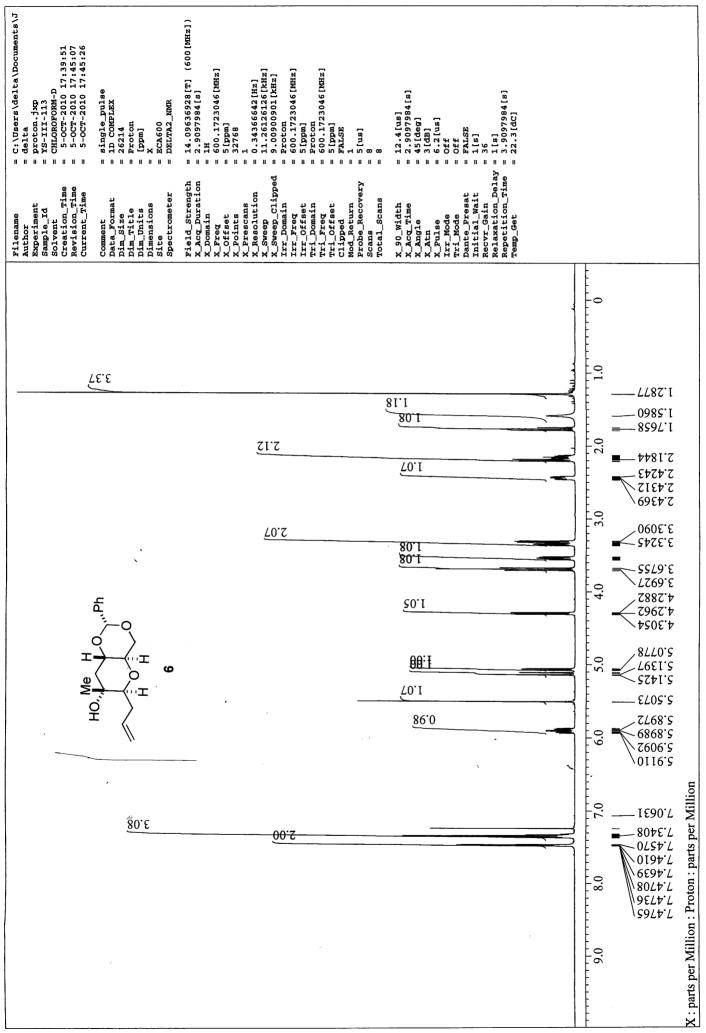
To a solution of the above diol (505 mg, 1.37 mmol) in CH₂Cl₂/DMSO (4:1, v/v, 15 mL) was added Et₃N (0.95 mL, 6.8 mmol), and the solution was cooled to 0 °C. To this solution was added SO₃·pyridine complex (0.87 g, 5.5 mmol), and the resultant solution was stirred at 0 °C for 2 h. The reaction mixture was diluted with EtOAc, washed with 1 M aqueous HCl solution, saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude aldehyde thus obtained was used in the next reaction without further purification.

To a solution of CBr₄ (1.36 g, 4.10 mmol) in CH₂Cl₂ (10 mL) at 0 °C was added Ph₃P (2.16 g, 8.22 mmol), and the resultant solution was stirred at 0 °C for 20 min. To this solution were added Et₃N (1.53 mL, 11.0 mmol) and a solution of the above crude

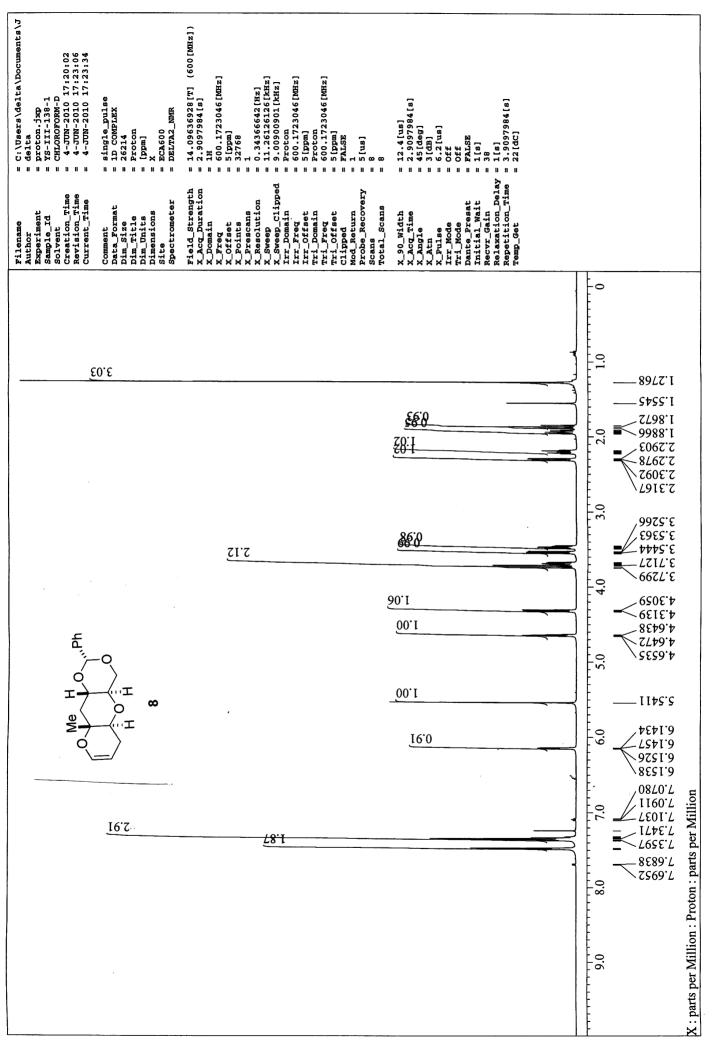
aldehyde (5 mL + 5 mL rinse), and the resultant solution was stirred at 0 °C for 25 min. The reaction was quenched with saturated aqueous NaHCO₃ solution. The resultant mixture was diluted with EtOAc, washed with saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (20 to 40% EtOAc/hexanes) gave dibromoolefin **35** (662.1 mg, 93% for the two steps) as a colorless oil: $[\alpha]_D^{22}$ +20.8 (*c* 0.19, benzene); IR (KBr) 3421, 2951, 2876, 1083, 1059 cm⁻¹; ¹H NMR (500 MHz, C_6D_6 δ 6.57 (m, 1H), 5.70 (d, J = 13.0 Hz, 1H), 5.57 (m, 1H), 4.27 (d, J = 9.5 Hz, 1H), 4.13 (dd, J = 7.5, 1.5 Hz, 1H), 3.61 (ddd, J = 12.5, 7.0, 3.5 Hz, 1H), 3.48–3.34 (m, 3H), 3.03 (d, J = 13.0 Hz, 1H), 2.22 (m, 1H), 2.16-2.08 (m, 2H), 1.94 (m, 1H), 1.75 (ddd, J)= 12.0, 12.0, 11.5 Hz, 1H), 1.58 (m, 1H), 1.50–1.38 (m, 2H), 1.34–1.22 (m, 3H), 1.17 (s, 3H), 1.13 (s, 3H), 1.10 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 138.8, 136.2, 131.7, 95.2, 86.5, 86.4, 82.5, 80.5, 76.1, 75.5, 72.4, 72.2, 64.2, 54.4, 32.3, 30.2, 29.5, 22.2, 21.2, 19.4, 15.8; HRMS (ESI) calcd for $C_{21}H_{30}Br_2O_5Na \left[(M + Na)^+ \right] 543.0352$, found 543.0342.

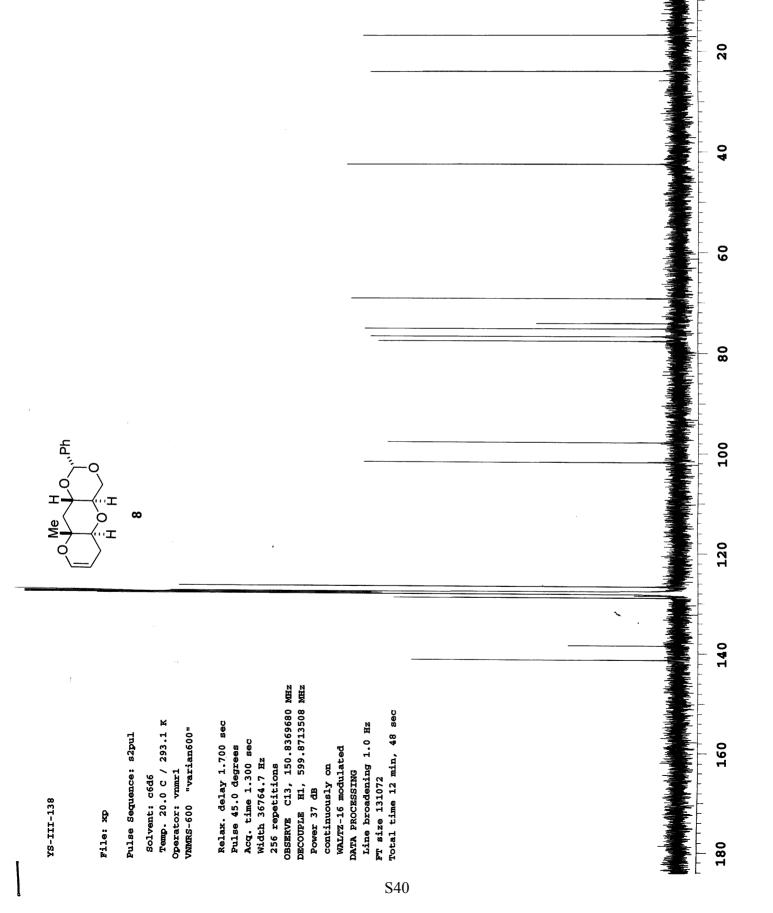
Silyl ether 36. To a solution of dibromoolefin 35 (46.2 mg, 0.0888 mmol) in CH_2Cl_2 (4 mL) at 0 °C were added 2,6-lutidine (0.100 mL, 0.859 mmol) and TMSOTf (0.080 mL, 0.44 mmol), and the resultant solution was stirred at 0 °C for 30 min. The reaction was quenched with H_2O . The resultant mixture was extracted with EtOAc, and the organic layer was washed with 1 M aqueous HCl solution, saturated aqueous NaHCO₃ solution and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure.

Purification of the residue by flash chromatography on silica gel (10% EtOAc/hexanes) gave silyl ether **36** (52.6 mg, 100%) as a colorless oil: $[\alpha]_D^{22}$ +23.5 (*c* 0.26, benzene); IR (KBr) 2950, 2874, 1377, 1253, 1130, 1060, 835 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 6.65 (d, *J* = 9.0 Hz, 1H), 5.81 (dd, *J* = 13.0, 2.5 Hz, 1H), 5.73 (dd, *J* = 13.0, 1.5 Hz, 1H), 4.32—4.27 (m, 2H), 3.61 (ddd, *J* = 12.5, 6.5, 3.5 Hz, 1H), 3.48—3.38 (m, 3H), 2.99 (dd, *J* = 12.5, 3.5 Hz, 1H), 2.21 (ddd, *J* = 11.5, 4.5, 4.0 Hz, 1H), 2.14 (d, *J* = 12.5 Hz, 1H), 2.12 (d, *J* = 12.5 Hz, 1H), 1.93 (m, 1H), 1.77 (ddd, *J* = 12.0, 12.0, 12.0 Hz, 1H), 1.58 (m, 1H), 1.48—1.37 (m, 2H), 1.34—1.22 (m, 2H), 1.17 (s, 3H), 1.15 (s, 3H), 0.14 (s, 9H); ¹³C NMR (125 MHz, C₆D₆) δ 139.4, 136.9, 131.0, 86.7, 86.5, 82.6, 80.4, 79.0, 76.1, 72.41, 72.37, 64.2, 54.4, 32.3, 30.3, 29.5, 22.2, 22.0, 19.4, 15.8, 2.4 (3C); HRMS (ESI) calcd for C₂₄H₃₈Br₂O₅SiNa [(M + Na)⁺] 615.0747, found 615.0749.


(*Z*)-Vinyl bromide 37. To a solution of silyl ether 36 (91.2 mg, 0.154 mmol) in benzene (5 mL) were added *n*-Bu₃SnH (0.083 mL, 0.31 mmol) and Pd(PPh₃)₄ (17.8 mg, 0.015 mmol), and the resultant mixture was stirred at room temperature for 1 h. The reaction mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel (12 to 15% Et₂O/hexanes) gave (*Z*)-vinyl bromide 37 (70.2 mg, 89%) as a colorless oil: $[\alpha]_D^{22}$ +41.9 (*c* 1.35, benzene); IR (KBr) 2928, 2856, 1460, 1377, 1082 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 6.10 (dd, *J* = 7.5, 7.5 Hz, 1H), 6.03 (d, *J* = 7.5 Hz, 1H), 5.90 (dd, *J* = 13.0, 2.5 Hz, 1H), 5.78 (dd, *J* = 13.0, 1.5 Hz, 1H), 4.59 (d, *J* = 7.5 Hz, 1H), 4.35 (m, 1H), 3.61 (ddd, *J* = 12.5, 7.0, 3.5 Hz, 1H), 3.55 (ddd, *J* = 11.0, 10.0, 5.0 Hz, 1H), 3.44 (ddd, *J* = 10.5, 8.0, 3.0 Hz, 1H), 3.39 (dd, *J* =

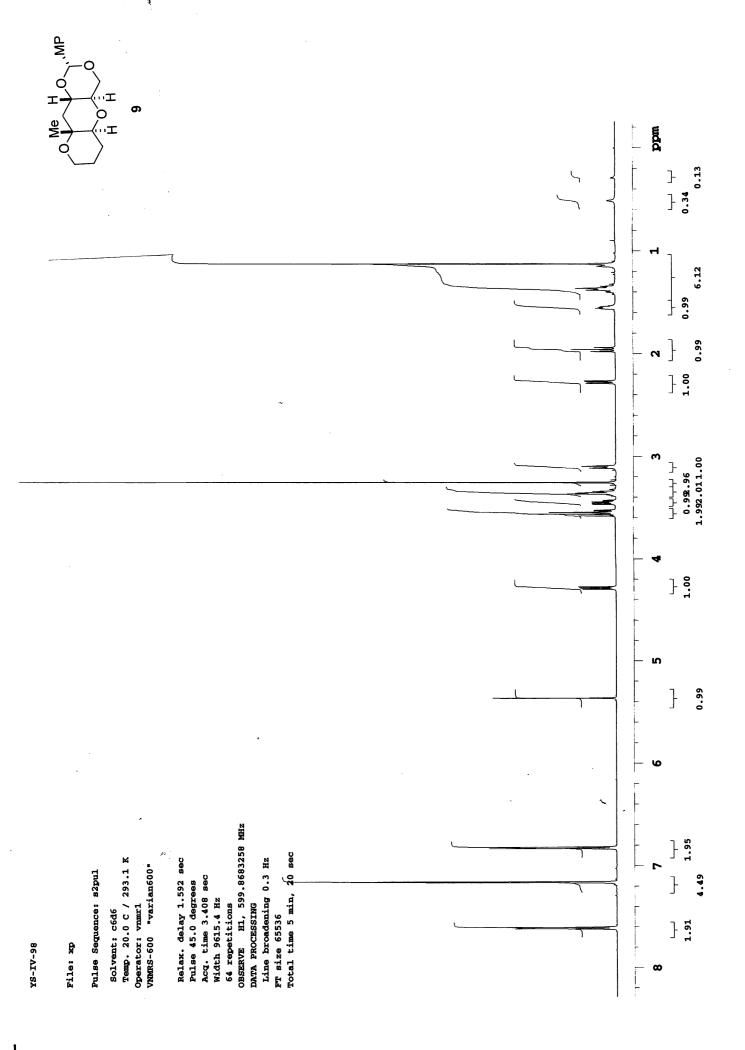
11.5, 4.0 Hz, 1H), 2.99 (dd, J = 12.5, 3.5 Hz, 1H), 2.27 (ddd, J = 12.0, 4.5, 4.5 Hz, 1H), 2.16 (d, J = 12.5 Hz, 1H), 2.12 (d, J = 12.5 Hz, 1H), 1.92 (m, 1H), 1.81 (ddd, J = 13.0, 11.5, 11.0 Hz, 1H), 1.56 (m, 1H), 1.50—1.35 (m, 5H), 1.34—1.22 (m, 2H), 1.17 (s, 3H), 1.16 (s, 3H), 0.16 (s, 9H); ¹³C NMR (125 MHz, C₆D₆) δ 139.4, 132.9, 131.0, 112.1, 86.3, 84.4, 82.5, 80.4, 79.1, 76.1, 72.6, 72.4, 64.1, 54.4, 32.5, 30.3, 29.5, 22.3, 22.2, 19.5, 15.9, 2.5 (3C); HRMS (ESI) calcd for C₂₄H₃₉BrO₅SiNa [(M + Na)⁺] 537.1642, found 537.1633.

