-Supporting Information for-

A minimal fluorous tagging strategy enables the synthesis of the complete stereoisomer library of Sch725674 macrolactones

Jared D. Moretti, Xiao Wang, and Dennis P. Curran*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
curran@pitt.edu

Table of Contents

General 3
Scheme S1. Synthesis of alcohols 3 4
Scheme S2. Synthesis of diene $\mathbf{8}$ 7
Synthesis of trans-series quasiisomers 13a-d, Scheme 1 in paper 9
Scheme S3. Mosher ester analysis of diol (S, S)-9 9
Synthesis of cis-series quasiisomers 13e-h, Scheme 2 of paper. 20
Scheme S4. Synthesis of (S, R) - and (R, S) - $\mathbf{1 1}$ 20
Fluorous mixture synthesis, Scheme 3 of paper 31
Figure S1. Chromatogram of preparative HPLC demixing of M-(R)-14a-d 40
Figure S2. Chromatogram of preparative HPLC demixing of M-(S)-14a-d 44
Figure S3. Chromatogram of preparative HPLC demixing of M-(R)-15a-d 47
Figure S4. Chromatogram of preparative HPLC demixing of M-(S)-15a-d 50
Figure S5. Chromatogram of preparative HPLC demixing of M-(R)-15e-h 53
Figure S6. Chromatogram of preparative HPLC demixing of M-(S)-15e-h 56
Detaggings 59
Figure S7. Structures of Sch 725674 library members, 1 72
Figure S8. Structures of ring-open ester library members, 16 73
Table S1. ${ }^{1} \mathrm{H}$ NMR data of 4,5-trans-($13 R$)-1 library members 74
Table S2. ${ }^{1} \mathrm{H}$ NMR data of 4,5-cis-(13R)-1 library members 75
Table S3. ${ }^{13} \mathrm{C}$ NMR data of 4,5-(13R)-1 library members 76
Table S4. Optical rotation measurements of Sch library members 77
Table S5. ${ }^{1} \mathrm{H}$ NMR data of 4,5-trans-(13S)-16 library members 78
Table S6. ${ }^{13} \mathrm{C}$ NMR data of 4,5-trans-(13S)-16 library members. 79
Table S7. Optical rotation measurements of ring-open ester library members, $\mathbf{1 6}$ 80
References 81
Copies of NMR spectra 82

General: Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were recorded on a Bruker WH-300 MHz, IBM AF-300, Bruker Avance ${ }^{\text {TM }} 500$ NMR, Bruker Avance ${ }^{\mathrm{TM}} 600$ NMR, Bruker Avance ${ }^{\mathrm{TM}} 700$ NMR spectrometer using deuterated chloroform as solvent, unless otherwise indicated. Signal positions are given as part per million (δ) and were determined relative to the residual proton resonance of $\mathrm{CDCl}_{3}(7.27$ ppm) or central CDCl_{3} carbon peak carbon peak (77.03 ppm) as the internal standards. Coupling constants (J values) are in Hz. Spectral content is listed in the following order: chemical shift (δ), multiplicity, coupling constants (Hz), number of nuclei. All spectra were acquired at room temperature. In the case of ${ }^{19} \mathrm{~F}$ NMR spectral data, an internal standard (α, α, α-trifluorotoluene) was used only for Mosher ester analyses.

Infrared (IR) spectra were recorded on a Mattson Genesis series FTIR spectrometer as thin films on NaCl plates and peaks are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at a Na D-line $(\lambda=589 \mathrm{~nm})$ using a 1 dm cell. Low-resolution mass spectra were obtained on a V/G 70/70 double focusing machine and were reported in units of m / z. HPLC analyses and separations were performed on a Waters 600E system with a Waters 2487 dual λ absorption detector. Compound names were obtained from ChemDraw Ultra 12.0 (Cambridge Soft Corp.).

All reactions were monitored by either thin layer chromatography or ${ }^{1} \mathrm{H}$ NMR spectroscopy. Visualization of the thin layer chromatography plates was achieved with ultraviolet light (254 nm), followed by development in a staining solution of anisaldehyde in ethanol, or 5\% aqueous potassium permanganate. Conventional flash chromatography was performed with 230-400 mesh silica gel (E. Merck, Silica gel 60). All dry solvents were obtained by passing over activated alumina. Unless water was a cosolvent or reagent, all
reactions were carried out under inert an atmosphere of dry argon. Deionized water was used for all workup operations. Standard syringe/septa techniques were employed throughout all reactions.

Scheme S1: Synthesis of alcohols 3

($\boldsymbol{R})$-2-(But-3-enyl)oxirane (($\boldsymbol{R})$-S1). ${ }^{\mathbf{1}}$ CAS registry number: [137688-20-1]. A $100-\mathrm{mL}$ round bottom flask was charged with $(R, R)-(-)-N, N^{\prime}$-bis(3,5-di-tert-butylsalicylidene)-1,2cyclohexanediaminocobalt(II) catalyst ($289 \mathrm{mg}, 0.479 \mathrm{mmol}$), followed by racemic 1,2-epoxy-5hexene $(10.8 \mathrm{~mL}, 95.73 \mathrm{mmol})$ and acetic acid $(110 \mu \mathrm{~L})$. The resultant red suspension was then cooled to $0{ }^{\circ} \mathrm{C}$ and deionized water $(0.95 \mathrm{~mL})$ was slowly added over 5 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , then at room temperature for 20 h . The mixture was concentrated by rotary evaporation and the crude product was purified by Kügelrohr distillation ($60{ }^{\circ} \mathrm{C}, 40$ torr) to afford the title compound as a colorless liquid ($4.68 \mathrm{~g}, 49 \%$): ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05\left(\mathrm{ddd}, J_{1}=17.1 \mathrm{~Hz}\right.$, $\left.J_{2}=10.2 \mathrm{~Hz}, J_{3}=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.77\left(\mathrm{dd}, J_{1}=4.9 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.50\left(\mathrm{dd}, J_{1}\right.$ $\left.=5.0 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.24(\mathrm{~m}, 2 \mathrm{H})$.

