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It is known [1] that for the evaluation of Eq. (5) of the paper it is essential to work in the representation of
the eigenstates of the Hamiltonian Ĥwire + Ĥleads that de�nes the zeroth-order time evolution. The use of other
representations bears the danger of generating artifacts, which, for instance, may lead to a violation of fundamental
equilibrium properties [2]. We thus face the problem of diagonalizing a matrix of order 256. This procedure may be
facilitated by using the pseudospin description based on the symmetry properties of Lie group SU(2) associated with
the two state problem (1f; 2f); f = e; g. Such a �donor acceptor�system may be described by the �charge transfer�
operators b+f = ĉ

+
2f ĉ1f and bf = ĉ

+
1f ĉ2f that describe intersite charge transfer 1! 2 and 2! 1, respectively, in upper

and lower states of the molecular dimer. The non-diagonal part of Ĥwire, Eq.(3) of the paper, can then be written in
terms of operators bf only
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De�ne also the pseudospin (Bloch) vector in the second quantization picture
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Its components have the following properties: (a) They satisfy the same commutation rules as Pauli matrices �̂1;2;3
[3�5]; (b) the operators �f = n̂2f + n̂1f =

P
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mf ĉmf , f = e; g and rfi commute: [r

f
i ; �f ] = 0 (i = 1; 2; 3); (c)

any linear operator of the "donor acceptor" system can be written as linear superposition of the operators {rfi } and
�f . In particular, the wire Hamiltonian can be written as
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In Eq.(3) we have put, without loss of generality, ("1g + "2g)=2 = 0. Because the operators �f and r
f
i commute, the

total molecular populations described by operators �f are conserved under unitary transformations related to the
diagonalization of Ĥwire. Therefore, a total 24 � 24 space can be partitioned into nine smaller subspaces, i.e. the
Liouvillian matrix in the required basis is block diagonal with blocks, according to the values of [�f ] = 0; 1; 2 (see
Fig.1): four one-dimensional subspaces for [�f ] = 0; 2 for either f = e; g (type I); four two-dimensional subspaces for
[�f ] = 1 and [�f 0 ] = 0,2 where f 6= f 0 (type II); and one four-dimensional subspace for [�e] = [�g] = 1 (type III).
Here we use [�f ] to denote the eigenvalues of matrix operator �f . The type I submatrix is diagonal, while four state
pairs with each pair coupled by the charge transfer interaction are associated with the four 2 � 2 blocks of the type
II subspace. The remaining four states are coupled by both the charge transfer and exciton transfer interaction and
constitute the 4� 4 block of subspace III. Each of these subspaces is characterized by assigning the values ([�e]; [�g])
of total populations in the ground and excited states of the two bridge sites.
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FIG. 1: A schematic display of the block structure of the wire Hamiltonian.

Using the identity
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the wire Hamiltonian (3) can be written in the form
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This prediagonalization provides an important simpli�cation of our problem. Speci�cally, considering for brevity a
homodimer bridge with "ng = 0, "ne = "e, the current is given by Eq.(23) of Ref.[6]
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e
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for �g = 0. Obviously [�e] = 1 in Eq.(6) is another way of saying that the current in channel e exists only for the
case of one of states feg is occupied and another one of feg is unoccupied. The expectation value of the current is
given by hIi = Tr(Î�SS) where �SS is the steady state solution of Eq.(5) of the paper for the reduced density matrix
of the molecular bridge.
The diagonalization procedure yields the transformation between the eigenstates of the wire Hamiltonian and the

states of the non-interaction molecular wire, jn1g; n2g; n1e; n2ei displayed in Fig.1. Denoting the column vectors of
these states by f�g and f�g, respectively, and the transformation between them by Ŷ , i.e. f�g = Ŷ f�g, we can
characterize each eigenstate � by the corresponding subspace ([�e]; [�g]).
In subspaces I the unitary transformation Ŷ (I) is obviously the unity matrix. The diagonalization of the block

matrices in subspaces II is similar to that carried out in Appendix A of Ref.[6]. Then using Eq.(A6) of Ref.[6], the
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expectation value of the current, Eq.(6), can be written as
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where ~� denotes the transpose matrix �̂; and indices "+" and "�" in Eq.(7) label the eigenstates of the wire Hamil-
tonian in subspaces II. The diagonalization of the block matrices in subspaces III is carried out by extending the
procedure described in Appendix A of Ref.[6] for U = 0, to the case U 6= 0. Doing so, one can reduce Eq.(7) to Eq.(8)
of the paper.
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