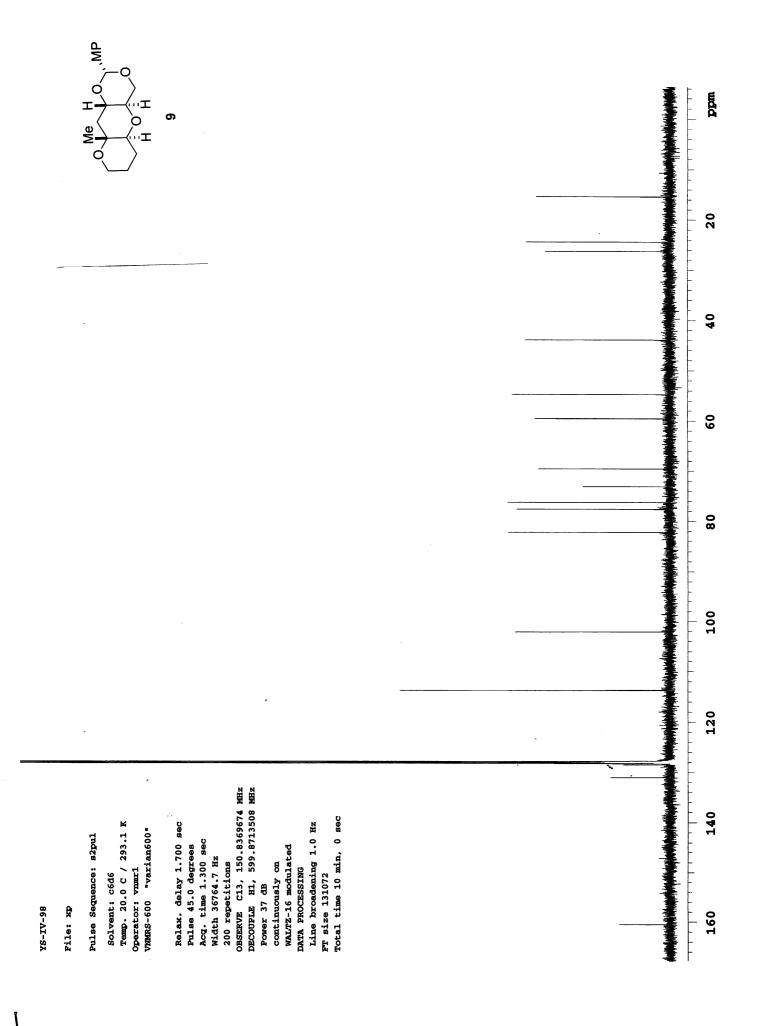

Alcohol 38. To a solution of (*Z*)-vinyl bromide 37 (120.6 mg, 0.2346 mmol) in THF (5 mL) at 0 °C was added HF pyridine complex (1.5 mL), and the resultant solution was stirred at room temperature overnight. The reaction was quenched with saturated aqueous NaHCO₃ solution at 0 °C. The resultant mixture was extracted with EtOAc, and the organic layer was washed with brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (30% EtOAc/hexanes) gave alcohol **38** (97.4 mg, 94%) as a colorless amorphous solid: $[\alpha]_D^{22}$ +78.8 (*c* 0.70, benzene); IR (KBr) 3510, 2947, 2873, 1458, 1379, 1079 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 5.97—5.72 (m, 2H), 5.75 (d, *J* = 12.5 Hz, 1H), 5.71 (dd, *J* = 12.5, 2.5 Hz, 1H), 4.46 (m, 1H), 4.33 (d, *J* = 10.0 Hz, 1H), 3.61 (m, 1H), 3.48—3.37 (m, 3H), 2.99 (dd, *J* = 12.5, 3.5 Hz, 1H), 2.18 (ddd, *J* = 11.5, 4.5, 4.0 Hz, 1H), 2.15 (d, *J* = 12.5 Hz, 1H), 2.11 (d, *J* = 12.5 Hz, 1H), 1.91 (m, 1H), 1.76 (ddd, *J* = 12.0, 12.0, 11.5 Hz, 1H), 1.57 (m, 1H), 1.50—1.38 (m, 2H), 1.33—1.22 (m, 5H), 1.20 (s, 1H), 1.17 (s, 3H), 1.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.4, 131.9, 131.5,

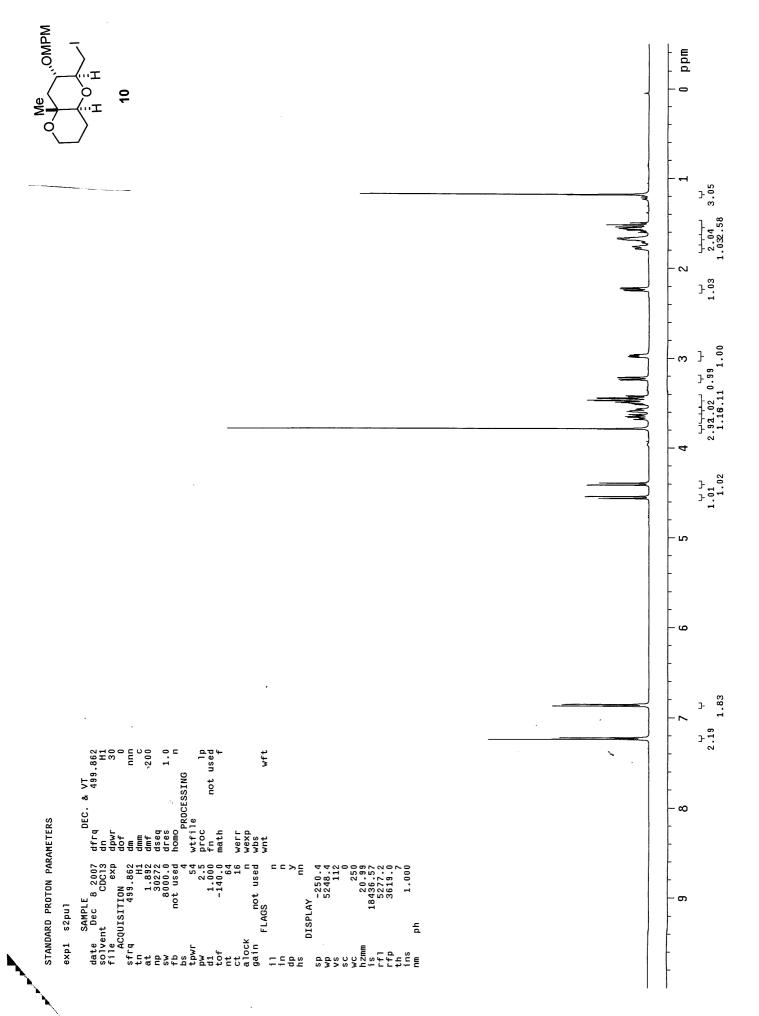

113.0, 86.4, 84.1, 82.0, 80.4, 76.2, 76.2, 72.4, 72.0, 64.5, 53.8, 32.2, 30.2, 29.5, 22.2, 21.6, 19.8, 16.0; HRMS (ESI) calcd for $C_{21}H_{31}BrO_5Na$ [(M + Na)⁺] 465.1247, found 465.1226.

Tetracyclic analogue 3. To a solution of alcohol 38 (37.6 mg, 0.0851 mmol) and vinyl stannane 27 (91.4 mg) in THF/DMSO (1:1, v/v, 2 mL, degassed by purging N₂ gas) were added LiCl (43.3 mg, 1.02 mmol), CuCl (84.2 mg, 0.851 mmol), and Pd(PPh₃)₄ (29.5 mg, 0.0255 mmol), and the resultant mixture was stirred at 60 °C for two days. The reaction was quenched with 3% NH₄OH solution at room temperature. The resultant mixture was stirred at room temperature for a while and then filtered through a pad of Celite[®]. The filtrate was diluted with EtOAc, washed with 3% NH₄OH solution and brine, dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Purification of the residue by flash chromatography on silica gel (25% EtOAc/hexanes) gave tetracyclic analogue **3** (20.4 mg, 56%) as a colorless amorphous solid: $\left[\alpha\right]_{D}^{23}$ +97.0 (c 0.40, benzene); IR (KBr) 3442, 2928, 2873, 1457, 1382, 1130, 1082, 1060 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 6.51 (dd, J = 11.5, 11.0 Hz, 1H), 6.30 (dd, J = 11.5, 11.5 Hz, 1H), 5.94 (dd, J = 13.0, 2.5 Hz, 1H), 5.82 (dd, J = 13.0, 1.5 Hz, 1H), 5.67 (m, 1H), 5.51-5.44 (m, 2H), 5.03-4.92 (m, 2H), 4.51 (d, J = 9.0 Hz, 1H), 4.40 (m, 1H), 3.61 (ddd, J = 13.0, 6.5, 4.0 Hz, 1H), 3.48—3.40 (m, 2H), 3.36 (ddd, J = 11.0, 9.5, 5.0 Hz, 1H), 3.03 (dd, J = 13.0, 4.0 Hz, 1H), 2.76-2.70 (m, 2H), 2.16 (d, J = 12.5 Hz, 1H), 2.13 (d, J = 12.5 Hz, 1H), 2.10 (ddd, J = 12.0, 4.5, 4.5 Hz, 1H), 1.90 (m, 1H), 1.79 (ddd, J) = 12.0 Hz, 1H = 12.0 Hz, 1H = 12.0 Hz, 1H = 12.0 Hz J = 12.0, 12.0, 12.0 Hz, 1H, 1.55 (m, 1H), 1.48—1.35 (m, 2H), 1.33—1.21 (m, 8H), 1.17 (s, 3H); ¹³C NMR (125 MHz, C₆D₆) δ 138.7, 136.2, 131.5, 131.4, 128.6, 127.0, 125.3, 115.4, 86.5, 83.1, 81.9, 80.6, 76.3, 76.1, 72.4, 72.3, 64.1, 54.4, 32.7, 31.8, 30.3, 29.5, 22.2, 21.9, 19.4, 15.9; HRMS (ESI) calcd for C₂₆H₃₈O₅Na [(M + Na)⁺] 453.2611, found 453.2609.

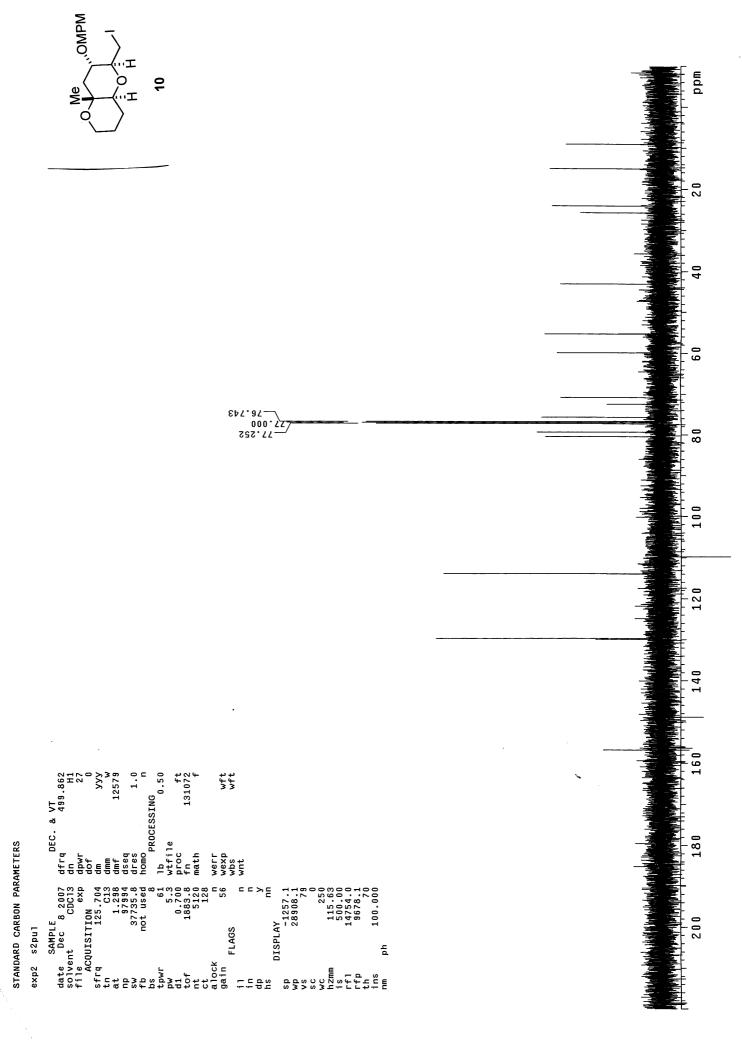
			ſ
HOMEHO	Filename Author Exporiment Sample_Id Solvent Creation_Time Revision_Time Current_Time	<pre>c:\Users\delta\Documents\J delta carbon.jxp rs.rII-113 rtL11-13 cHLONFONW-D S-OCT-2010 17:42:14 5-OCT-2010 17:51:52 5-OCT-2010 17:52:23 </pre>	5
	Comment Date_Format Dim_Title Dim_Units Dimensions Site Spectrometer	<pre>= single pulse decoupled gat = 1D COMPLEX = 26214 = Carbon13 = [ppm] = X = ECA600 = DELTA2_NUR</pre>	ה לו
	Field_Strength X_Acq_Duration X_Freq X_Offset X_Offset X_Prescans X_Prescans X_Prescans X_Sweep_Clipped Irr_Offset Clipped Mod_Return Mod_Return Scans Scans Cotal_Scans	<pre>= 14.09536928[T] (600[MHz]) = 0.69206016[s] = 13C = 15C.91343039[MHz] = 100[ppm] = 32768 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 1 = 97.3946805[KHz] = 57.878788[KHz] = 57.00.1723046[MHz] = 5[ppm] = 1 = 1 = 1 = 1 = 1 = 194</pre>	2
	X_90_Width X_Acq_rime X_Argle X_Argle X_Arlse Irr_Ath_Dec Irr_Ath_Noe Irr_Noise Irr_Noise Irr_Noise Irr_Noist Irr_Noist Irr_Arlal Noe Relaxation_Delay Relaxation_Delay Repetition_rime Temp_Get	= 8.4[us] = 0.69206016[s] = 0.64[db] = 6.4[db] = 2.8[db] = 18[db] = 18[db] = 18[db] = 18[db] = 18[db] = 18[db] = 26[us] = 2[s] = 26926016[s] = 23.1[dc]	
210200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 100.0 90.0 80.0 70.0 50.0 40.0 30.0 20.0 10.0 0 20.0 10.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 1			