(S)-2-(But-3-enyl)oxirane ((S)-S1). ${ }^{1}$ CAS registry number: [137688-21-2]. The literature procedure for (R)-S1 was followed using 1,2-epoxy-5-hexene ($11.00 \mathrm{~mL}, 97.50 \mathrm{mmol}$), acetic
acid ($120 \mu \mathrm{~L}, 2.10 \mathrm{mmol}$), THF (1.00 mL), and (S, S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) ($319 \mathrm{mg}, 0.528 \mathrm{mmol}$). Kügelrohr distillation of the crude product $\left(60{ }^{\circ} \mathrm{C}, 25\right.$ torr $)$ gave the title compound as a colorless liquid ($2.01 \mathrm{~g}, 21 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of (R)-S1.

(5S)-Dec-1-en-5-ol ((S)-3). ${ }^{2}$ A solution of butyllithium (1.6 M in hexanes, $34.2 \mathrm{~mL}, 54.7 \mathrm{mmol}$) was added dropwise to a stirred suspension of $\mathrm{CuCN}(269 \mathrm{~g}, 30.0 \mathrm{mmol})$ in THF (80 mL) at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and the epoxide (R)-S1 $(3.57 \mathrm{~g}, 36.4 \mathrm{mmol})$ in THF (35 mL) was slowly added by cannula. The original flask containing the epoxide was then washed with THF (10 mL) and the rinse was also added to the reaction mixture by cannula at $20^{\circ} \mathrm{C}$. The resultant yellow suspension was stirred for 3 h at room temperature. The reaction was quenched by addition of $90: 10$ saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at room temperature. The quenched mixture was then filtered through a Büchner funnel and the filtrate was transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with water (75 mL) and brine (75 mL), dried with MgSO_{4}, filtered, and concentrated by rotary evaporation. Flash chromatography of the crude product (1:1 pentanes/ $\mathrm{Et}_{2} \mathrm{O}$) gave the title compound as a colorless liquid ($5.12 \mathrm{~g}, 90 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.85\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.02\left(\mathrm{dd}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 4 \mathrm{H}), 1.32($ broad s, 4H), $0.90(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7,114.7,71.6,37.5,36.5,31.9,30.1,25.3,22.7$, 14.1; FTIR (thin film) $v_{\max } 3350,2929,2858 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}$: 156.1514, found 156.1510; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-16.0, \mathrm{c}=1.01, \mathrm{CHCl}_{3}$.

(5R)-Dec-1-en-5-ol ((R)-3). The literature precedent ${ }^{2}$ for (S)-3 (above) was followed using the epoxide (S)-S1 $(1.73 \mathrm{~g}, 17.63 \mathrm{mmol}), \mathbf{C u C N}(2.32 \mathrm{~g}, 25.92 \mathrm{mmol})$, and a solution of butyllithium (1.6 M in pentane, 29.42 mL , 47.07 mmol) in THF (75 mL). Flash chromatography ($1: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$) of the crude product gave the title compound as a colorless liquid ($1.76 \mathrm{~g}, 64 \%$).

The 1D ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR match those of (S)-3; HRMS calcd (EI) for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}: 156.1514$, found 156.1512; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+17.6, \mathrm{c}=1.17, \mathrm{CHCl}_{3}$.

(S,R)-S2. Commercially available (S)-MTPA-Cl ($29 \mu \mathrm{l}, 0.155 \mathrm{mmol}$) was added dropwise to a solution of the alcohol $(S)-\mathbf{3}(12.8 \mathrm{mg}, 0.078 \mathrm{mmol})$ in pyridine $(3.00 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 15 min , then at room temperature for 3 h . The reaction was quenched by addition of water (3 mL) and transferred to a separatory funnel by pipet. The contents were then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$. The combined organic extracts were washed with 20% aqueous $\mathrm{CuSO}_{4}(3 \times 5 \mathrm{~mL})$, water (5 mL), and brine (5 mL). The organic solution was dried over MgSO_{4}, filtered and concentrated by rotary evaporation. The crude product was analyzed without purification: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~m}, 2 \mathrm{H}), 7.41$ $(\mathrm{m}, 3 \mathrm{H}), 5.74\left(\mathrm{ddt}, J_{1}=16.4 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, J_{3}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 2 \mathrm{H}), 3.57$ $(\mathrm{s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (282 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-71.8(\mathrm{~s}, 3 \mathrm{~F})$. The minor peaks in the ${ }^{19} \mathrm{~F}$ NMR spectrum of (S, R)-S2 match the major peaks in the spectrum of (R, R) - $\mathbf{S 2}$ (below).

$(\boldsymbol{R}, \boldsymbol{R})$-S2. The general procedure for Mosher ester derivatization ${ }^{3}$ was followed using the alcohol (R) - $\mathbf{3}(11.6 \mathrm{mg}, 0.074 \mathrm{mmol})$ and (S)-MTPA ($28 \mu \mathrm{l}, 0.149 \mathrm{mmol}$) in pyridine (2 mL). The crude product was then analyzed without purification: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57$ $(\mathrm{m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 5.81\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12(\mathrm{~m}, 1 \mathrm{H}), 5.02$ $(\mathrm{m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.6(\mathrm{~s}, 3 \mathrm{~F})$. The minor peaks in the ${ }^{19} \mathrm{~F}$ NMR spectrum of (R, R)-S2 match the major peaks in the spectrum of (S, R) - $\mathbf{S 2}$ (above).

Scheme S2: Synthesis of diene 8

1-((But-3-enyloxy)methyl)-4-methoxybenzene (S3). ${ }^{4}$ CAS registry number: [142860-83-1].
The literature procedure for 4-methoxy-benzyl protection was followed using buten-1-ol (5.00 $\mathrm{mL}, 58.45 \mathrm{mmol}), \mathrm{NaH}(95 \%, 1.92 \mathrm{~g}, 75.99 \mathrm{mmol})$, and 4-methoxybenzyl chloride $(9.52 \mathrm{~mL}$, 70.14 mmol) in dimethylformamide (200 mL). Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a yellow oil (9.52 g, 85\%): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.84\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}\right.$, $\left.J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.10\left(\mathrm{ddd}, J_{1}=17.5 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38\left(\mathrm{ddd}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,135.5,130.5,129.1,115.7,113.2,72.4,69.2,55.1,34.2$.

(E)-5-(4-Methoxybenzyloxy)pent-2-enal (S4). ${ }^{5}$ CAS registry number: [671232-57-8]. Alkene $\mathbf{S 3}(10.25 \mathrm{~g}, 53.1 \mathrm{mmol})$ was dissolved in anhydrous, degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and crotonaldehyde ($22.0 \mathrm{~mL}, 266 \mathrm{mmol}$) was added by syringe at room temperature. The GrubbsHoveyda $2^{\text {nd }}$ generation catalyst ($333 \mathrm{mg}, 0.53 \mathrm{mmol}$) was then added at room temperature in one portion. The flask was fitted with a reflux condenser and the reaction mixture was stirred at reflux for $16 \mathrm{~h}\left(\sim 50{ }^{\circ} \mathrm{C}\right.$, bath temperature). The reaction mixture was then cooled to room temperature and concentrated by rotary evaporation. Flash chromatography of the crude product (3:1 hexanes/EtOAc) gave the title compound as a pale brown oil ($11.21 \mathrm{~g}, 95 \%, E / Z>20: 1$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88\left(\mathrm{dt}, J_{1}=15.7\right.$
$\left.\mathrm{Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.18\left(\mathrm{ddt}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, J_{3}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, 3 H), $3.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63\left(\mathrm{qd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.7,159.2,133.9,129.8,129.1,113.7,72.6,67.4,55.1,32.9$.

(2E,4E)-Methyl-7-(4-methoxybenzyloxy)hepta-2,4-dienoate (8). According to a modified procedure for the Horner-Wadsworth-Emmons olefination, ${ }^{6}$ trimethylphosphonoacetate (8.79 $\mathrm{mL}, 60.79 \mathrm{mmol})$ was added dropwise by syringe to a suspension of $\mathrm{LiCl}(2.58 \mathrm{~g}, 60.79)$ in anhydrous $\mathrm{MeCN}(610 \mathrm{~mL})$. 1,8-Diazabicyclo-[5.4.0]-undec-7-ene ($8.33 \mathrm{~mL}, 55.73 \mathrm{mmol}$) was added dropwise by syringe at room temperature. The resultant suspension was cooled to $0{ }^{\circ} \mathrm{C}$, and a solution of the aldehyde $\mathbf{S} 4(11.21 \mathrm{~g}, 50.66 \mathrm{mmol})$ in acetonitrile $(125 \mathrm{~mL})$ was added dropwise by cannula transfer. The flask containing the aldehyde was rinsed with acetonitrile (25 mL) and the rinse was transferred to the reaction mixture by cannula. The resultant suspension was stirred at $0^{\circ} \mathrm{C}$ for 5 min , then at room temperature for 45 min . Deionized water (300 mL) was then added to the suspension to dissolve the phosphonic acid byproduct, and the mixture was transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 500 \mathrm{~mL})$. The combined organic extracts were washed with brine (200 mL), dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. Filtration of the crude product over a silica plug afforded the title compound as a pale yellow oil (12.49 g, 89\%, $E / Z>20: 1):{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27\left(\mathrm{dd}, J_{1}=15.4 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~m}, 2 \mathrm{H}), 8.81(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,159.3,150.0,140.7,129.9,129.3,119.4,113.8,72.7,67.8,55.3,51.5,33.4$.

Synthesis of trans-series quasiisomers 13a-d, Scheme 1 in paper

Scheme S3: Mosher ester analysis of diol (S,S)-9

(4S,5S,2E)-Methyl-4,5-dihydroxy-7-(4-methoxybenzyloxy)hept-2-enoate
($(S, S)-9)$: $\mathrm{K}_{2} \mathrm{Os}(\mathrm{OH})_{2}(84.5 \mathrm{mg}, 0.230 \mathrm{mmol}),(\mathrm{DHQ})_{2} \mathrm{PHAL}(376 \mathrm{mg}, 0.459 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(22.7 \mathrm{~g}$, $68.82 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(9.51 \mathrm{~g}, 68.82 \mathrm{mmol})$, and methanesulfonamide ($4.36 \mathrm{~g}, 45.88 \mathrm{mmol}$) were added to $1: 1 t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(145 \mathrm{~mL})$ at room temperature. The orange suspension was stirred at room temperature for 30 min , then cooled to $0^{\circ} \mathrm{C}$ by Cryocooler. A solution of the diene $\mathbf{8}$ (6.34 $\mathrm{g}, 22.94 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added to the cooled suspension dropwise by syringe, the syringe was subsequently rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the rinse was transferred to the reaction flask. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h . The reaction was quenched by addition of saturated aqueous sodium thiosulfate $(75 \mathrm{~mL})$ and the mixture was stirred for 1 h at room temperature. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 150 mL). The combined organic extracts were washed with brine (80 mL), dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. Flash chromatography of the crude product (1:2 hexanes/EtOAc) afforded the title compound as a highly viscous, pale yellow syrup (4.89 g , $67 \%, 92 \% e e):{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96\left(\mathrm{dd}, J_{1}=15.3 \mathrm{~Hz}\right.$, $\left.J_{2}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.15\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.46(\mathrm{~s}, 2 \mathrm{H})$, $4.17\left(\mathrm{qd}, J_{1}=4.9 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,159.1$, $147.4,129.6,129.2,121.4,113.7,73.6,72.7,72.5,67.4,55.0,51.5,32.5$; FTIR (thin film) $v_{\max }$

3455, 2915, 1723, 1586, $1249 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 333.1314$, found 333.1287; $[\alpha]_{D}^{75^{\circ} \mathrm{C}}=-4.2, \mathrm{c}=1.08, \mathrm{CHCl}_{3}$.