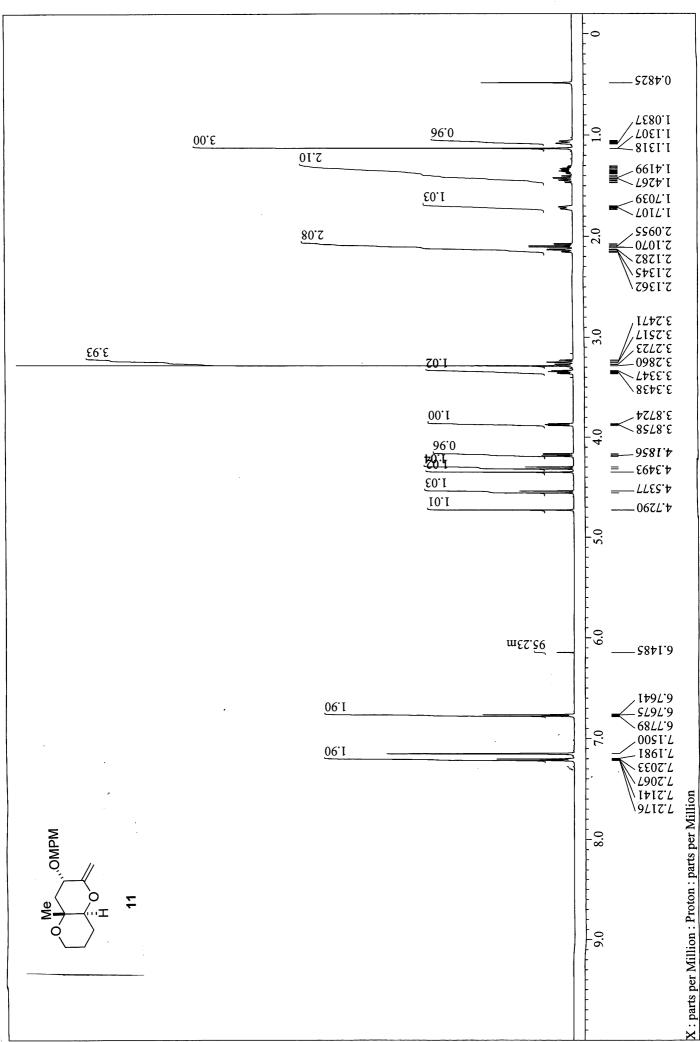


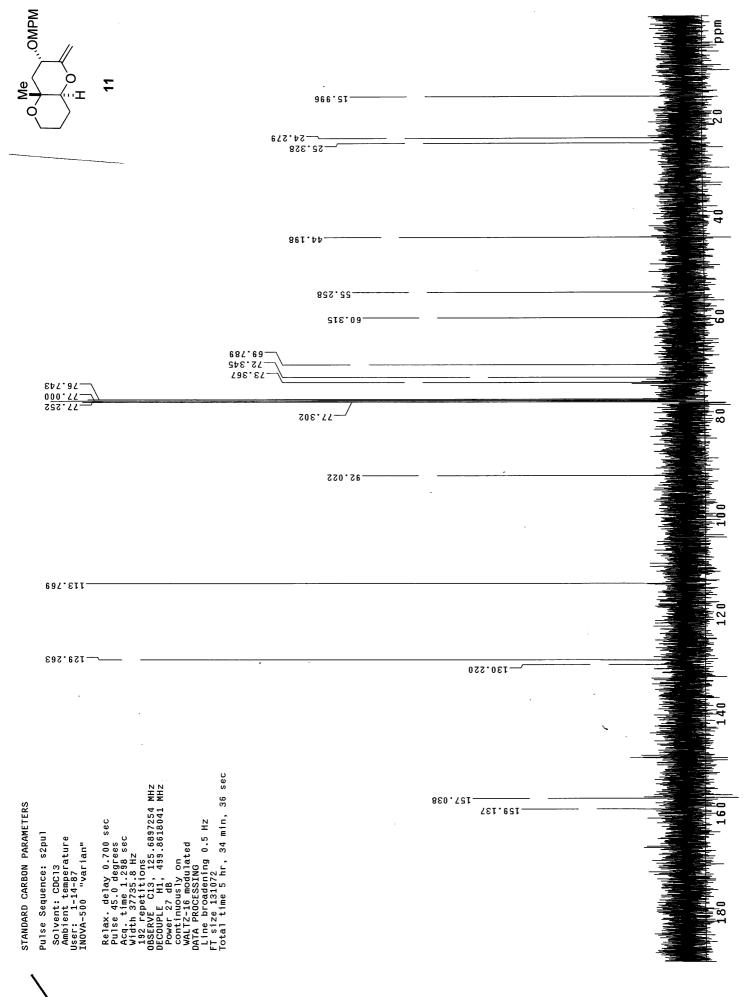


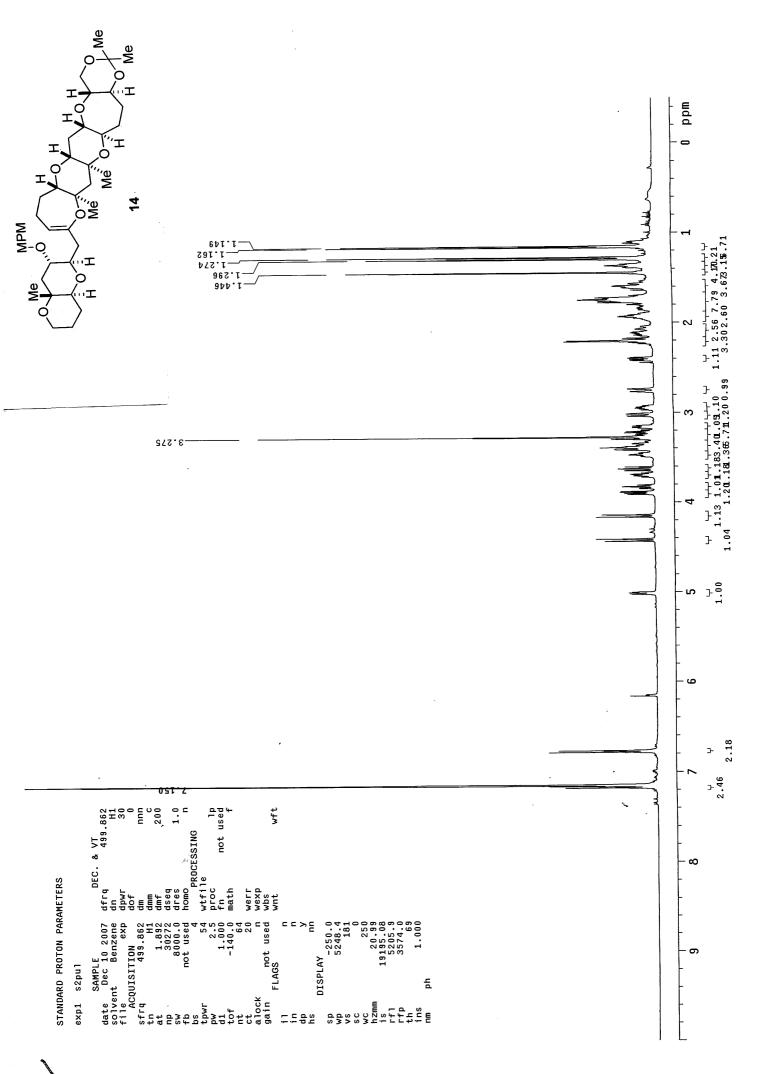

wđđ

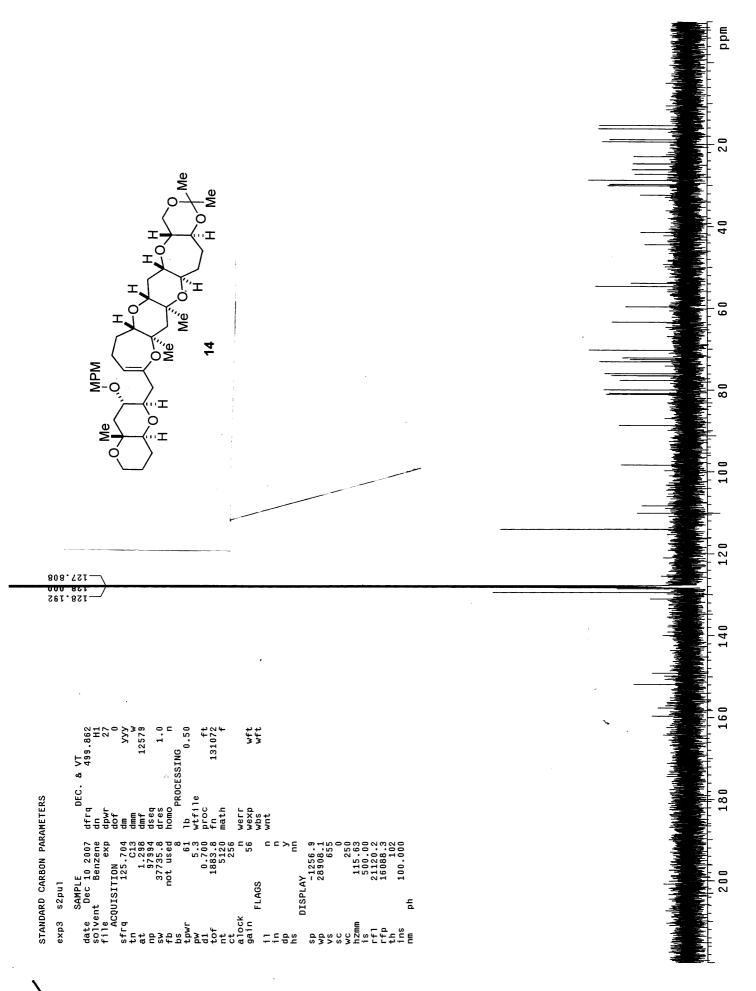
20

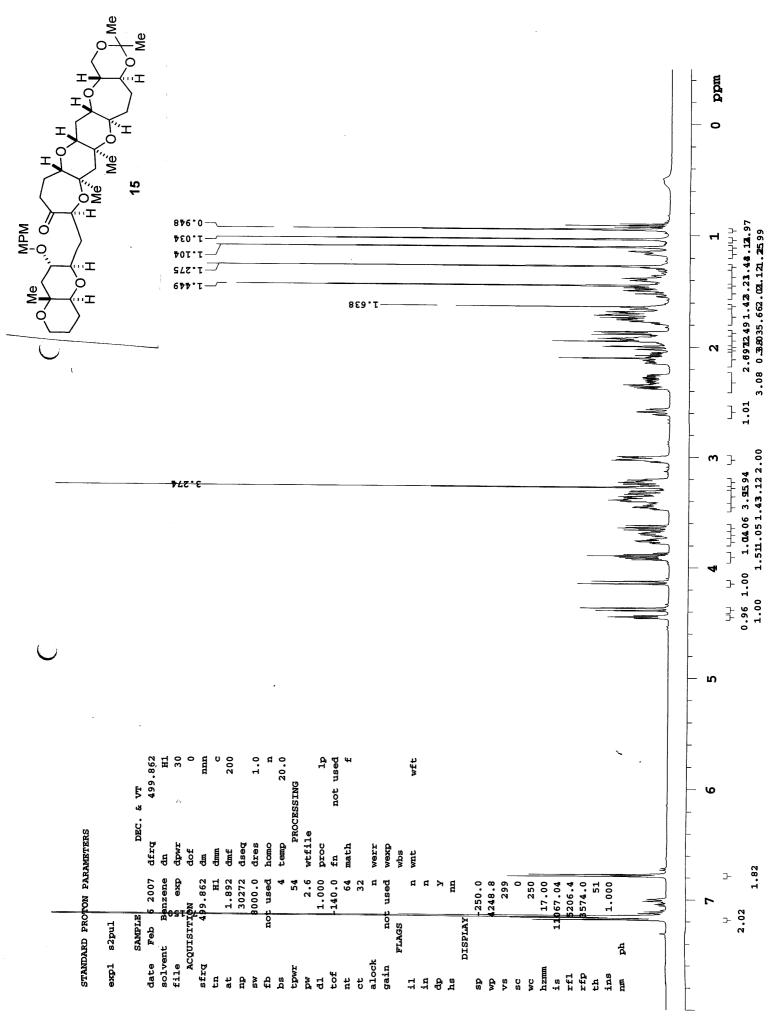

وأرا تغطينا فليتليز ويطلقهم د

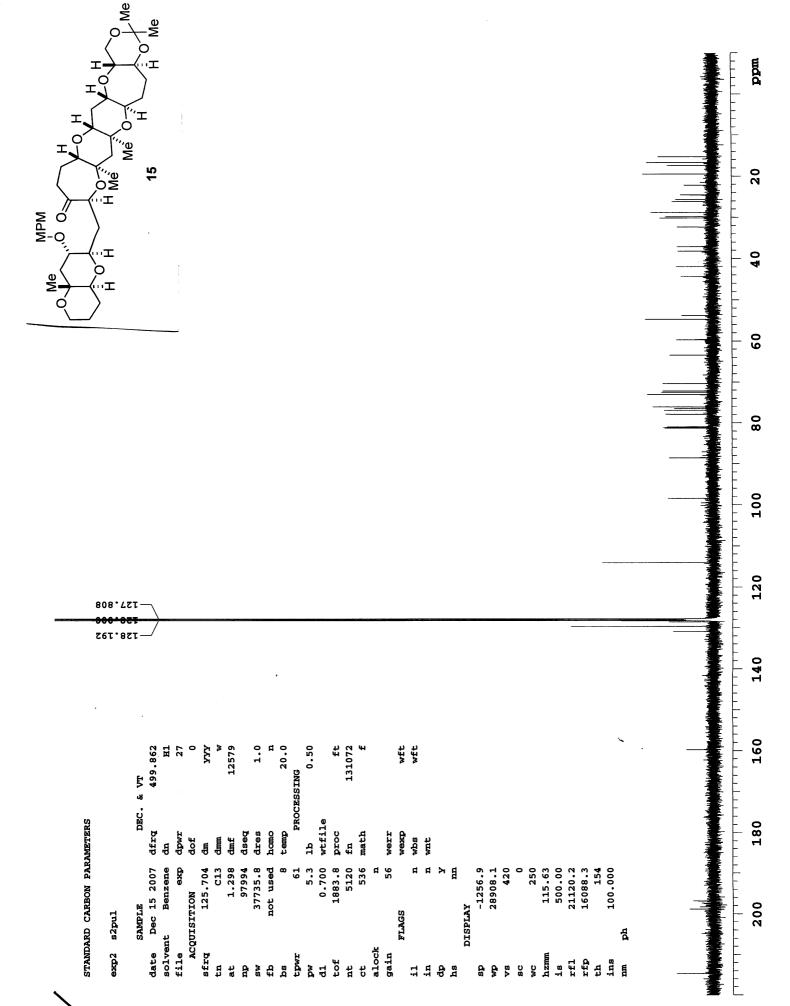


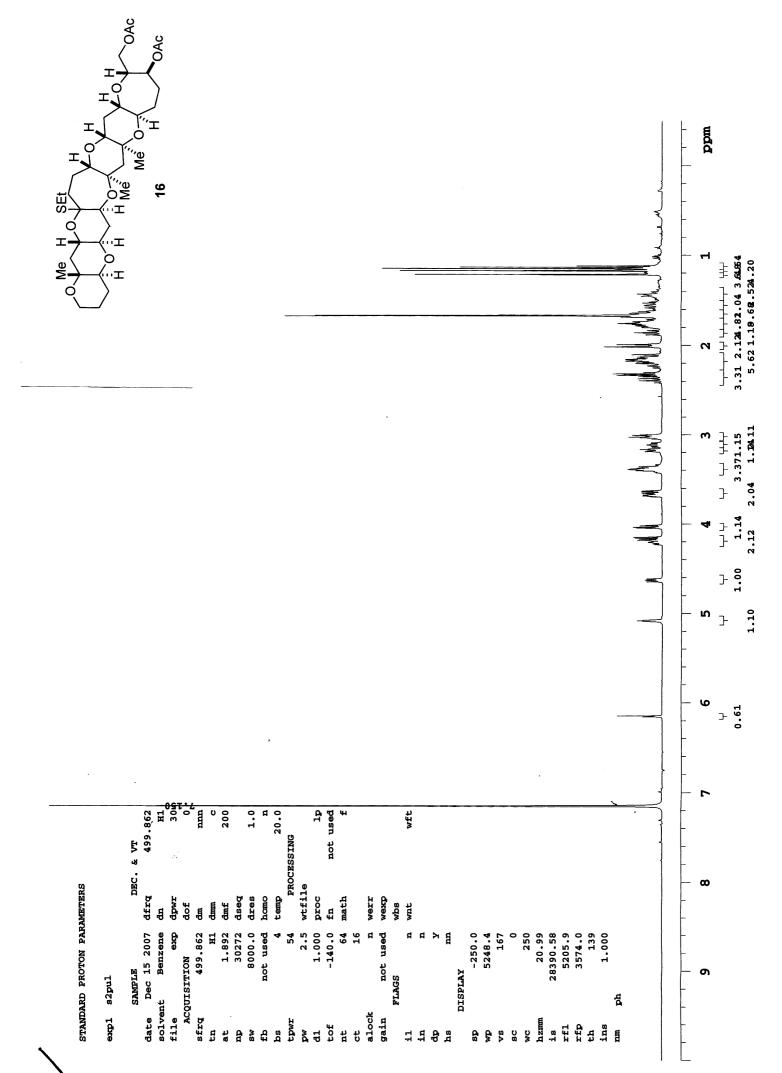


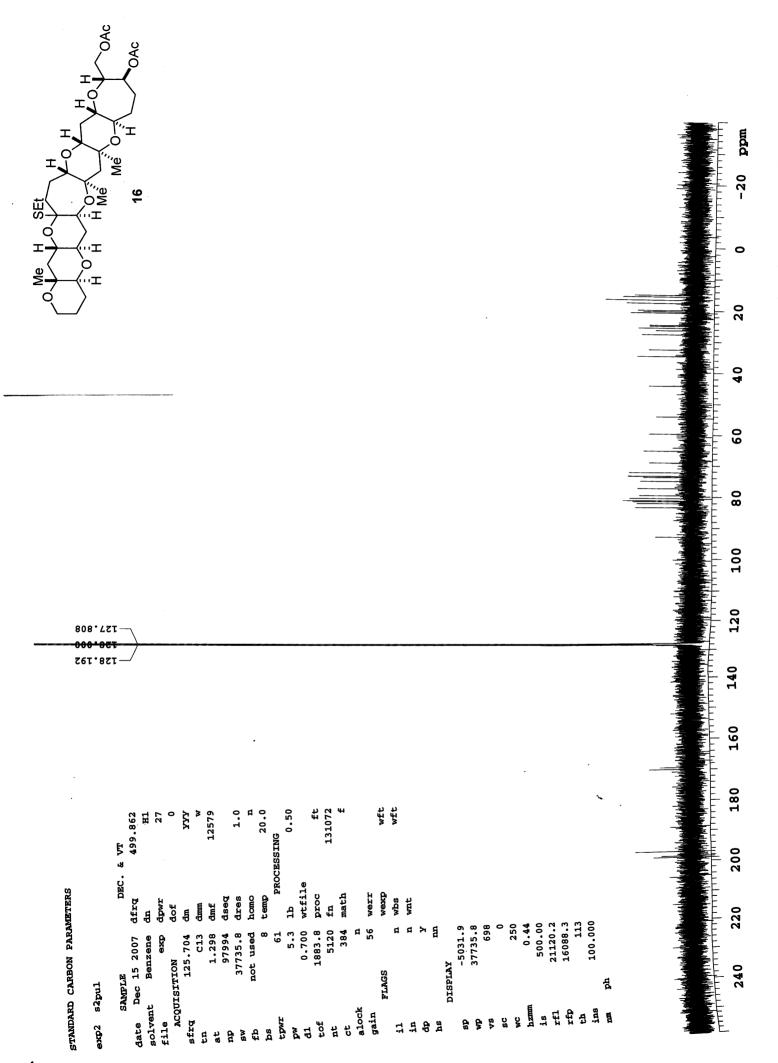


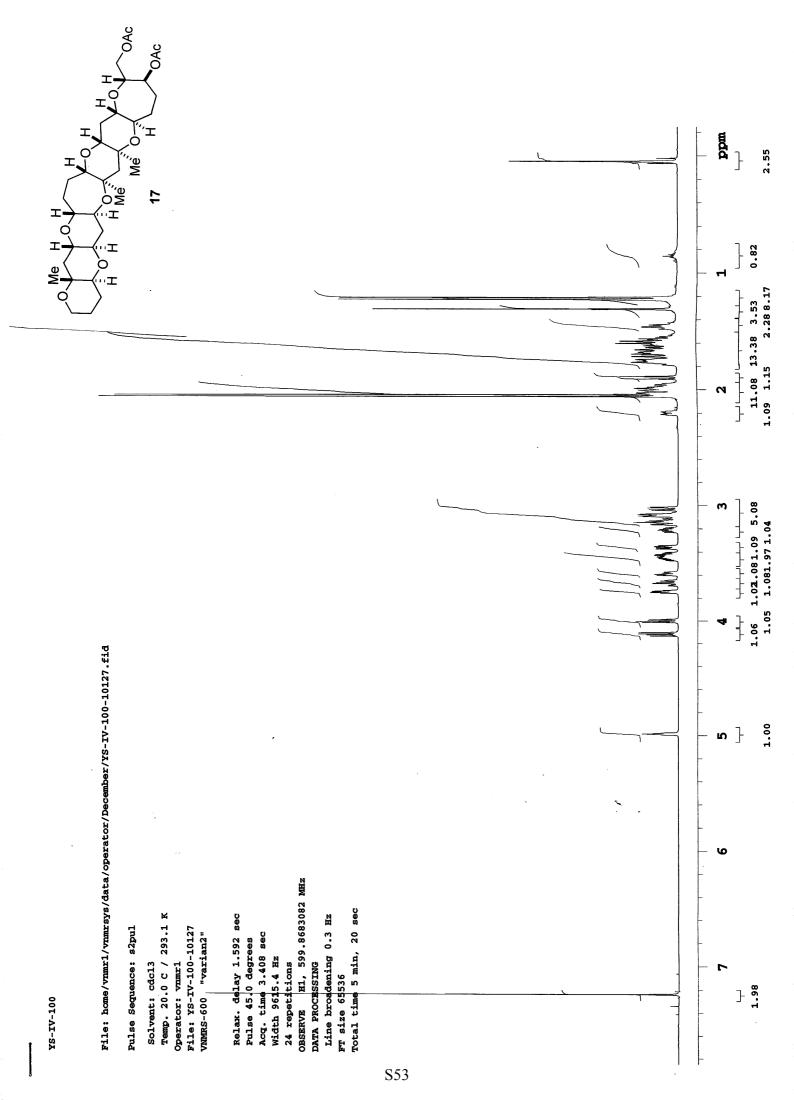












TS-IV-100-13C

File: XD

Pulse Sequence: s2pul

OAc

н О

I

Ó T-

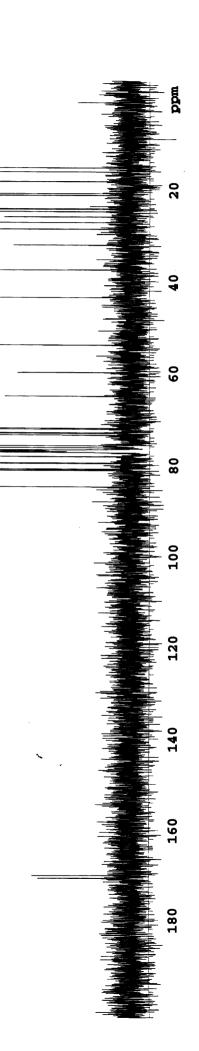
Me

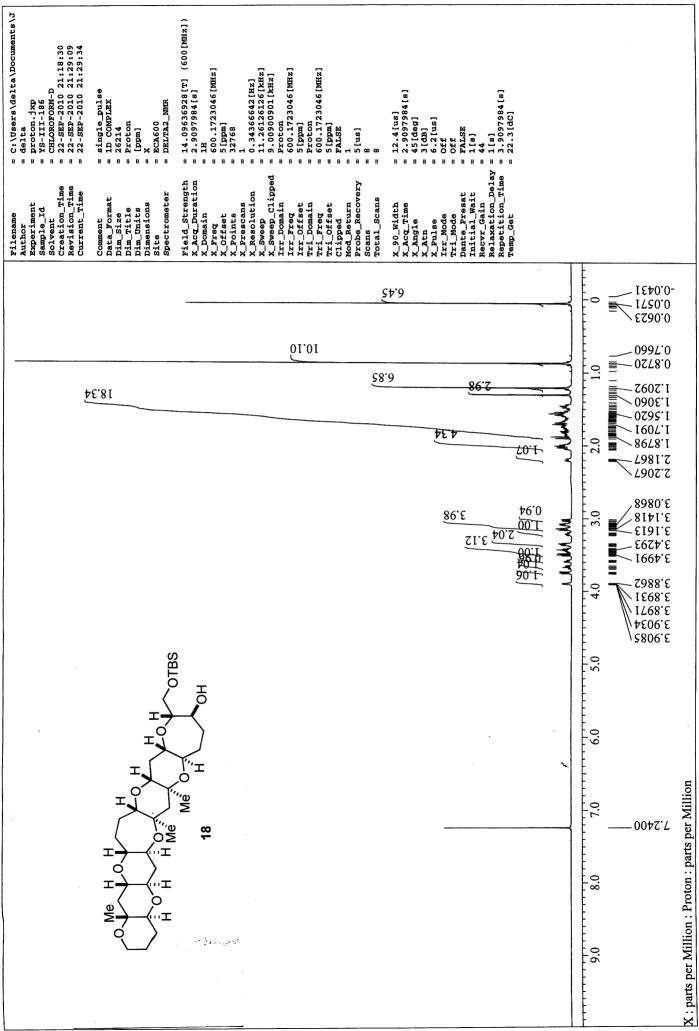
OAc

ľ″τ Ο

17

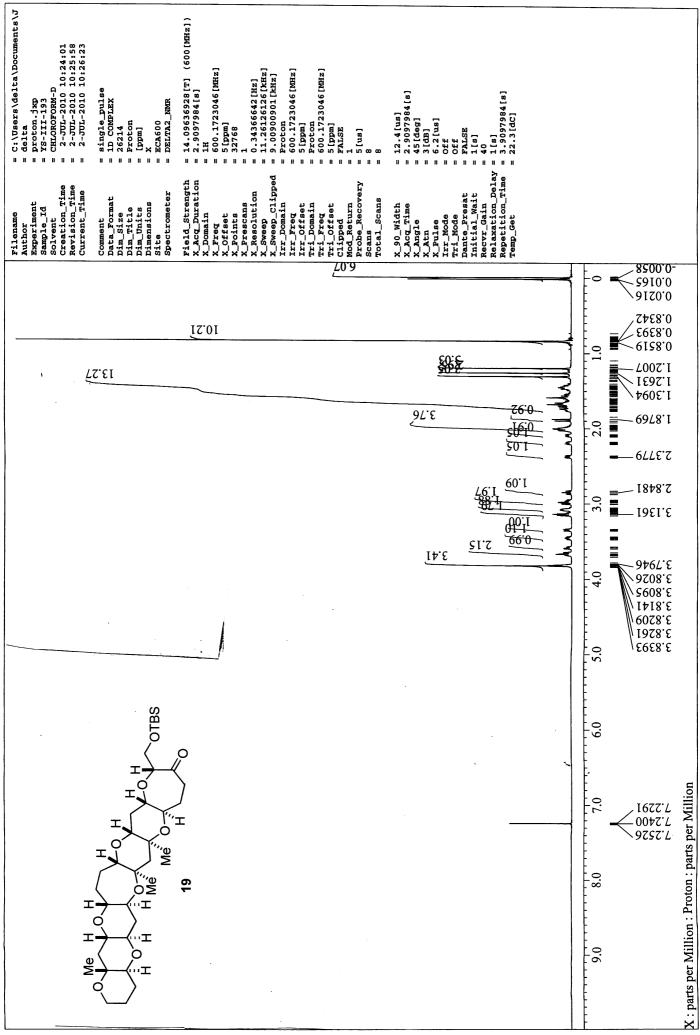
Ğ,

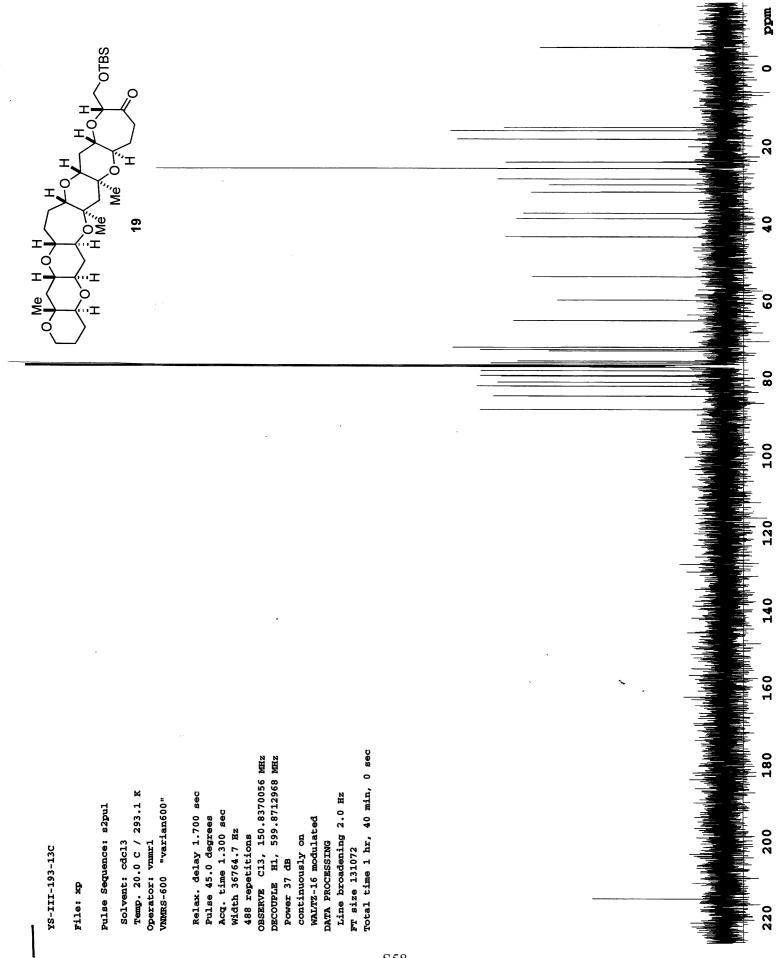

`,, 0ΣΣ

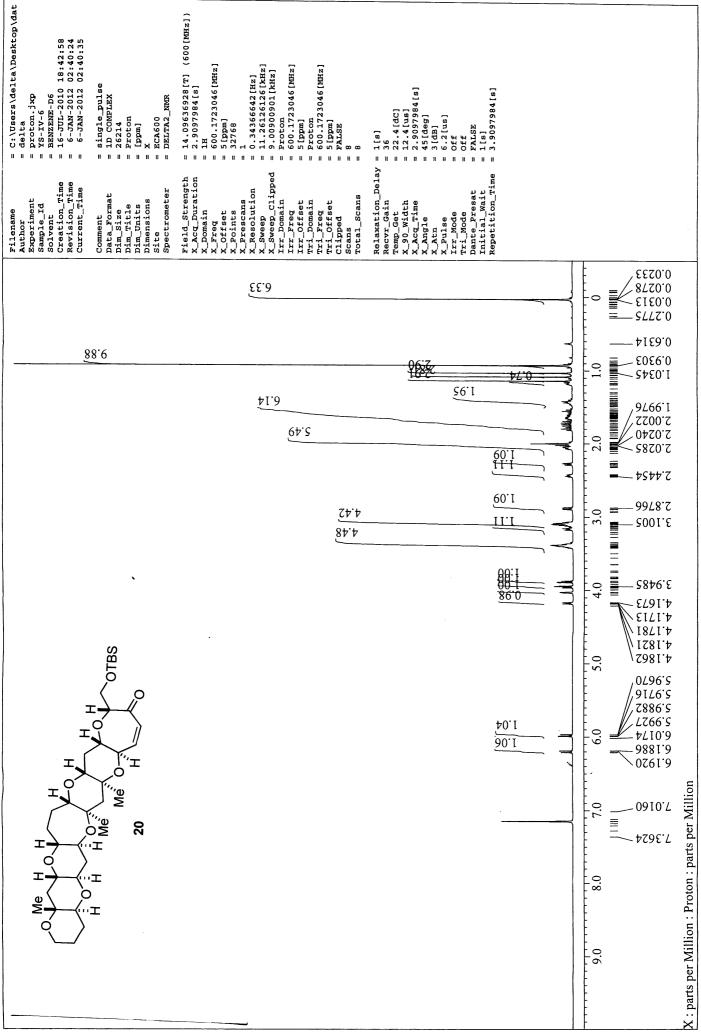

۰T

ю ́…т

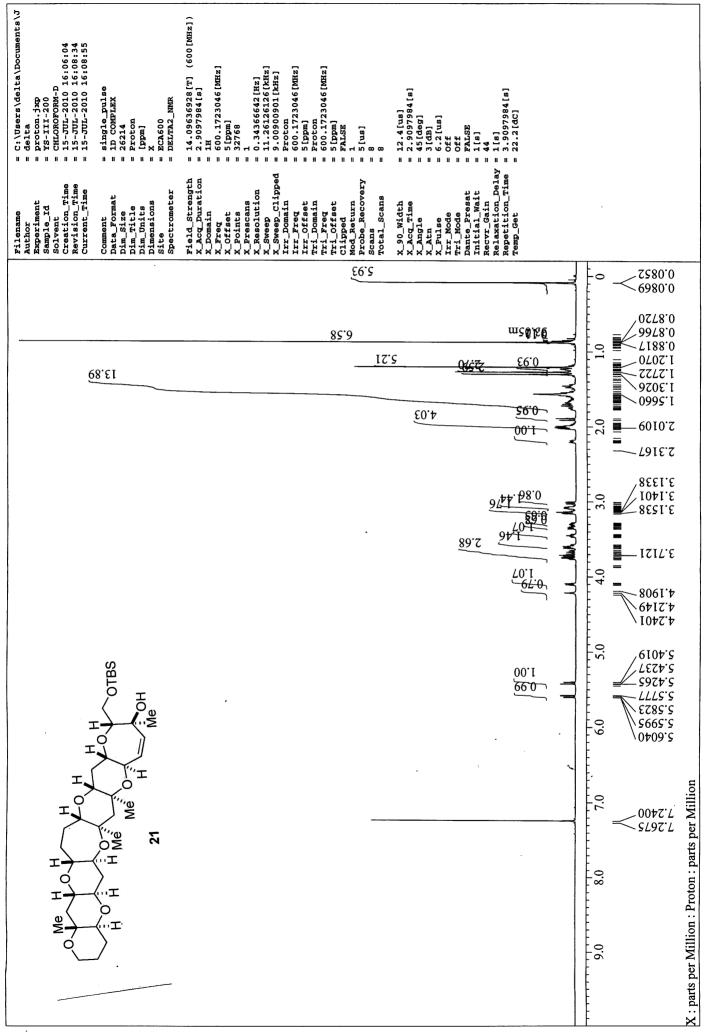
> Solvent: cdcl3 Temp. 20.0 C / 293.1 K Operator: vnmr1 vNMRS-600 "varian600"

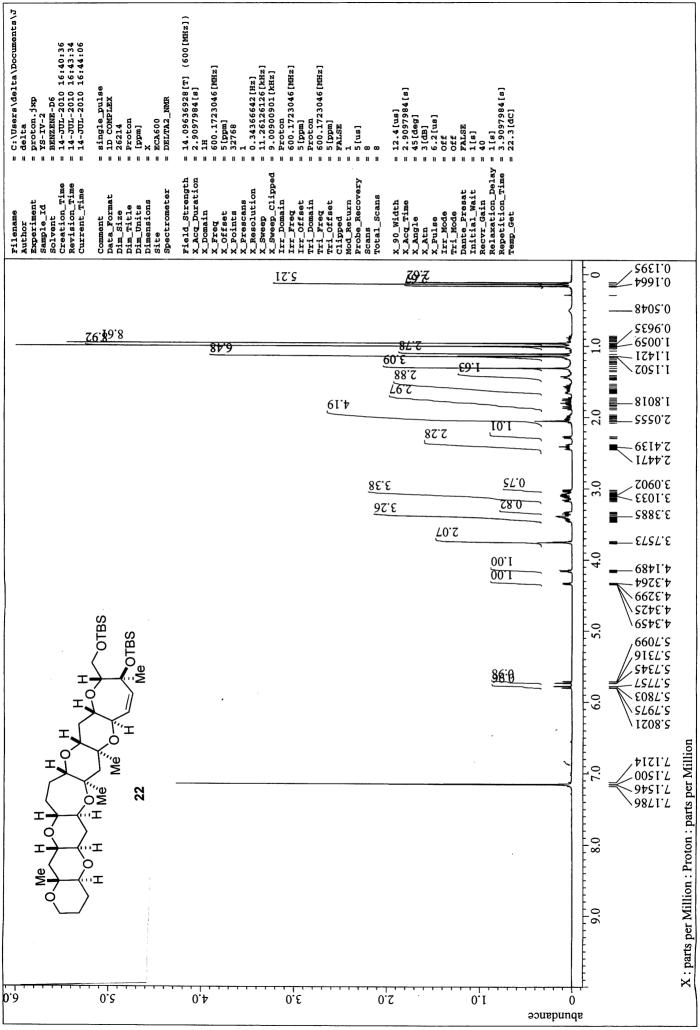

Relax. delay 1.700 sec Pulse 45.0 degrees Acq. time 1.300 sec Width 36764.7 Hz 736 repetitions OBSERVE Cl3, 150.8370053 MHz OBSERVE Cl3, 150.8370053 MHz DECOUFLE H1, 599.8712968 MHz Power 37 dB Continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 2.2 Hz Fr size 131072 Fr size 131072 Total time 4 hr, 10 min, 0 sec

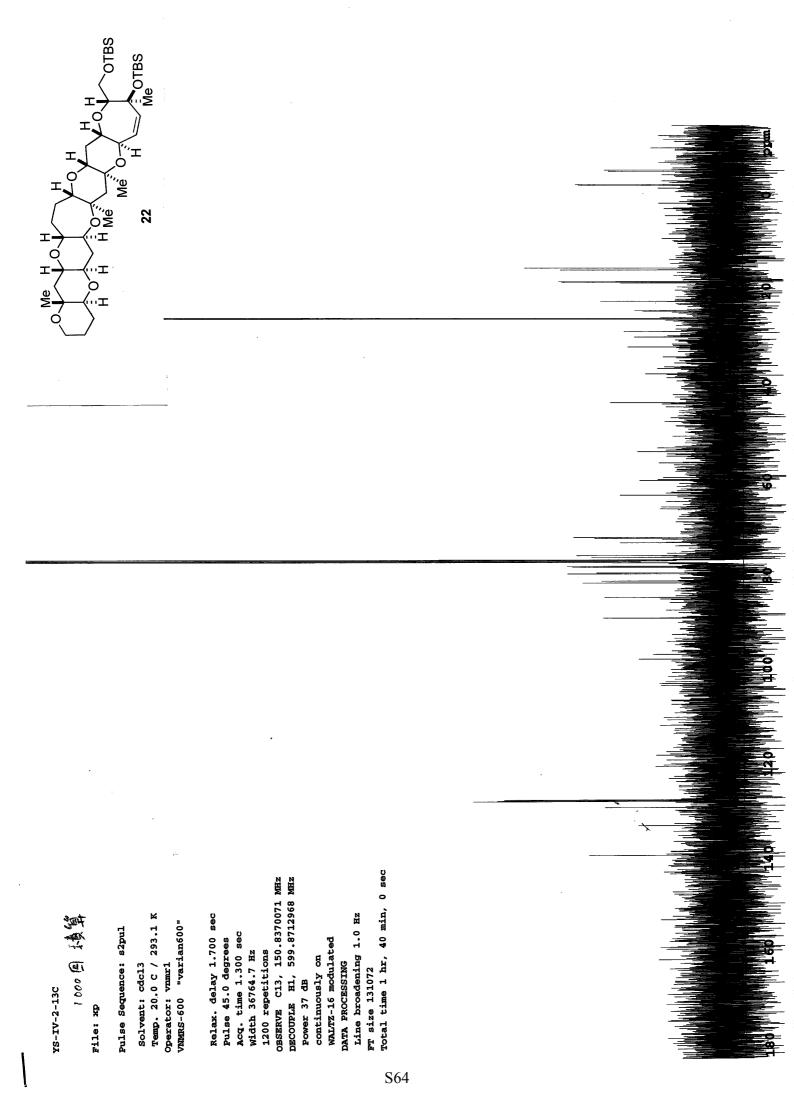