($\mathbf{S}, \boldsymbol{S}, \boldsymbol{S}, \boldsymbol{S}$)-S5. The procedure for Mosher ester derivatization ${ }^{3}$ used above in preparation of (S, R) $\mathbf{S} \mathbf{2}$ was followed using the diol $(S, S)-9(12.8 \mathrm{mg}, 0.040 \mathrm{mmol})$ and (R)-MTPA ($31 \mu \mathrm{l}, 0.162$ $\mathrm{mmol})$ in pyridine (1 mL). The crude product was then analyzed without purification: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~m}, 10 \mathrm{H}), 7.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89\left(\mathrm{~d}, J_{1}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.74(\mathrm{dd}$, $\left.J_{2}=15.8 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.81\left(\mathrm{ddd}, J_{1}=4.8 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, J_{3}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77\left(\mathrm{dd}, J_{1}\right.$ $\left.=15.9 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.55\left(\mathrm{ddd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, J_{3}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.34(\mathrm{~d}, J=$ $3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H})$, $1.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.7(\mathrm{~s}, 3 \mathrm{~F}),-71.9(\mathrm{~s}, 3 \mathrm{~F})$. The minor peaks in the ${ }^{19} \mathrm{~F}$ NMR spectrum of (S, S, S, S)-S5 matched the major peaks of (S, S, R, R)-S5 (below).

($\mathbf{S}, \mathbf{S}, \boldsymbol{R}, \boldsymbol{R}$)-S5. The same procedure ${ }^{3}$ used above in preparation of (S, R)-S2 was followed using the diol $(S, S)-9(21.6 \mathrm{mg}, 0.068 \mathrm{mmol})$ and (S)-MTPA ($51 \mu \mathrm{l}, 0.273 \mathrm{mmol}$) in pyridine (2 mL). The crude product was then analyzed without purification: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39$ $(\mathrm{m}, 10 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.67\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.80$ (dd, $\left.J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.74\left(\mathrm{ddd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}, J_{3}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.49\left(\mathrm{td}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s} 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.8(\mathrm{~s}, 3 \mathrm{~F}),-72.0(\mathrm{~s}$, 3F). The minor peaks in the ${ }^{19} \mathrm{~F}$ NMR spectrum of (S, S, R, R)-S5 matched the major peaks of (S,S,S,S)-S5 (above).

(4R,5R,2E)-Methyl-4,5-dihydroxy-7-(4-methoxybenzyloxy)heptenoate ($(\boldsymbol{R}, \boldsymbol{R})-9)$. The same procedure used for the preparation of $(S, S)-9$ above was followed with commercially available AD-mix $\beta(93.0 \mathrm{~g})$, (DHQD$)_{2} \mathrm{PHAL}(55 \mathrm{mg}, 0.67 \mathrm{mmol})$, methanesulfonamide ($4.23 \mathrm{~g}, 44.5$ $\mathrm{mmol})$, and diene $8(6.15 \mathrm{~g}, 22.26 \mathrm{mmol})$ in $1: 1 \mathrm{tBuOH} / \mathrm{H}_{2} \mathrm{O}(225 \mathrm{~mL})$. Flash chromatography of the crude product ($1: 2$ hexanes/EtOAc) afforded the title compound as a highly viscous, pale yellow syrup ($4.33 \mathrm{~g}, 61 \%$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched those of $(S, S)-9$ (above); HRMS calcd (EI) for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 310.1416$, found 310.1421; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+5.50, \mathrm{c}=1.01$, CHCl_{3}.

(4S,5S,E)-Methyl-7-(4-methoxy-benzyloxy)-4,5-bis(triisopropyl-silyloxy)hept-2-enoate
($(\boldsymbol{S}, \boldsymbol{S}) \mathbf{- 1 1})$. Triisopropyl trifluoromethanesulfonate $(10.2 \mathrm{~mL}, 37.71 \mathrm{mmol})$ was added dropwise to a solution of the diol $(S, S)-9(4.77 \mathrm{~g}, 15.08 \mathrm{mmol})$ and 2,6 -lutidine $(5.25 \mathrm{~mL}, 45.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , then at room temperature for 4 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60$ mL). The layers were separated and the aqueous layer was extracted with ether ($3 \times 175 \mathrm{~mL}$). The combined organic extracts were washed with water (50 mL) and brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. Flash chromatography of the crude product ($10: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($9.68 \mathrm{~g}, 100 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$), $7.19\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.14\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.59\left(\mathrm{ddd}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=3.4\right.$ $\left.\mathrm{Hz}, J_{3}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.391(\mathrm{~s}, 2 \mathrm{H}), 4.12\left(\mathrm{dt}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H}), 2.00\left(\mathrm{tdd}, J_{1}=11.8 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, J_{3}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.06$ (broad s, 42 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,159.0,148.2,130.7,129.0,121.1,113.5$, $74.7,72.3,66.6,55.1,51.3,32.4,18.1,18.0,12.6,12.3$; FTIR (thin film) $v_{\max } 3398,2944,2867$,

1464, $1110 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 645.3983, found 645.4012; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-37.1, \mathrm{c}=0.98, \mathrm{CHCl}_{3}$.

(4R,5R,2E)-Methyl-4,5-bis(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-7-(4-
methoxybenzyloxy)-hept-2-enoate $((\boldsymbol{R}, \boldsymbol{R})-\mathbf{1 0})$. Freshly distilled trifluoromethanesulfonic acid $(2.34 \mathrm{~mL}, 26.36 \mathrm{mmol})$ was added dropwise by syringe to neat, stirring $3,3,4,4,4-$ pentafluorobutyl)diisopropylsilane $(7.41 \mathrm{~g}, 28.24 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The turbid, orange reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 15 min , and then at room temperature for 45 min . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the resultant solution was transferred by cannula into a separate flask (cooled to $0{ }^{\circ} \mathrm{C}$) containing a solution of the $(R, R)-9(3.97 \mathrm{~g}$, $12.55 \mathrm{mmol})$ and 2,6 -lutidine ($4.37 \mathrm{~mL}, 37.65 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 15 min , then warmed to room temperature. After 1 h , the reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , after which the contents of the flask were transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with diethyl ether ($3 \times 75 \mathrm{~mL}$). The combined organic layers were washed with water (50 mL) and brine (50 mL), dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. Flash chromatography of the crude product ($10: 1$ hexanes/EtOAc) afforded the title compound as a pale yellow oil ($8.37 \mathrm{~g}, 86 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.07\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.86(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.05\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.03 (quintet, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{~m}$, $1 \mathrm{H}), 1.03(\operatorname{broad~s}, 28 \mathrm{H}), 0.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,159.2,146.8$, $130.5,129.2,121.9,113.7,74.7,72.6,72.5,65.9,55.1,51.5,32.3,27.6,25.3,17.5,17.4,17.4$, $18.5,17.1,12.9,12.8,12.7,12.6,1.1,0.8$; FTIR (thin film) $v_{\max } 3389,2949,1729,1199 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{6} \mathrm{~F}_{10} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 853.3353$, found 853.3400; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+27.1$, $\mathrm{c}=1.08, \mathrm{CHCl}_{3}$.

(4S,5S,2E)-Methyl-7-oxo-4,5-bis(triisopropylsilyloxy)hept-2-enoate ((S,S)-11). The ester $(S, S)-10(5.83 \mathrm{~g}, 9.35 \mathrm{mmol})$ was dissolved in $19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{DDQ}(2.76 \mathrm{~g}, 12.16 \mathrm{mmol})$ was added in one portion. The green suspension was stirred at $0^{\circ} \mathrm{C}$ for 5 min , then at room temperature for 2 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The emulsion was broken in the separatory funnel by addition of chloroform (50 mL). The layers were then separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic extracts were washed with brine (60 mL), dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. The crude product was taken to the next step as a mixture of the free alcohol and anisaldehyde.

According to a literature procedure for Swern oxidations, ${ }^{7}$ a solution of DMSO $(2.00 \mathrm{~mL}$, $28.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was slowly added by syringe to a solution of oxalyl chloride ($1.61 \mathrm{~mL}, 18.71 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(190 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 15 min , the crude alcohol from above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise by cannula transfer. The flask containing the alcohol was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the rinse was also transferred by cannula. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , then $\mathrm{Et}_{3} \mathrm{~N}(6.52 \mathrm{~mL}, 46.77 \mathrm{mmol})$ was added slowly dropwise by syringe. The reaction mixture was maintained at $-78{ }^{\circ} \mathrm{C}$ for 15 min then warmed to $0^{\circ} \mathrm{C}$, and the stirring continued for 30 min . Water (30 mL) was then added and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was separated and washed with brine $(30 \mathrm{~mL})$. The combined aqueous layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4}, filtered, and then concentrated by rotary evaporation. Flash chromatography of the crude product gave the title compound as a pale yellow oil (3.67 g , 78% over two steps): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J_{1}=15.8$ $\left.\mathrm{Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.16\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.67(\mathrm{~m}, 1 \mathrm{H}), 6.90\left(\mathrm{dd}, J_{1}=11.4\right.$ $\left.\mathrm{Hz}, J_{2}=5.5 \mathrm{~Hz}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.68\left(\mathrm{ddd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=5.6 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.45(\mathrm{ddd}$, $\left.J_{1}=16.1 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.07($ broad s, 42 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $200.2,166.6,147.1,122.2,74.1,70.8,51.6,46.7,18.0,12.3$; FTIR (thin film) $v_{\max } 3889,2946$,

2866, 1730, 1464, $1113 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 523.3251$, found 523.3234; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-56.9, \mathrm{c}=1.01, \mathrm{CHCl}_{3}$.

(4R,5R,2E)-Methyl-4,5-bis(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-7-oxohept-2-
enoate $((\boldsymbol{R}, \boldsymbol{R})-\mathbf{1 1})$). The same deprotection conditions used above in the preparation of aldehyde (S, S) - $\mathbf{1 1}$ were used with $(R, R)-10(7.43 \mathrm{~g}, 9.59 \mathrm{mmol})$ and DDQ $(2.83 \mathrm{~g}, 12.5 \mathrm{mmol})$, and $18: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 100 \mathrm{~mL}$). The crude product was taken to the next step without further purification as a mixture of the free alcohol and anisaldehyde byproduct.

The crude alcohol was subjected to the above procedure for Swern oxidation used in the preparation of $(S, S) \mathbf{- 1 1}$ was followed with DMSO $(2.04 \mathrm{~mL}, 28.77 \mathrm{mmol})$, oxalyl chloride (1.65 $\mathrm{mL}, 19.18 \mathrm{mmol}), \mathrm{NEt}_{3}(6.68 \mathrm{~mL}, 47.95 \mathrm{mmol})$. Flash chromatography of the crude product gave the title compound as a pale yellow oil $(5.56 \mathrm{~g}, 82 \%$ over two steps $):{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.06\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.09(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.72\left(\mathrm{dd}, J_{1}=16.8 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.45\left(\mathrm{dd}, J_{1}=17.1 \mathrm{~Hz}, J_{2}=6.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.02(\mathrm{~m}, 4 \mathrm{H}), 1.04$ (broad s, 28H), $0.86(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.3, $166.1,145.6,122.8,74.0,70.3,51.5,46.4$; FTIR (thin film) $v_{\max } 3376,2359,2339,1728,1199$ cm^{-1}; HRMS calcd (ESI) for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{~F}_{10} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 731.2622, found 731.2675; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+47.5, \mathrm{c}=1.16, \mathrm{CHCl}_{3}$.