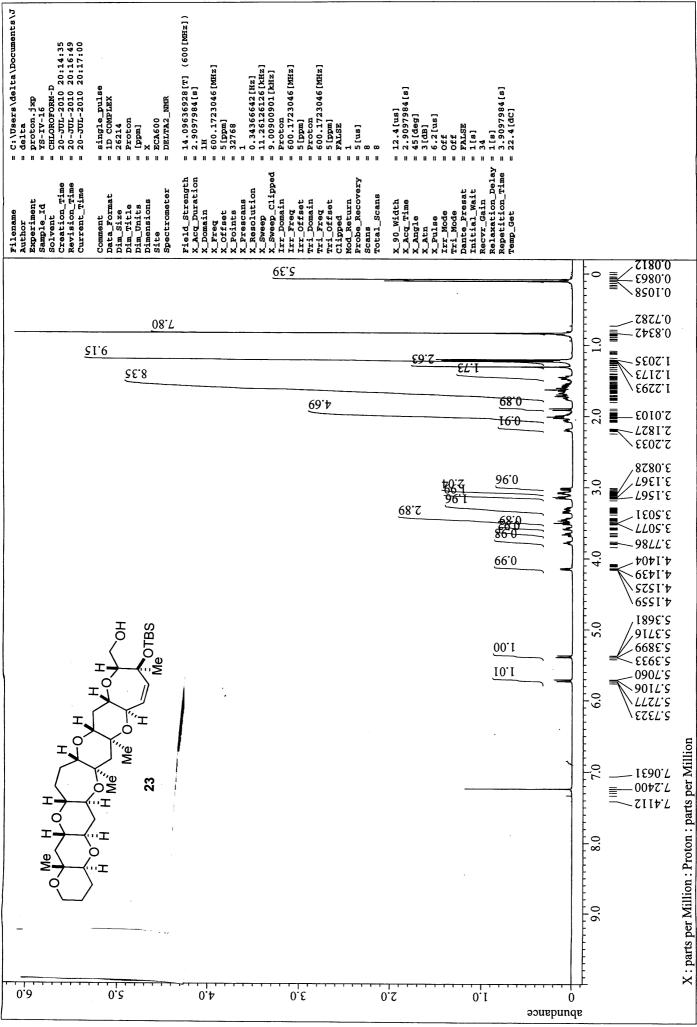


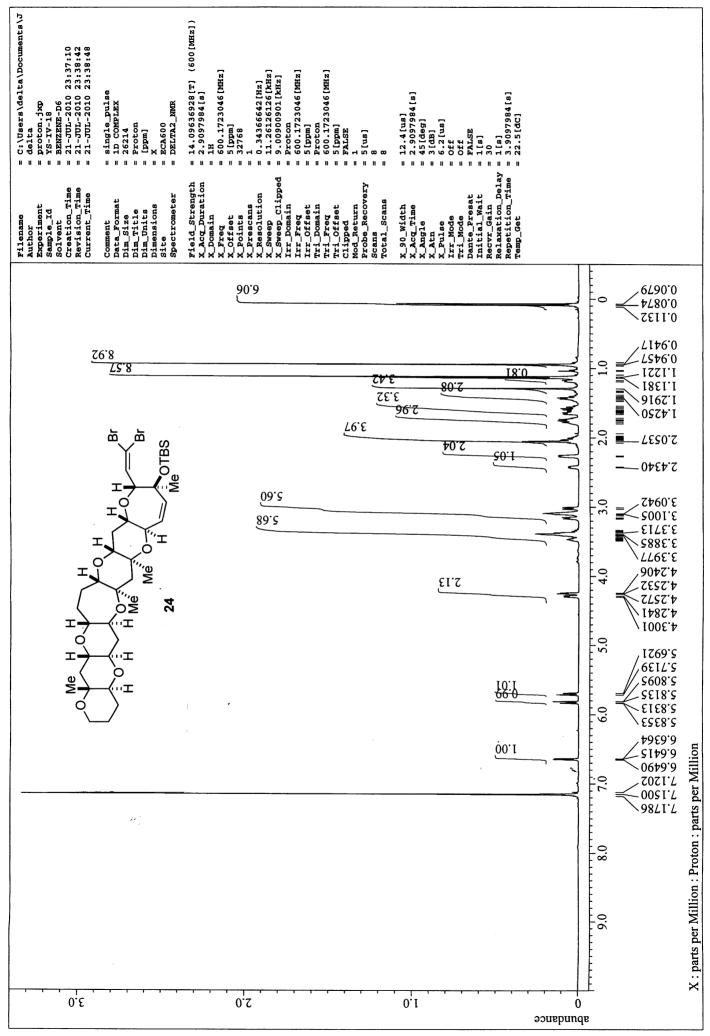
		Filename Author Experiment Sample_Id Solvent Creation_Time Revision_Time Current_Time	<pre>= C:\Users\delta\Documents\J = delta = carbon.jxp = rs-r1r-196 = rcHLOROFORW-D = 22-SEP-2010 21:34:05 = 22-SEP-2010 21:35:07</pre>
Me H O H O H O H O H O H O H O H O H O H		Comment Data_Format Dim_Size Dim_Title Dim_Units Dimensions Site Spectrometer	<pre>= single pulse decoupled gat = 1D COMPLEX = 26214 = Carbon13 = [ppm] = ZA500 = DELTA2_NMR</pre>
т у у е х 556		Field_Strength X_Acq_Duration X_Dumain X_Freq X_Freq X_Points X_Points X_Frescans X_Frescans X_Frescans X_Sweep_Clipped Irr_Freq Irr_Freq Irr_Prof Mod_Return Probe_Recovery Scans	<pre>= 14.09636228[T] (600[MHz]) = 0.69206016[s] = 150.91343039[MHz] = 100[pm] = 100[pm] = 32768 = 1.44496109[Hz] = 4, 3484885[HHz] = 4, 3484885[HHz] = 7.34848485[HHz] = 7.373046[MHz] = 7.1733046[MHz] = 500.1723046[MHz] = 1 = 269</pre>
		X_90_Width X_Acq_Time X_Anq_rime X_Aur X_Aur X_Pulse Irr_Ath_Dec Irr_Ath_Dec Irr_Ath_Dec Irr_Pwidth Decoupling Irr_Pwidth Decoupling Noe_Time Noe_Time Noe_Time Noe_Time Noe_Time Noe_Time Noe_Time Noe_Time	
		Temp_Get	11
X: parts per Million : Carbon13 : parts per Million	525.22 525.22		