(4S,5S,7R,2E)-Methyl-7-hydroxy-4,5-bis(triisopropylsilyloxy)deca-2,9-dienoate ((S, S, R)-12). A commercially available solution of $(+)-\mathrm{Ipc}_{2} \mathrm{~B}$ (allyl) $(5.00 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0 \mathrm{M}$ in pentane) was added to a solution of aldehyde $(S, S)-11(2.26 \mathrm{~g}, 4.51 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 3 h , and then warmed to room temperature. The reaction was quenched by the addition of 1:2:1 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{MeOH} / \mathrm{pH} 7$ buffer (60 mL), and the resultant suspension was stirred for 16 h . The layers were separated and
the aqueous layer extracted with ether $(3 \times 80 \mathrm{~mL})$. The combined organic extracts were washed with water $(50 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, more water $(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, then dried over $\mathrm{MgSO}_{4} .{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated an approximately $4: 1$ mixture of diastereomers. Flash chromatography of the crude product (10:1 hexanes/EtOAc) afforded the title compound as a single diastereomer (colorless oil) with minor impurities ($1.45 \mathrm{~g}, 59 \%$). The compound was taken to the next step for fuller characterization. Selected ${ }^{1} H$ NMR data (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.11\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.64(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H})$.

(4S,5S,7S,2E)-Methyl-7-hydroxy-4,5-bis(triisopropylsilyloxy)deca-2,9-dienoate ((S,S,S)-12).
The same procedure employed above in the preparation of $(S, S, R) \mathbf{- 1 2}$ was followed using commercially available (-)- $\mathrm{Ipc}_{2} \mathrm{~B}$ (allyl) ($4.72 \mathrm{~mL}, 4.72 \mathrm{mmol}, 1.0 \mathrm{M}$ in pentane) and aldehyde $(S, S)-11(2.15 \mathrm{~g}, 4.29 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL}) .{ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated an approximately $4: 1$ mixture of diastereomers. Flash chromatography of the crude product (10:1 hexanes/EtOAc) afforded the title compound as a single diastereomer (colorless oil), with minor impurities ($1.51 \mathrm{~g}, 67 \%$). The compound was taken to the next step for fuller characterization. Selected ${ }^{1} \mathrm{H}$ NMR data $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18\left(\mathrm{dd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=3.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.14\left(\mathrm{dd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80\left(\mathrm{ddt}, J_{1}=17.4 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, J_{3}=6.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10\left(\mathrm{dd}, J_{1}=16.8 \mathrm{~Hz}, J_{2}=10.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.63\left(\mathrm{td}, J_{1}=4.8 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.25$ $(\mathrm{m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$.

(4R,5R,7R,2E)-Methyl-4,5-bis(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-7-
hydroxydeca-2,9-dienoate $((\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R}) \mathbf{- 1 2})$. The same procedure employed in the preparation of $(S, S, R) \mathbf{- 1 2}$ was followed using commercially available (+)- $\mathrm{Ipc}_{2} \mathrm{~B}($ allyl $)(4.35 \mathrm{~mL}, 4.35 \mathrm{mmol}, 1.0$ M in pentane) and aldehyde $(R, R)-\mathbf{1 1}(2.57 \mathrm{~g}, 3.63 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL}) .{ }^{1} \mathrm{H}$ NMR analysis of
the crude product indicated an approximately $4: 1$ mixture of diastereomers. Flash chromatography of the crude product (10:1 hexanes/EtOAc) afforded the title compound as a single diastereomer (colorless oil), with minor impurities ($1.91 \mathrm{~g}, 73 \%$). The compound was taken to the next step for fuller characterization. Selected ${ }^{1} \mathrm{H}$ NMR data ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.08\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.07\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.76(\mathrm{~m}, 1 \mathrm{H})$, $5.12\left(\mathrm{dd}, J_{1}=18.3 \mathrm{~Hz}, J_{2}=10.7 \mathrm{~Hz}, 4.50\left(\mathrm{td}, J_{1}=4.4 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.77\right.$ ($\mathrm{s}, 3 \mathrm{H}$).

(4R,5R,7S,2E)-Methyl-4,5-bis(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-7-hydroxy-
deca-2,9-dienoate ($(\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{S})-12)$. A solution of commercially available allyl magnesium bromide $\left(5.50 \mathrm{~mL}, 5.50 \mathrm{mmol}, 1.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added dropwise to a solution of (-)-DIP-Cl (2.15 g , $6.71 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at this temperature for 1 h , and the stirring was turned off to allow the magnesium mixed halide salt to settle to the bottom of the flask. The supernatant fluid was then added dropwise by cannula to a solution of the aldehyde $(R, R)-11(2.93 \mathrm{~g}, 4.14 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred at this temperature for 3 h and was quenched by addition of 1:2:1 pH 7 buffer/methanol/30\% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ $(160 \mathrm{~mL})$. The mixture was stirred for 20 h at room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and was then transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 125 \mathrm{~mL})$. The combined organic extracts were washed with water (75 mL), saturated aqueous $\mathrm{NaHCO}_{3}(75 \mathrm{~mL}$), then again with water (75 mL), and brine (75 mL). The organic solution was then dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. ${ }^{1} \mathrm{H}$ NMR analysis of the crude product indicated an approximately $4: 1$ mixture of diastereomers. Flash chromatography of the crude product (10:1 hexanes/EtOAc) afforded the title compound as a single diastereomer (colorless oil), with minor impurities ($2.23 \mathrm{~g}, 77 \%$). The compound was taken to the next step for fuller characterization. Selected ${ }^{1} \mathrm{H}$ NMR data (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.09\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.77(\mathrm{~m}, 1 \mathrm{H}), 5.14\left(\mathrm{dd}, J_{1}=18.4 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~m}, 1 \mathrm{H}), 1.07$ (broad s, 28H).

(4S,5S,7R,2E)-Methyl-4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate ($(S, S, R)-13 a)$: The same silylation procedure used in the preparation of (S, S) - $\mathbf{1 0}$ was followed using the homoallylic alcohol $(S, S, R)-12(1.22 \mathrm{~g}, 2.250 \mathrm{mmol})$, TIPSOTf ($64 \mu \mathrm{~L}, 0.235 \mathrm{mmol}$), and 2,6-lutidine (0.55 $\mathrm{mL}, 0.282 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) afforded the title compound as a colorless oil ($1.56 \mathrm{~g}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.15\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 1.082$ (broad s, 42H), $1.05\left(\operatorname{broad~s,21H);~}{ }^{13} \mathrm{C}\right.$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,148.5,135.0,121.4$, $116.9,72.6,67.8,51.5,42.0,40.9,18.3,18.2,18.1,12.7,12.6,12.4$; FTIR (thin film) $v_{\max } 2945$, 2893, 2867, 1731, 1463, 1267, 1109, 1062, $883 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{38} \mathrm{H}_{78} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 721.5055$, found 721.5074; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-26.8, \mathrm{c}=1.26, \mathrm{CHCl}_{3}$.

(4S,5S,7S,)-Methyl-7-(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-4,5-bis(triisopropyl-silyloxy)deca-2,9-dienoate ($(\boldsymbol{S}, \boldsymbol{S}, \boldsymbol{S}) \mathbf{- 1 3 b})$. The same fluorous tagging procedure used in preparation of (R, R) - $\mathbf{1 0}$ was employed using the alcohol $(S, S, S)-\mathbf{1 2}(1.40 \mathrm{~g}, 2.580 \mathrm{mmol})$, 3,3,4,4,4-pentafluorobutyl)diisopropylsilane ($1.49 \mathrm{~g}, 5.680 \mathrm{mmol}$), trifluoromethanesulfonic acid ($0.46 \mathrm{~mL}, 5.160 \mathrm{mmol}$), 2,6-lutidine ($0.90 \mathrm{~mL}, 7.740 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.0 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) afforded the title compound as a colorless oil ($1.38 \mathrm{~g}, 67 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=3.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.14\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.87\left(\mathrm{ddt}, J_{1}=16.7 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}, J_{3}=7.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}$, $3 \mathrm{H}), 1.84\left(\mathrm{ddd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=10.6 \mathrm{~Hz}, J_{3}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.10(\operatorname{broad} \mathrm{~s}, 21 \mathrm{H})$, $1.07(\operatorname{broad~s}, 21 \mathrm{H}), 1.01(\operatorname{broad~s}, 14 \mathrm{H}), 0.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6$, $148.0,134.8,121.6,117.3,74.2,73.0,69.5,51.4,40.8,39.8,25.7,25.4,25.1,18.2,18.1,17.7$,
$17.6,17.5,13.1,12.9,12.5,0.83 ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right)-85.03(\mathrm{~s}, 3 \mathrm{~F}),-120.45\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=\right.$ $18.0 \mathrm{~Hz}, 2 \mathrm{~F}$); FTIR (thin film) $v_{\max } 1069,2924,2361,2340,1069 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{39} \mathrm{H}_{75} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 825.4740$, found $825.4769 ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+5.78, \mathrm{c}=$ $1.05, \mathrm{CHCl}_{3}$.

(4R,5R,7S)-Methyl-4,5-bis(diisopropyl-(3,3,4,4,4-penta-fluoro-butyl)-silyloxy)-7-(triiso-propylsilyloxy)deca-2,9-dienoate ($\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{R})-\mathbf{1 3} \mathbf{c}$). The same silylation procedure used in the preparation of (S, S) - $\mathbf{1 0}$ was followed using the homoallylic alcohol (R, R, R) - $\mathbf{1 2}(1.85 \mathrm{~g}, 2.46$ mmol), $\operatorname{TIPSOTf}(1.00 \mathrm{~mL}, 3.690 \mathrm{mmol})$, and 2,6-lutidine ($0.60 \mathrm{~mL}, 5.166 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) afforded the title compound as a colorless oil ($1.88 \mathrm{~g}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07$ (dd, $J_{1}=15.8$ $\left.\mathrm{Hz}, J_{2}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.03\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.90\left(\mathrm{ddt}, J_{1}=16.6 \mathrm{~Hz}, J_{2}=11.2\right.$ $\left.\mathrm{Hz}, J_{3}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05\left(\mathrm{dd}, J_{1}=16.8 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.04$ (sextet, $J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H})$, $1.86\left(\mathrm{ddd}, J_{1}=13.1 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, J_{3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.51\left(\mathrm{ddd}, J_{1}=13.9 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=\right.$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.04$ (broad s, 49H), $0.87(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,146.9$, $134.3,122.1,117.2,74.3,73.3,68.9,51.6,41.1,39.1,25.3$ (m), 18.1, 17.6, 17.5, 13.0, 12.9, 12.7, 12.6; ${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-85.03(\mathrm{~s}, 3 \mathrm{~F}),-85.08(\mathrm{~s}, 3 \mathrm{~F}),-120.52\left({ }^{3} J_{\mathrm{HF}}=17.4 \mathrm{~Hz}\right.$, 4F); FTIR (thin film) $v_{\max }$ 2947, 2869, 1732, 1464, 1439, 1333, 1270, $1198 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{40} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 929.4426, found 929.4509; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+24.1, \mathrm{c}=1.32, \mathrm{CHCl}_{3}$.