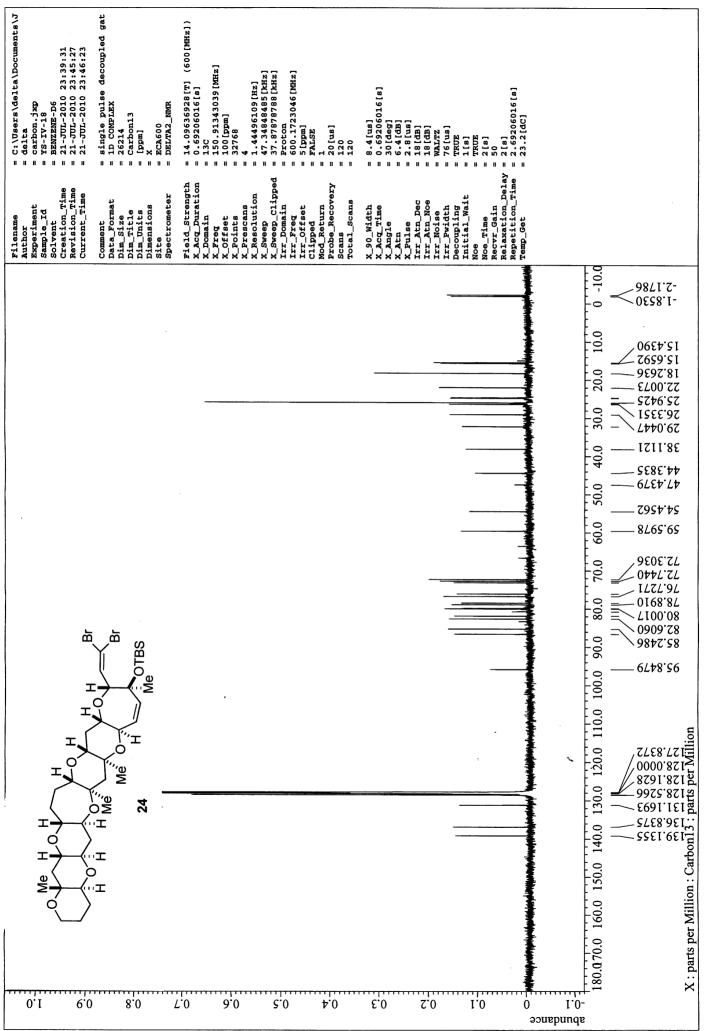


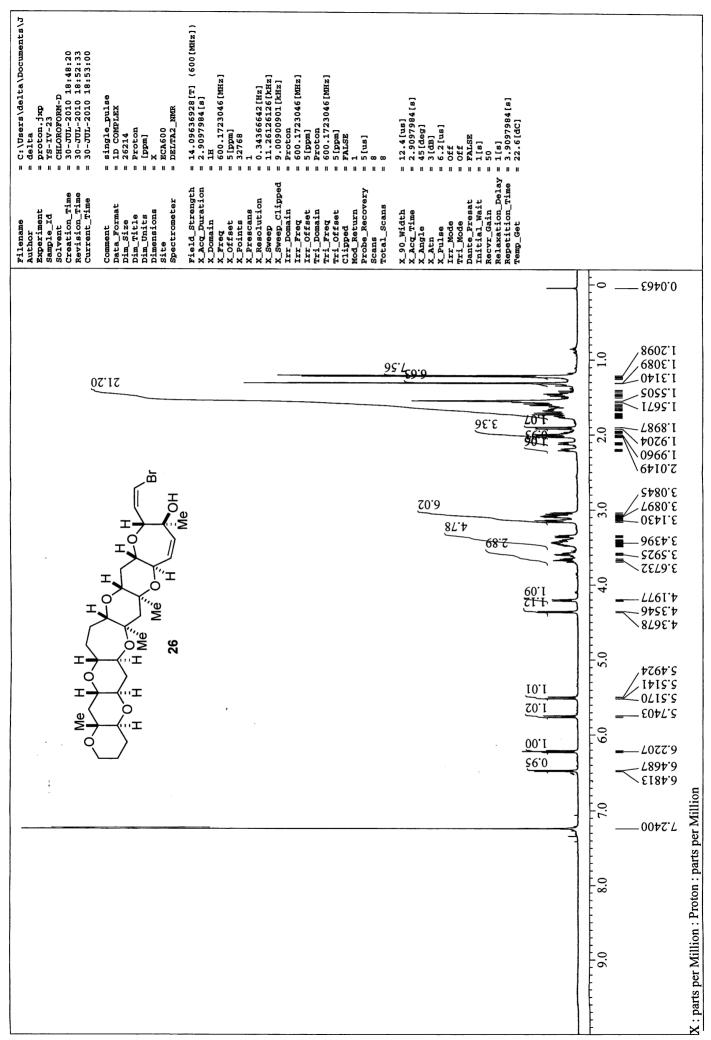


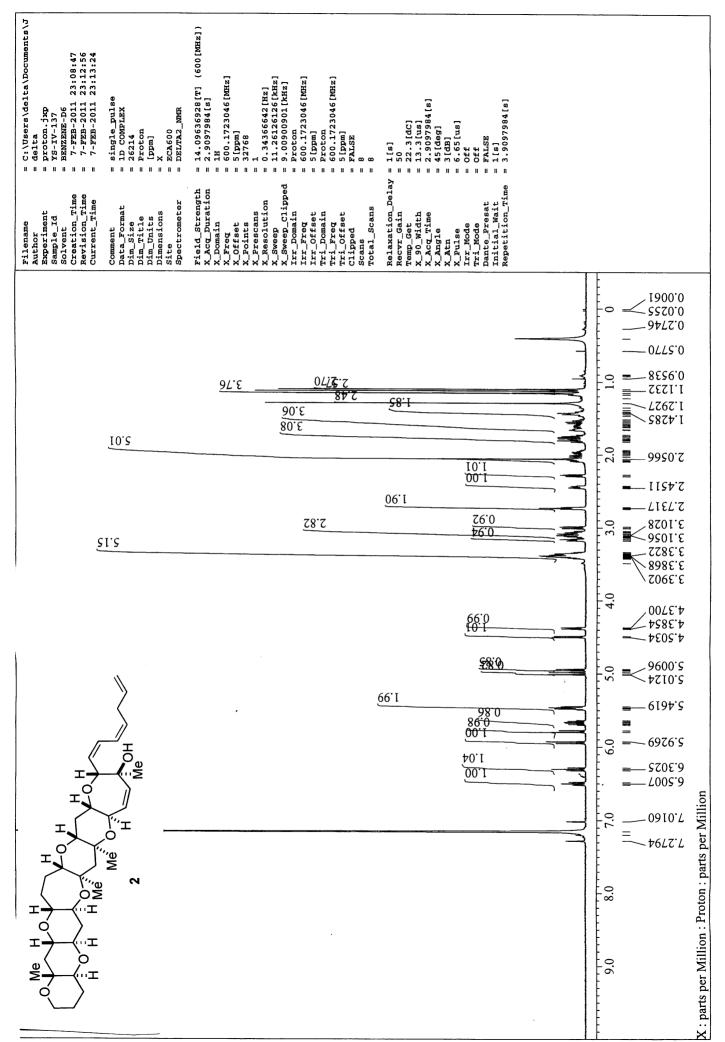



	•	
		<pre>Filename = C:\Users\delta\Desktop\dat Author = delta Experiment = carbon.jxp Sample_Id = YS-LV-6 Solvent = BENZENE-D6 Solvent Time = 16-0UL-2010 18:45:13 Revision_Time = 6-JAN-2012 02:41:26 Current_Time = 6-JAN-2012 02:41:39</pre>
E	2.6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Comment = single pulse decoupled gat Data_Format = 1D COMPLEX Dim_Size = 26214 Dim_Unite = 2aton13 Dim_Units = [ppm] Dim_Units = [ppm] Spectrometer = DELTA2_NNR
		<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acc_Duration = 0.69206016[s] X_Domain = 13C X_Offset = 150.91343039[MHz] X_Offset = 150.91343039[MHz] X_Offset = 1200[ppm] X_Proints = 32768 X_Proscans = 32768 X_Proscans = 4 X_Sweep Tr_Prog = 1.44496109[Hz] X_Sweep Tr_Prog = 4 X_Sweep Tr_Prog = 47.3484845[KHz] X_Sweep Tr_Prog = 47.3484845[KHz] Tr_Prog = 77.8778788[KHz] Tr_Prog = 51ppm] Tr_Prog = 51ppm] Tr_Prog = 292 Total_Scans = 292</pre>
		Relaxation_Delay = 2[s] Recrr_Gain = 50 Temp_Get = 23.3[dc] = 23.3[dc] = 8.4[us] X_Acq_Time = 8.4[us] X_Ard_Time = 0.69206016[s] X_Angle = 30[deg] X_Augle = 0.69206016[s] X_Augle = 0.69206016[s] X_Augle = 0.69206016[s] X_Augle = 0.69206016[s] X_Augle = 0.69206016[s] Tr_Augle = 0.69206016[s]Tr_Augle = 0.69206016[s] Tr_Augle = 0.69206016[s]Tr_Augle = 0.69206016[s]Tr_Augle = 0.69206016[s]Tr_Augle = 0.6920000000000000
		_rime ====================================
Z20.0210.0200.0190.0180.0170.0160.0150.0140.0130.0120.0100.090.080.070.06 Z220.0210.0200.0190.0180.0170.0160.0110.0100.090.080.070.06 Z72.8014 Z72.9738 Z72.9738 Z72.9738 Z72.9738 Z72.9736 Z72.9738 Z72.9738 Z72.9738 Z72.9737 Z72.9737 Z72.9737 Z72.9737 Z72.9738 Z72.9737 Z772.9737 Z72.9737 Z72.9737 Z72.9737 Z72.9737 Z72.9737 Z72.9737 Z7777 Z7777 Z7777 Z7777 Z77777 Z77777 Z77777 Z77777 Z77777 Z77777 Z777777 Z777777 Z777777 Z777777 Z777777 Z777777 Z7777777 Z77777777	15.4390 20.0 20.0 10.0 18.2064 0.0 20.0 20.0 10.0 24.72564 0.0 20.0 10.0 10.0 25.9808 54.2264 0.0 20.0 10.0 25.9308 54.2264 0.0 20.0 10.0 25.9308 54.2264 0.0 0.0 10.0 25.9308 54.2350 0.0 10.0 10.0 25.9308 54.2350 0.0 10.0 10.0 26.3351 29.0160 10.0 10.0 10.0 27.2264 0.0 20.0 10.0 10.0 28.1312 29.0160 10.0 10.0 10.0 29.29764 0.0 20.0 10.0 10.0 29.20160 0.0 10.0 10.0 10.0 29.20160 0.0 10.0 10.0 10.0 20.0 10.0 10.0 10.0 10.0 20.0 10.0 10.0 10.0 10.0 20.0 10.0 10.0 10.0	

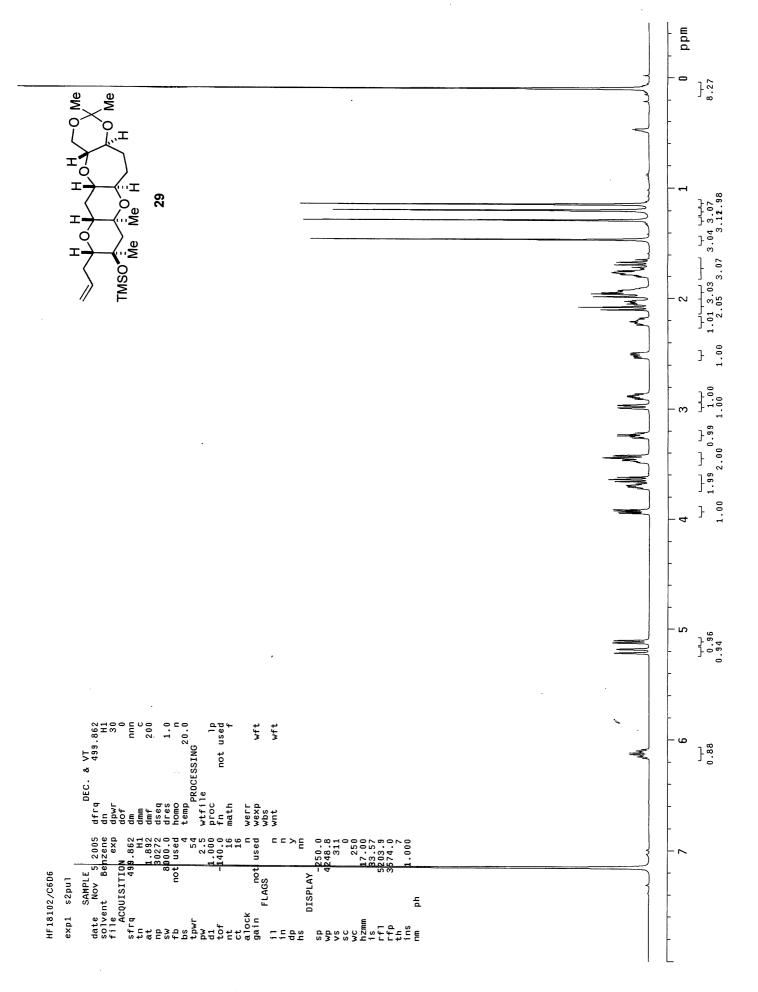


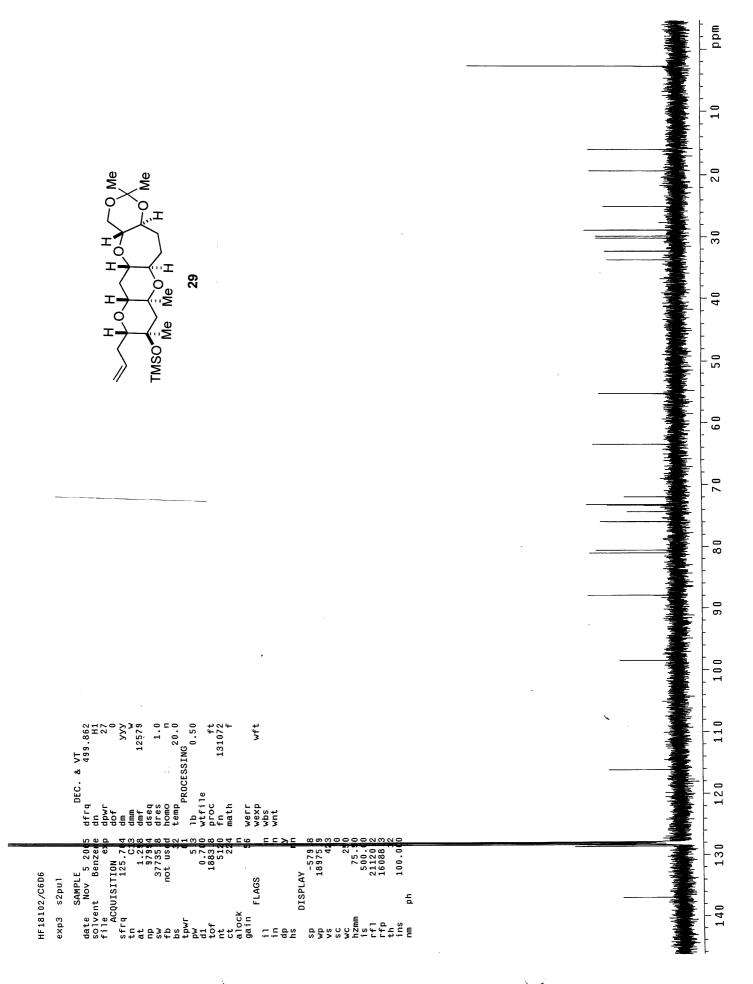

$\frac{1}{12} \left(\frac{1}{12} + \frac{1}{12}$				
122.14406 50.0 50.0 10.0 0 10.0			Author	
21			Experiment	
12,44866 -10 12,14866 -10 12,14866 -10 12,15468 -10 12,15468 -10 12,15468 -10 12,14866 -10 12,14866 -10 12,14866 -10 12,14866 -10 12,15468 -10 12,14866 -10 12,15468 -10 <td>-</td> <td></td> <td>sample_id solvent</td> <td></td>	-		sample_id solvent	
112,4486 112,4486 10,0 0,100 00,0 00,0 0,0 </td <td>Me</td> <td></td> <td>Creation_Time Revision Time</td> <td></td>	Me		Creation_Time Revision Time	
Z1 H He H		ר ד,	Current_Time	
17:4.44 17:4.44 17:4.0535028171 17:4.44 17:4.44 17:4.0535028171 17:4.44 17:4.44 17:4.0535028171 17:4.44 17:4.44 17:4.0535028171 17:4.44 17:4.44 17:4.0535028171 17:4.44 17:4.44 17:4.0535028171 17:4.44 17:4.445501761 17:4.0550201761 17:4.44 17:4.445501761 17:4.45501761 17:4.44 17:4.445501761 17:4.45501761 17:4.44 17:4.445501761 17:4.45501761 17:4.44 17:4.445501761 17:4.45501761 17:4.44 17:4.44501 17:4.44501 17:4.44 17:4.44501 17:4.44501 17:4.44 17:4.44501 17:4.44511 17:4.44 17:4.44511 17:4.4451 17:4.44 17:4.44511 17:4.44511 17:4.45 17:4.44511 17:4.44511 17:4.45 17:4.44511 17:4.44511 17:4.45 17:4.44511 17:4.44511 17:4.45 17:4.44511 17:4.44511 17:4.45 17:4.44511 17:4.44511		Me OF	Comment Data_Format Dim_51ze Dim_Title Dim_Title Dimensions Siteenstons Spectrometer	
123/284/28 0.00			Field_Strength X_Acq_Duration X_Domain X_Pomain X_Freq X_Points X_Prescans X_Prescans X_Sweep_clipped Irr_Offset Irr_Offset Clipped Mod_Return Probe_Recovery Scans Total_Scans	<pre>= 14.09636928[T] = 0.69206016[s] = 13C = 150.91343039[WI = 100[ppm] = 32768 = 4 7.348485[KHI = 37.87878788[KHI = 37.87878788[KHI = 37.87878788[KHI = 5[ppm] = 5[ppm] = 1 = 1 = 166</pre>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X_90_width X_acq_Time X_atn X_atn X_Pulse Irr_Atn_Noe Irr_Atn_Noe Irr_Noise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise Irr_IrreNoise IrreNo	
120:0 100:0 000 000 120:0 120:0 100:0 000 000 120:0 120:0 100:0 000 000 000 120:0 120:0 100:0 000 000 000 000 120:0 120:0 100:0 0000 0000 0000 000				
	82.0315 82.0315 127.8468 128.0000 127.8468 128.1912 128.1628 128.0000 100 100 100 100 100 100 100 100 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0	

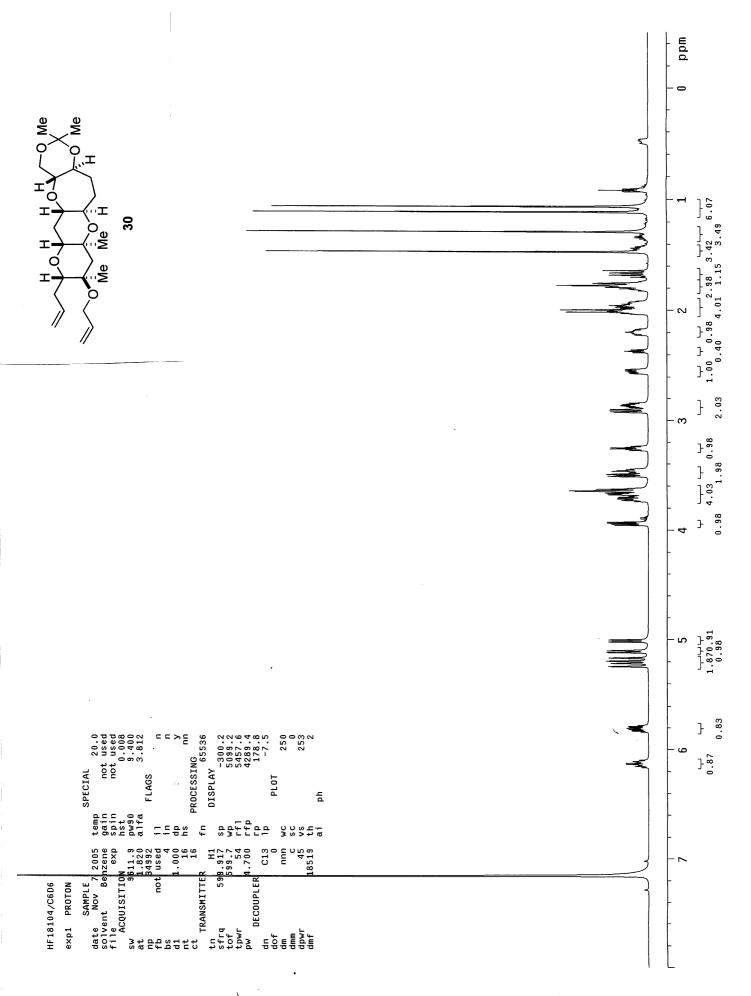



tuments/J 45 45 45	00 [MHz])		
<pre>C:\Vsers\delta\Documents\J delta felta proton.jxp rs'rV'81 rs'rV'81 rs'rv'81 rs'rs'r01017:57:45 14-SEP-201017:57:45 14-SEP-201017:57:45 14-SEP-201017:57:45 rs'ngle_pulse rs'ngle_p</pre>	= 14.09636928[T] (600[MHz]) = 2.9097984[s] = 600.1723046[MHz] = 600.1723046[MHz] = 51ppm] = 32768 = 11.261261[Hz] = 0.3436642[Hz] = 11.261261[Hz] = 0.34366642[Hz] = 0.34366642[Hz] = 11.26126126[HHz] = 9.00909091[HHz] = 9.00909091[HHz] = 2.00909091[HHz] = 2.00909091[HHz] = 2.0001723046[MHz] = 51ppm] = 51us] = 51us] = 8	= 12.4[us] = 2.9097984[s] = 45[deg] = 3(dB] = 6.2[us] = 6.2[us] = 0ff = 1[s] = 1[s] = 1[s] = 3097994[s] = 3.2.2[dC]	
rilename Author Author Experiment Sample_Id Solvent Creation_Time Current_Time Comment Comment Dim_Size Dim_Units Dim_Units Site Site Site	Field_Strength X_Domain X_Domain X_Dreq X_Domain X_Offset X_Offset X_Prescons X_Sweep X_Sweep_Clipped Irr_Domain Trr_Offset Trr_Offset Trr_Offset Trr_Omain Trr_Offset Clipped Mod_Return Probe_Recovery Scans	X_90_Width X_acg_rime X_angle X_atn X_pulse Irr_Mode Irr_Mode Dante_Presat Triial_Wi Recvr_dain Repetition_Delay Repetition_Time Temp_Get	
	. =	<u> </u>	0 €1∠0.0 9801.0 75∠2.0 9609'0
	<u>97.4</u>	5°34 3'00 3'50	0.9349 1.1227 1.7886 1.79866 1.79866 1.7986 1.79866 1.7986 1.7986 1.79866 1.7986 1.7986 1.798
	85.4		2.0543 2.0543 2.0543 2.0543
	t <u>5.</u> 12. 4.23	<u>10.1</u>	
		66.0 40.1	4.3230 4.3385 4.3285 4.3285 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92
Me DIBS		00°.1	2.6412 5.6412 5.6412 6.1130 6.1130 6.1130 6.1130 6.1130 6.1120 6.1120 6.1120 6.1120 6.1120 6.1120 6.1120 6.1120 6.1220 7.22200 7.22200 7.22200 7.22200 7.22200 7.22200 7.22200 7.22200 7.22200 7.2000 7.200
	· · · · · · · · · · · · · · · · · · ·		-
			n : Proton : part
			9.0 8.0 7.0 7.0114
			k k

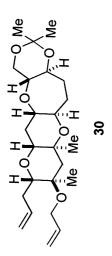
			Filename	<pre>= C:\Users\delta\Documents\J</pre>	2
1 Н H	Me		Autnor Experiment Sample Id		
Current. File Current. File Curren		_	Solvent Solvent Creation_Time Revision Time		
H H H M 25 M H H M 26 M H H H H M 26 M H H H H H H H H H H H H H H H H H H			Current_Time		
28 In Original In Original In Original In Original 21 In Original In Original In Original In Original 22 In Original In Original In Original In Original 23 In Original In Original In Original In Original 24 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original In Original In Original 25 In Original In Original <	H H Me		Comment Data_Format Dim_Size Dim_Title		t t
112.95800 112.9580 112.9580 12.000 112.95800 112.9580 12.000 12.000 112.95800 112.9580 12.000 12.000 112.95800 112.9580 12.000 12.000 112.95800 112.9580 12.000 12.000 112.95800 112.9580 12.000 12.000 112.95800 112.9580 12.000 12.000 112.95800 112.9580 12.000 10.000 112.95800 112.9580 12.000 10.000 112.95800 10.000 10.000 10.000 10.000 112.9580 112.9580 12.000 10.000 10.000 112.9580 112.9580 10.000 10.000 10.000 10.000 112.9580 112.9580 10.000 10.000 10.000 10.000 10.000 112.9580 112.9580 12.000 10.000 10.000 10.000 10.000 112.9580 112.9580 10.000 10.000 10.000 10.000 10.000 112.9580 11.000 10.000<	ľ		Dim_Units Dimensions Site Spectrometer		
X. Million 200000 1000 </td <td></td> <td></td> <td>Field_Strength X_Acc_Duration X_Freq X_Freq X_Offset X_Prescans X_Sweep_clipped X_Sweep_clipped Trr_Omain Irr_Offset Clipped Mod_Return Probe_Recovery</td> <td></td> <td></td>			Field_Strength X_Acc_Duration X_Freq X_Freq X_Offset X_Prescans X_Sweep_clipped X_Sweep_clipped Trr_Omain Irr_Offset Clipped Mod_Return Probe_Recovery		
112.9580 0.0			x_90_Width X_90_Width X_Angle X_Angle X_Pulse X_Pulse Irr_Atn_Dec		
133.100 100.0 00.0 100.0 00.0 100.0 <td< td=""><td></td><td></td><td>Irr_Ath_Noe Irr_Noise Irr_Pwidth Decoupling Initial_Wait Noe</td><td></td><td></td></td<>			Irr_Ath_Noe Irr_Noise Irr_Pwidth Decoupling Initial_Wait Noe		
-1.8147 0.0100.0 12.6879 13.000 12.0387 12.1387 12.1377 12.1387 12.1397 12.1377 12.1377 12.1377 12.1377 12.1377 12.1377 12.1377 12.1377 12.1377 12.1377 12.1377 12.13777 12.13777 12.13777 12.13777 12.137777 12.1377777 12.1377777 12.1377777777777777777777777777777777777			Noe_rime Recvr_Gain Relaxation_Dela Repetition_rime Temp_Get		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		develops and the same is a specific set of the set of the left of the set of			
1.28.0 1.28.0 1.28.0 1.2.0 1.2.0 1.2.0 1.2.0 1.2.0 2.21 2.25 2	130.0 120.0 110.0 90.0 80.0 197 197 197 197 197 197 197 197	60.0 50.0 40.0 30.0 20.0 10.0 0 849 504 731 731 879 735 735 542 731 731 879 735 735 542 731 731 731 731 731 731 731 731 731 731	070		
	7.97 7.21 7.22 7.22 7.23 7.23 7.24 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	5.92 2.92 2.81 2.81 2.81 2.82 2.92 2.92 2.92 2.92 2.92 2.92 2.92	1.2-		

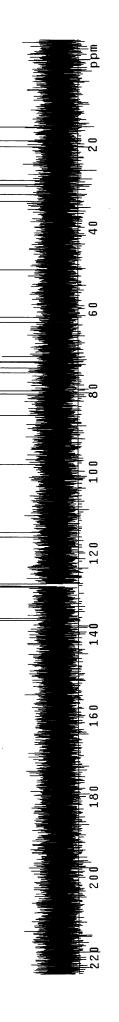

,

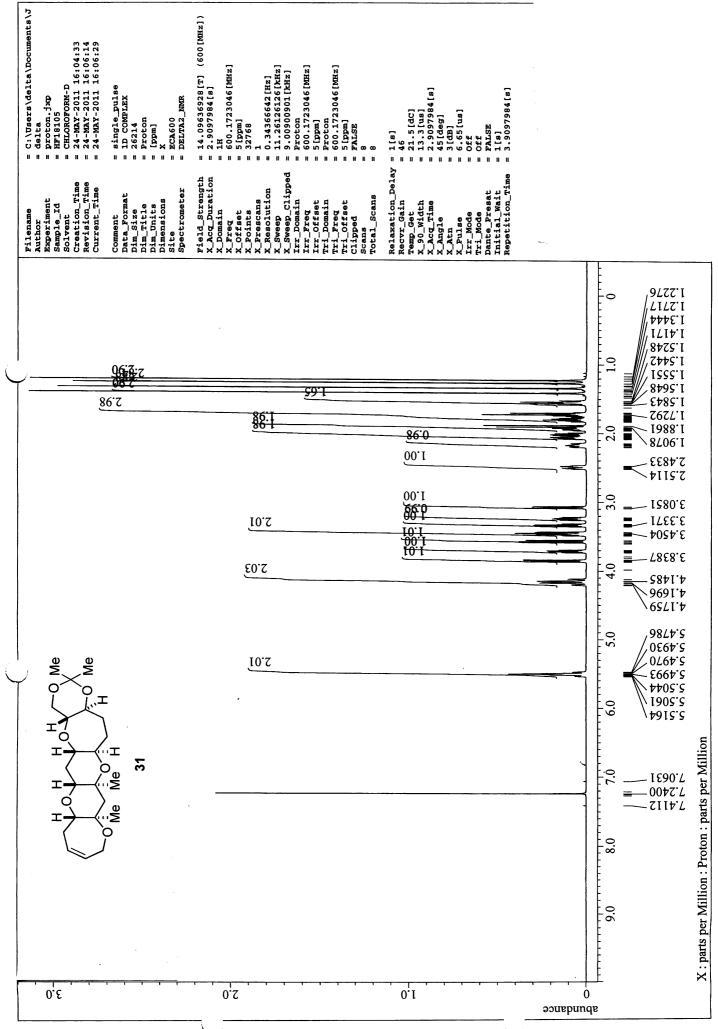

		Td. Td. Td.
		<pre>solvent = BENZENF -06 Creation_Time = 21-SEP-2010 20:21:33 Revision_Time = 21-SEP-2010 20:27:31 Revision_Time = 21-SEP-2010 20:28:49 Current_Time = 21-SEP-2010 20:28:49</pre>
	H H	LL LL
	26 H Sr OH	Dimensions = X Site = ECA600 Spectrometer = DELTA2_NMR
	Me	<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 13C X_Freq = 150.91343039[MHz] X_freq = 150.91343039[MHz] X_fred = 100[Dpm]</pre>
		ns - tion = Clipped =
		III S S
		X_90_Width = 8.4 [us] X_Acc_Time = 0.69206016[s] X_Angle = 30[deg] X_Atn = 6.4 [dB] X_Atn = 2.8 [us]
		Dec Noe dth ing
נולות לא אלוויות אלוויות אלוויות אלוויות אלוויות אלווית אלווית אלווית אלווית אלווית אלווית אלווית אלווית אלווי אלווים אלווים אלווים אלווים אלווים		Repetition_Time = 2.69206016[s] Temp_Get = 23.1[dC]
$\mathcal{N}_{\mathcal{N}} = \frac{1}{2}$		
0000'87 2551'87 1997'15 9280'65	12.63% 15.63% 15.63% 15.63% 15.63% 12.63% 12.63% 12.53% 12.23%	
X : parts per Million : Carbon13 : parts per Million	I	

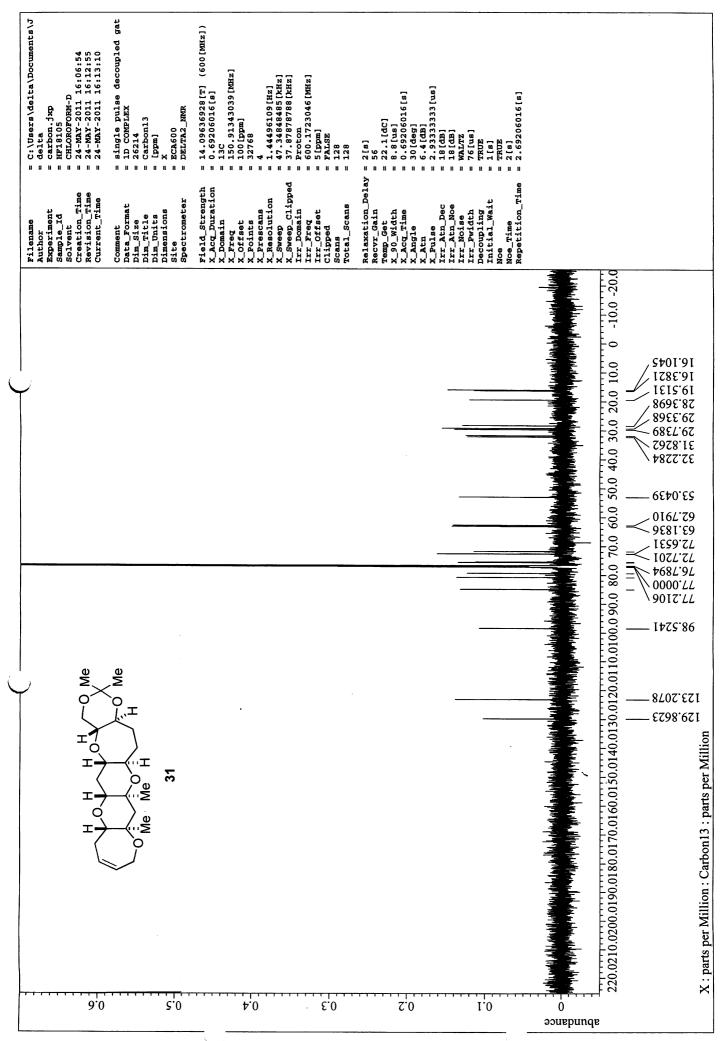


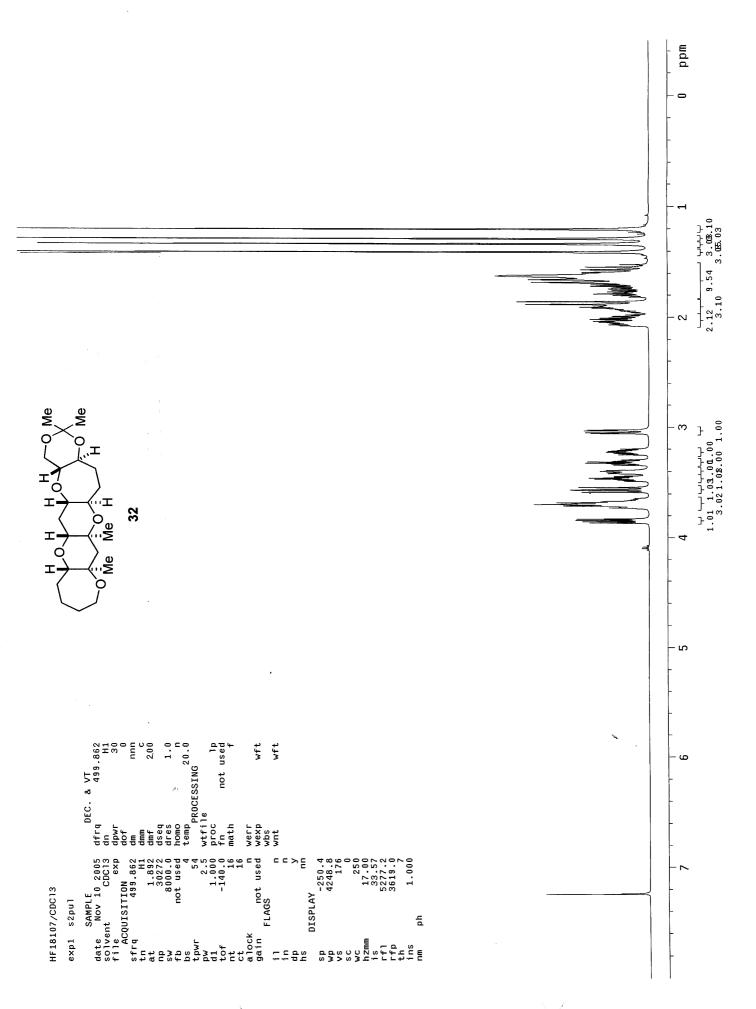
	Filename Author Experiment Sxperiment Sample_Id Solvent Creation_Time Revision_Time Current_Time Comment Date_Format Dim_Size Dim_Title Dim_Title Dim_Title Dim_Title Dim_Title Dim_Title Dim_Site Spectrometer	<pre>= C:\Users\delta\Desktop\dat = delta = carbon.jxp = rsrbon.jxp = rsrbon.jxp = rsrb-101 = 27-FEB-2011 17:11:18 = 6-JAN-2012 02:44:54 = 7-JAN-2012 02:45 = 7-JAN-2012 02:45 = 7-JAN-2012 02:45 = 7-JAN-2012 02:45 = 7-JAN-2012 02:45 = 7-JAN-2012 02:45 = 7-JAN-2012</pre>
	Field_Strength X_Acq_Duration X_Domain X_Domain X_Domain X_Defiset X_Dfiset X_Pescans X_Resolution X_Sweep_Clipped Irr_Freq Irr_Pred Irr_Fred Irr_Offset Clipped Scans Total_Scans	<pre>= 14.09636928[T] (600[MHz]) = 0.69206016[s] = 150.9133039[MHz] = 150.9133039[MHz] = 100[ppm] = 32768 = 4 4 4 = 1.4496109[Hz] = 4 7.3484685[KHz] = 1.4496109[Hz] = 1.733046[MHz] = 5700m] = 5700m] = 5700m] = 5100m] = 5100m] = 5100m] = 1889 = 1889</pre>
	Relaxation_Delay Recvr_Gain Temp_Get X_Budth X_Acq_Time X_Atgle X_Atgle X_Ath_Dec Irr_Ath_Noe Irr_Noise Irr_Noise Irr_Noise Irr_Pwidth Decoupling Decoupling Noe_Time Repetition_Time	ay = 2[s] = 50 = 517 [dC] = 8.8[us] = 8.8[us] = 0.69206016[s] = 0.69206016[s] = 0.64691 = 0.64691 = 0.69206016[s] = 1181 = 1181 = 1181 = 1181 = 1181 = 1181 = 2.69206016[s]
X. parts per Million : Carbon13 : parts per Million : Carbon14 : parts per Million : Carbon15 : parts per Million : Carbon15 : parts per Million : Carbon14		

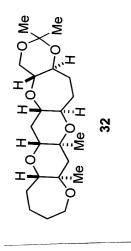


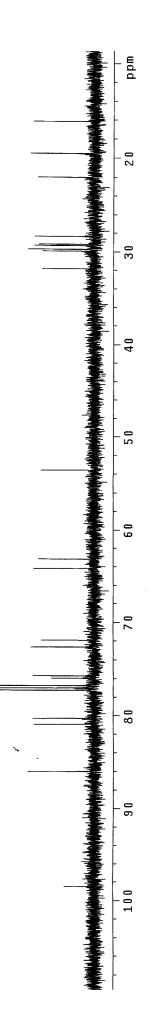


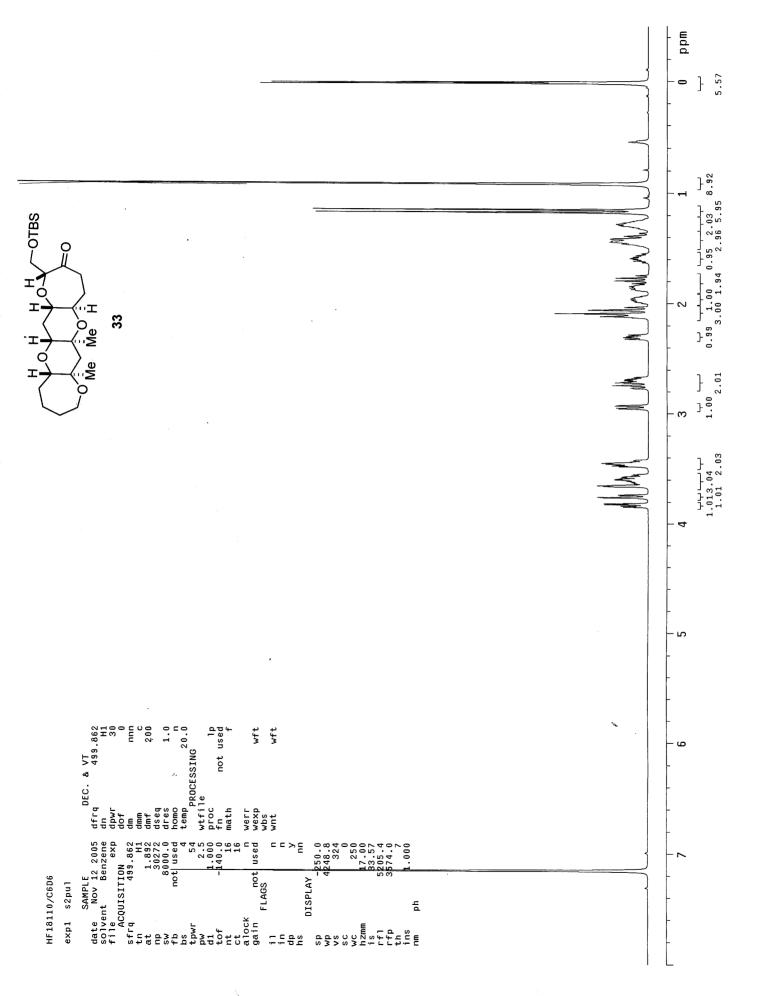


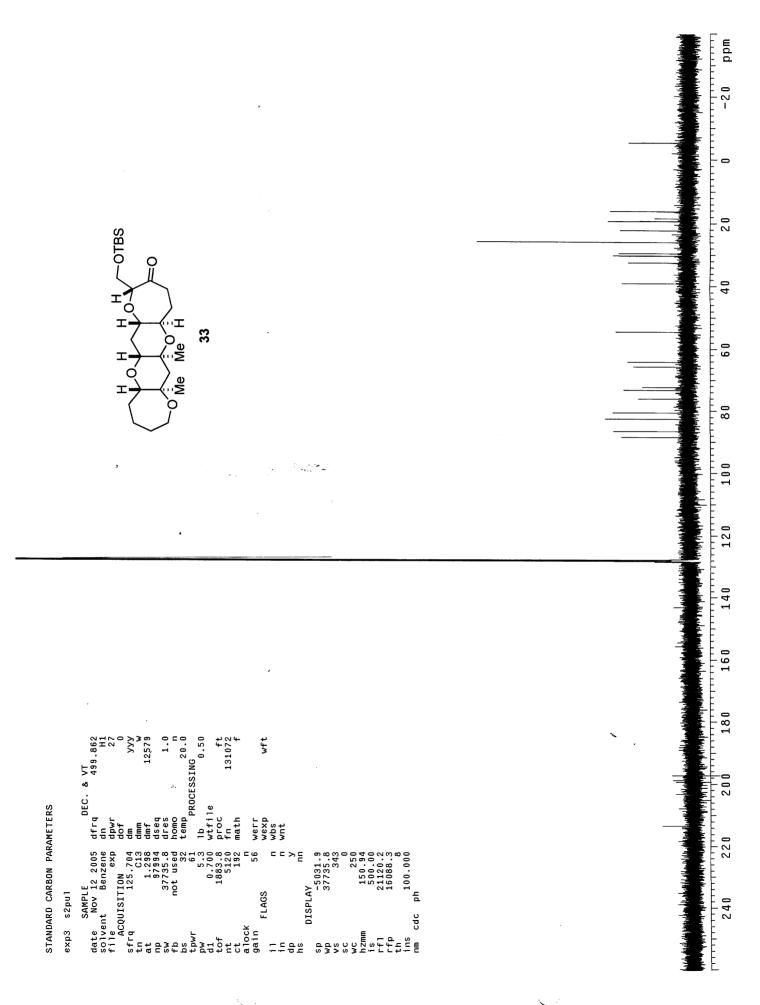

	& VT 599.915 11 38 -1000.0 28 29 29 13163	1.0 DEC2 20.0 1 1 10000	12 1.0 13 13 13 14 15 15 15 15 15 15 10 10 10 10 10 10 10 10 10 10	wft
	DEC dfrq dpwr dpwr dof dm dm daf dseq	~ ~ ~ ~	drseq2 drseq2 homo2 dfrq3 dpwr3 dpwr3 dpwr3 dpwr3 drseg3 drseg3 drseg3 drseg3 drseg1 profile profile math	werr wexp wnt
exp3 s2pu]	SAMPLE SAMPLE adate Nov 7 2005 solvent Benzene file ACQUISITION sfrq 150.865 th 0.867 mb 60032	a4632. wr 34632. wr 55 5 6 6 6 6 1 2 1 2 0 0 6 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 5 1 2 5 1 2 5 1 2 5 5 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5	FLAGS I in n in n dp n sp DISPLAY sp DISPLAY sp 0158LAY sp 34632.0 vp 34632.0 vs 3466.0 rfp 316.6 rfp 100.000 rfn cdc rm cdc	

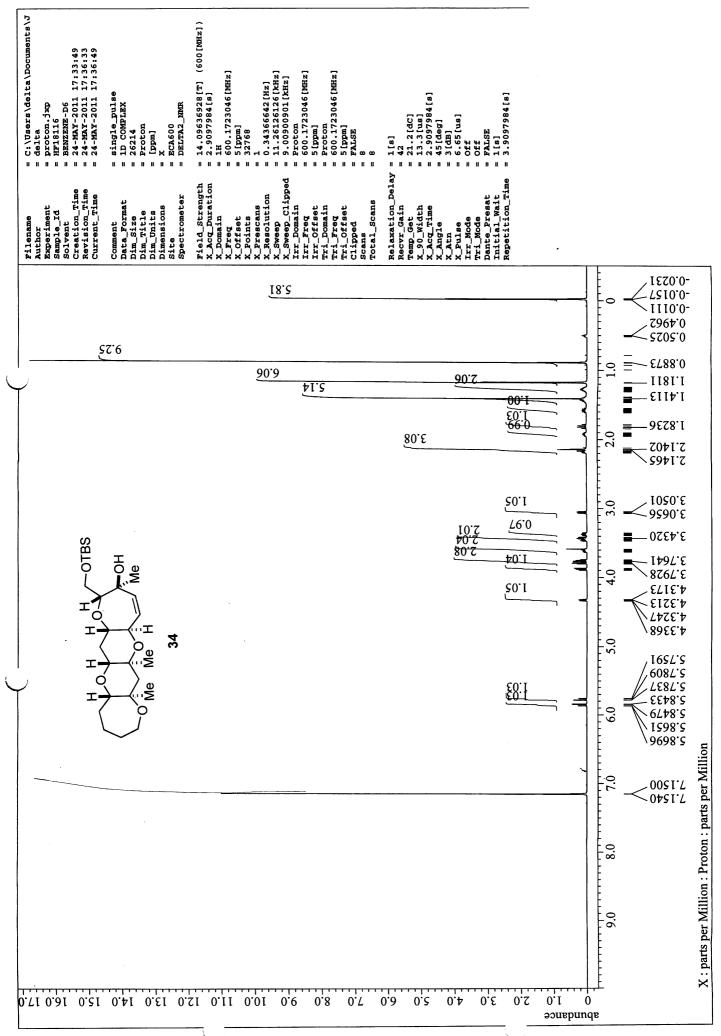


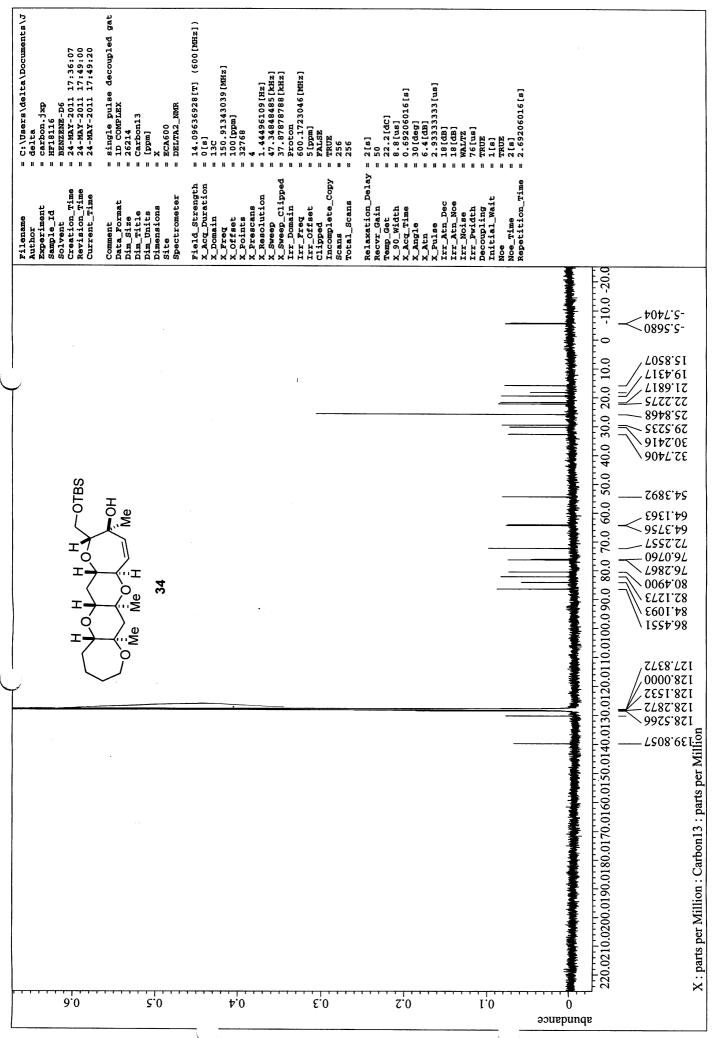


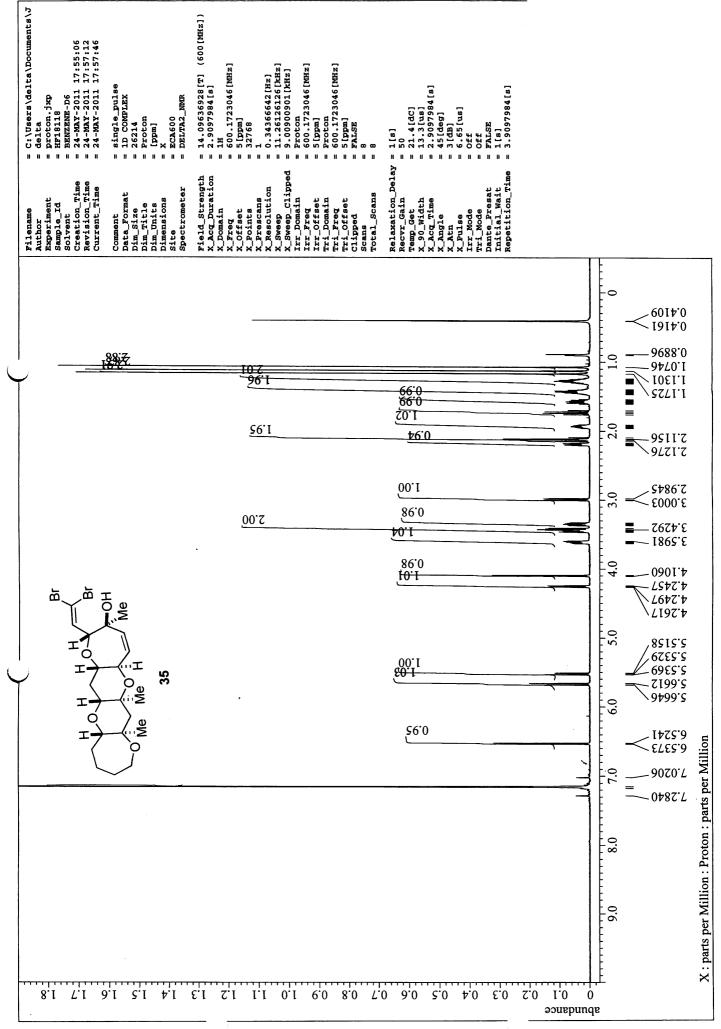


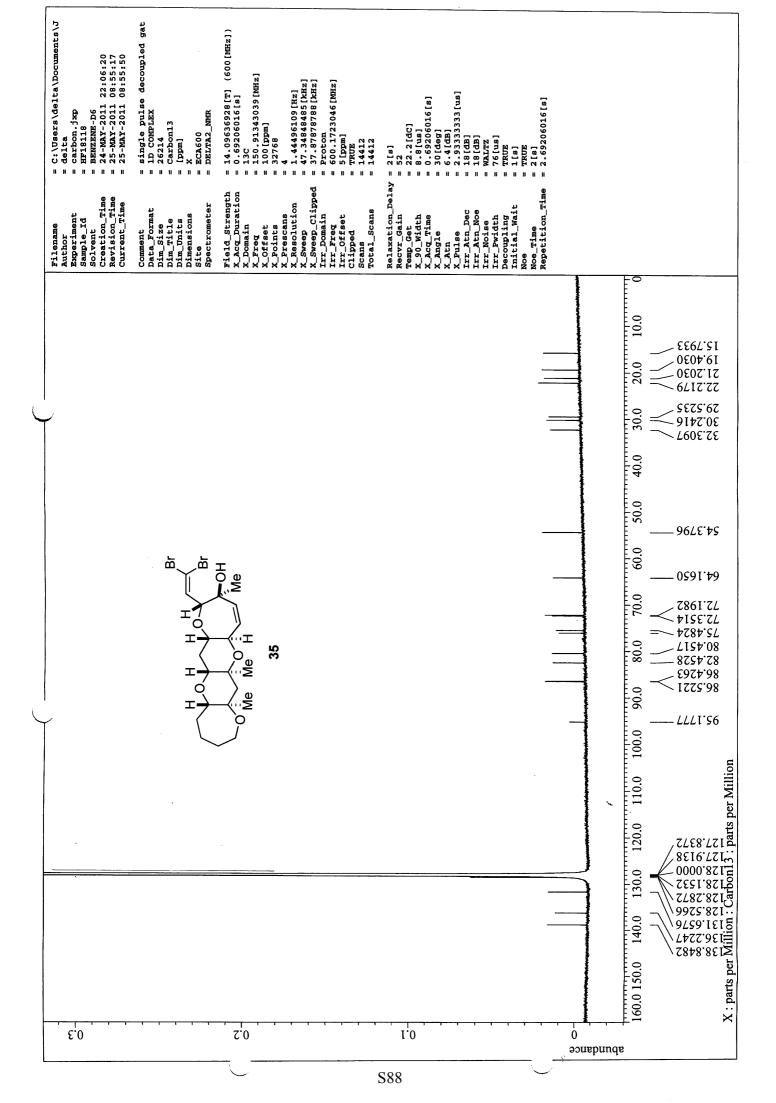


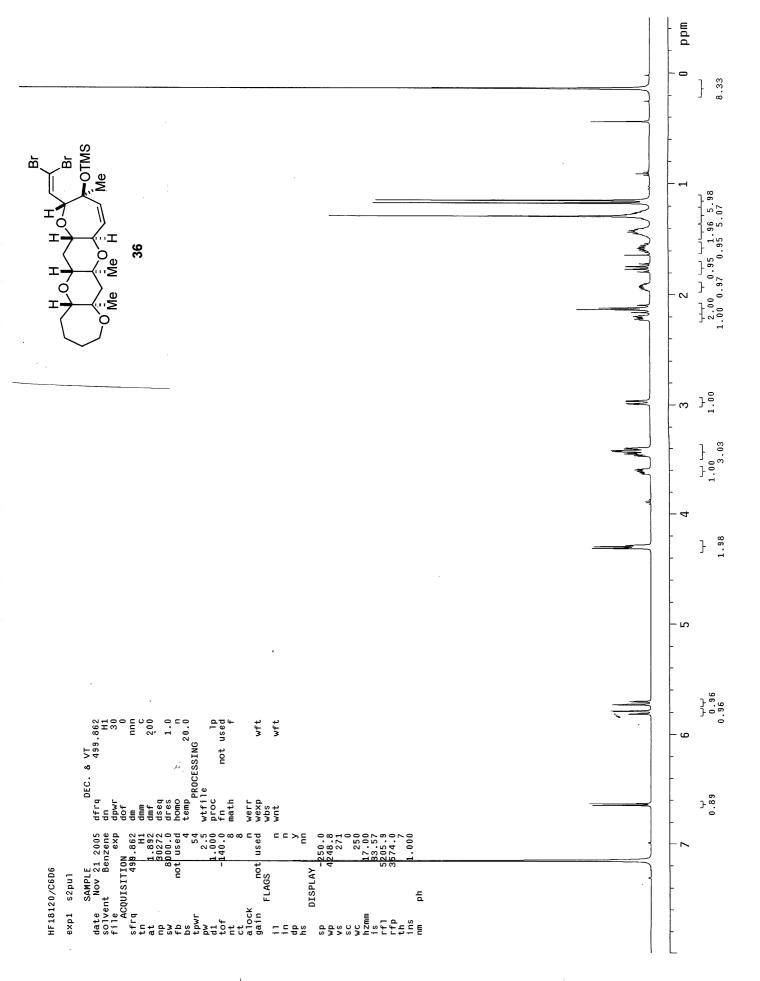

STANDARD CARBON PARAMETERS

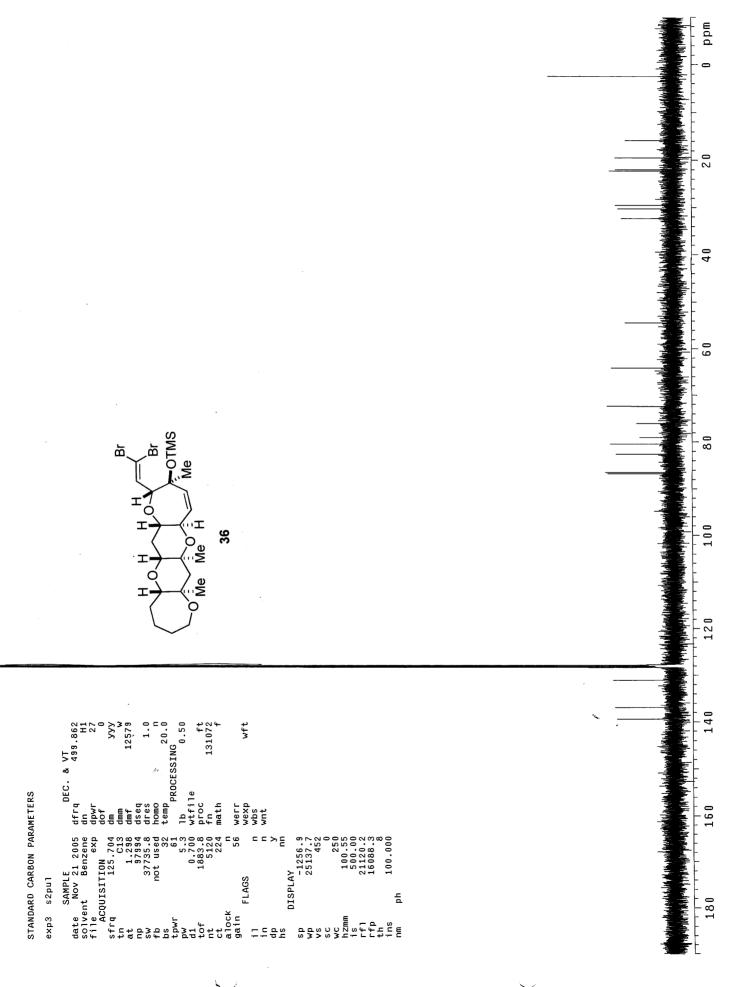

	& VT 499.86 H 2 2 2 XV	12579 1.0 120.0 PROCESSING 0.50 16 131072 f 131072 f	
		dmf dres dres dres temp froc tfi froc tfi froc	
s2pu]	AMPLE Nov 10 20 CDC ISITION 125.7	1.298 97946 97994 37736 61 61 61 61 550 188.700 5128 5120 5120 5120 5120 5120 5120 5120 5120	DISPLAV 01 1089.3 12680.5 12680.5 12680.5 12680.3 12680.3 12680.3 12680.3 12680.3 100.000
exp3 s	te lven le ACQ		phone

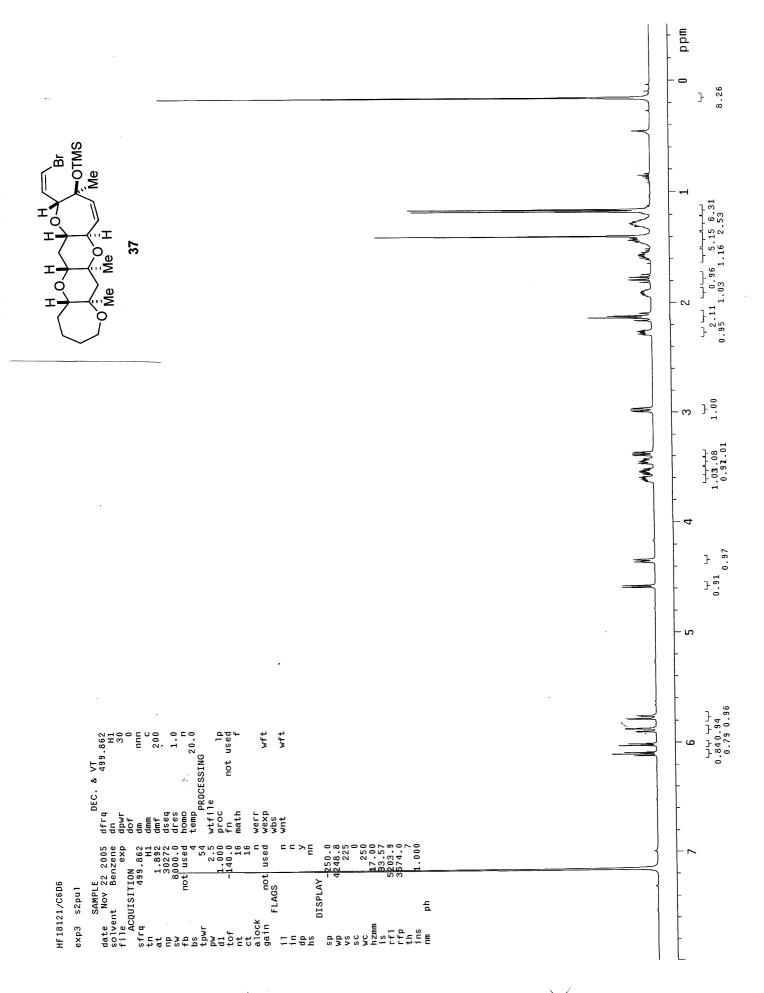


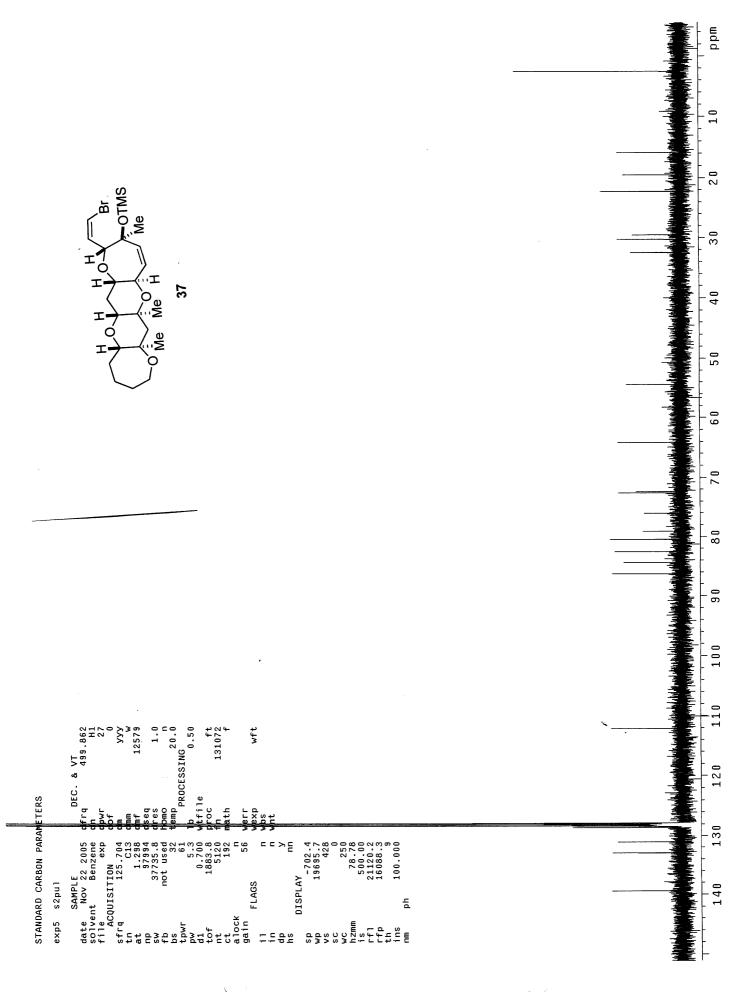


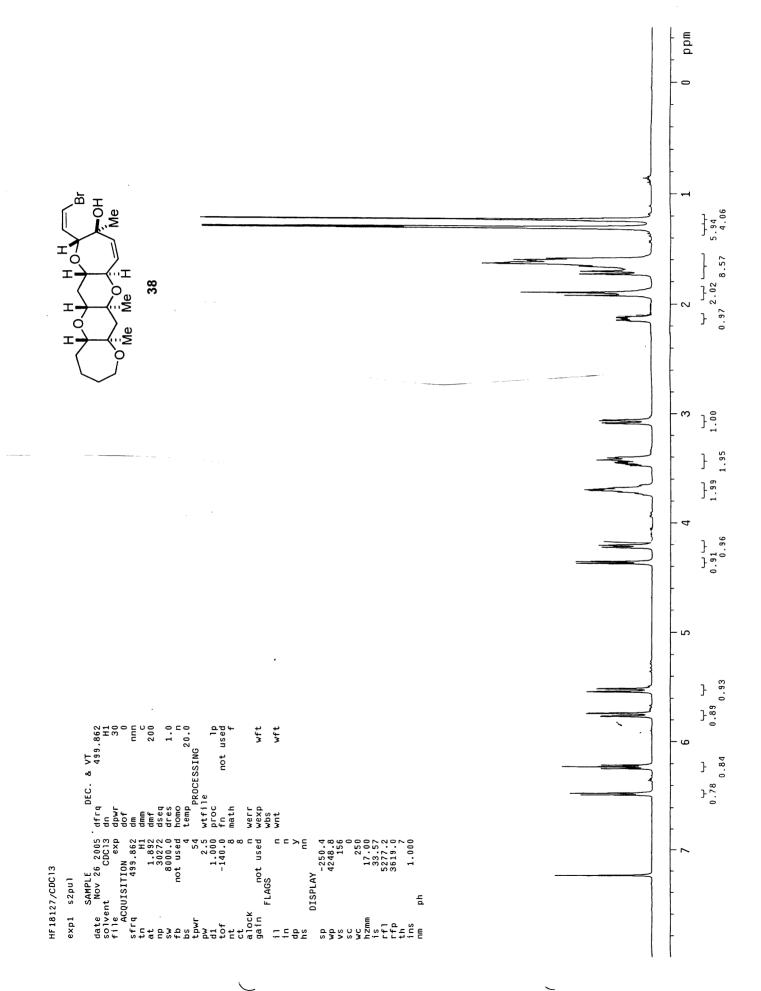






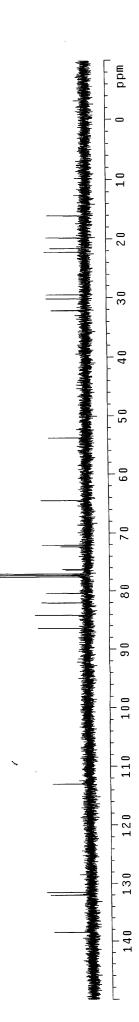


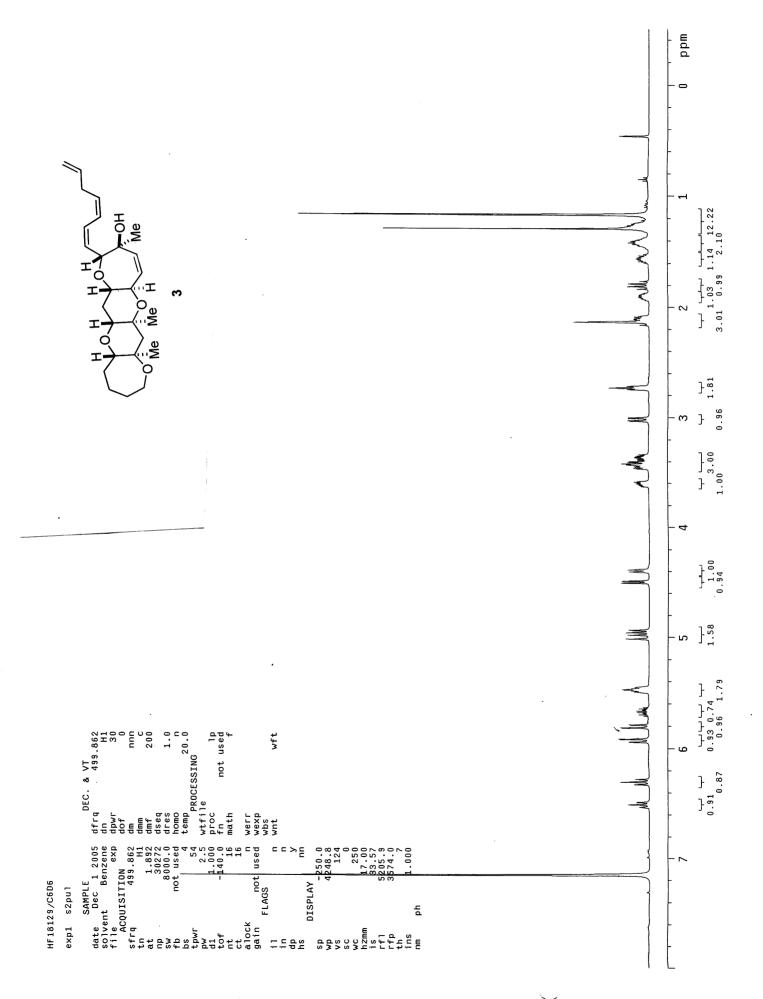


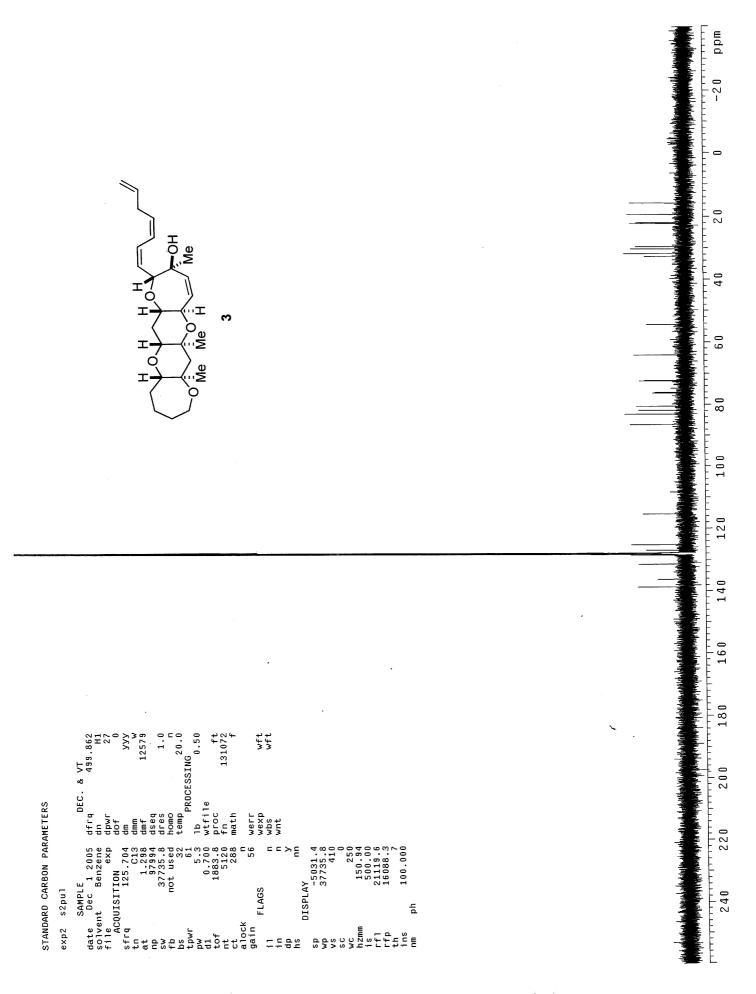


д,

HO, H


Me Me


Me Me H


ò

38

		.862	H1	27	0	ууу	3	12579		1.0		20.0		0.50		4-	-	۴			wft															
	∞ŏ							1			, AS		PROCESSING				13																			
	DEC.	.dfrq	цр	dpwr	dof	щр	dmm	dmf	dseq	dres	homo	temp	PRC	qL	wtfile	proc	fn	math		Werr	wexp	vbs	wnt													
_	L.	26 2005	CDC13	ex	ION	25.70	-	.29	979	35.	use		ø	•	0.700	•	\sim	5		56	~	5	5	У	5	1	٠	61	0	L C	22		2		7 7 000 001	
s2pu]	SAMPL	Nov	int		ACQUISIT						÷										FLAGS					UISFL										hq
exp3		date		Ξ	AC	sfrq	c	at	du	sw	fb	bs	tpwr	Ň	d1	tof	nt	ct	alock	gain	,	Ē	'n	dp	hs		sp	٩v	S	5		11 Z III		r f p	th inc	