(4R,5R,7S,E)-Methyl-4,5,7-tris(diisopropyl-(3,3,4,4,4-pentafluorobutyl)silyloxy)deca-2,9-
dienoate $((\boldsymbol{R}, \boldsymbol{R}, \boldsymbol{S}) \mathbf{- 1 3 d})$. The same fluorous tagging procedure used above in preparation of $(R, R)-\mathbf{1 0}$ was employed using the alcohol (R, R, S) - $\mathbf{1 2}(2.38 \mathrm{~g}, 3.170 \mathrm{mmol}), 3,3,4,4,4-$
pentafluorobutyl)diisopropylsilane ($1.83 \mathrm{~g}, 6.980 \mathrm{mmol}$), $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.46 \mathrm{~mL}, 5.160 \mathrm{mmol})$, and 2,6-lutidine ($1.10 \mathrm{~mL}, 9.520 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32.0 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) afforded the title compound as a colorless oil ($2.68 \mathrm{~g}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.07\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=\right.$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.07\left(\mathrm{ddd}, J_{1}=17.1 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz} J_{3}=3.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.46\left(\mathrm{td}, J_{1}=\right.$ $\left.4.2 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H})$, $1.73(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.04(\operatorname{broad} \mathrm{~s}, 42 \mathrm{H}), 0.89(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.1,146.5,133.9,122.3,117.8,76.1,72.7,68.9,51.6,41.5,41.2,25.7,25.6,25.4$, $25.3,25.2,25.1,25.0,24.9,17.7,17.6,17.5,13.0,12.9,12.8,12.6,12.5,1.1,0.8 ;{ }^{19}$ F NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-85.12(\mathrm{~s}, 3 \mathrm{~F}),-85.15(\mathrm{~s}, 3 \mathrm{~F}),-85.17(\mathrm{~s}, 3 \mathrm{~F}),-120.48\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.7 \mathrm{~Hz}, 2 \mathrm{~F}\right)$, $-120.58\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 4 \mathrm{~F}\right)$; FTIR (thin film) $v_{\max } 2949,2870,1731,1464,1440,1196,885$ cm^{-1}; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{41} \mathrm{H}_{69} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1,033.4111$, found 1,033.4192; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+10.8, \mathrm{c}=1.09, \mathrm{CHCl}_{3}$.

Synthesis of cis-series quasiisomers 13e-h

Scheme S4: Synthesis of (S, R)- and (R, S)-11

2-Deoxy-3,4-O-isopropylidene-d-ribose (($\boldsymbol{R}, \boldsymbol{S})$-S6): ${ }^{8}$ CAS registry number: [86795-47-3]. pToluenesulfonic acid ($5.61 \mathrm{~g}, 28.9 \mathrm{mmol}$) was added to a stirring solution of 2-deoxy-D-ribose $(20.0 \mathrm{~g}, 0.145 \mathrm{~mol})$ and 2-methoxypropene ($14.3 \mathrm{~mL}, 0.145 \mathrm{~mol}$) in N, N-dimethylformamide $(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , another stoichiometric amount of 2methoxypropene ($14.3 \mathrm{~mL}, 0.145 \mathrm{mmol}$) was added and the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for another 2 h . The reaction was quenched at $0^{\circ} \mathrm{C}$ by addition of saturated aqueous $\mathrm{NaHCO}_{3}(\sim 100$ mL) and the resultant suspension was stirred for 1 h at $0^{\circ} \mathrm{C}$. The suspension was then transferred to a separatory funnel and partitioned with diethyl ether ($\sim 400 \mathrm{~mL}$). The layers were separated and the aqueous layer was extracted with diethyl ether ($3 \times 300 \mathrm{~mL}$). The combined organic extracts were washed with water (150 mL), brine (150 mL), dried over MgSO_{4}, and concentrated in vacuo. Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a colorless oil, isolated as a $4: 1 \alpha / \beta$ anomeric composition ($6.79 \mathrm{~g}, 27 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, d 6-\mathrm{DMSO}$) $\delta 6.24(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94\left(\mathrm{dt}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 4.34\left(\mathrm{dt}, J_{1}=6.2 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.78\left(\mathrm{dd}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.46\left(\mathrm{dd}, J_{1}=12.5 \mathrm{~Hz}, J_{2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.93\left(\mathrm{dt}, J_{1}=14.5 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.63(\mathrm{ddd}$, $\left.J_{1}=14.5 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.

2-Deoxy-3,4-O-isopropylidene-L-ribose ((S,R)-S6): ${ }^{8}$ CAS registry number: [522608-67-9]. The procedure for the preparation of (R, S)-S6 was repeated using 2-deoxy-L-ribose (24.5 g , $0.179 \mathrm{~mol})$, 2-methoxypropene ($34.4 \mathrm{~mL}, 0.350 \mathrm{~mol}$), and p-toluenesulfonic acid ($6.95 \mathrm{~g}, 35.8$ mmol). Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a colorless oil, isolated as a $4: 1 \alpha / \beta$ anomeric composition ($7.81 \mathrm{~g}, 25 \%$). The 1 H NMR spectrum matched that of (R, S)-S6 (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+47.3, \mathrm{c}=0.13$, water, literature value reported for the D-enantiomer: $[\alpha]_{D}^{5^{\circ} \mathrm{C}}=-46.0, \mathrm{c}=0.10$, water.

((4R,5S)-5-Allyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol ((R,S)-S7): ${ }^{9}$ CAS registry number: [663176-89-4]. Butyllithium (1.6 M in hexanes, $68.2 \mathrm{~mL}, 0.109 \mathrm{~mol}$) was added dropwise by syringe to a stirred suspension of methyltriphenylphosphonium iodide ($48.8 \mathrm{~g}, 0.117 \mathrm{~mol}$) in THF (450 mL) at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , then warmed to $0^{\circ} \mathrm{C}$ and stirred at this temperature for 30 min . A solution of the acetonide $(R, S)-\mathbf{S 6}(6.79 \mathrm{~g}, 39.0$ mmol) in THF (50 mL) was then transferred to the stirring suspension at $-78^{\circ} \mathrm{C}$ by cannula (along with a 10 mL THF rinse of the original flask containing the acetonide). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min and then warmed to room temperature. After 4 h at room temperature, the reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$. The layers were then separated and the aqueous layer was extracted with ether ($3 \times 300 \mathrm{~mL}$). The combined organic extracts were then washed with water (200 mL), brine (200 mL), dried over MgSO_{4}, and concentrated in vacuo. Flash chromatography of the crude product (2:1 hexanes/EtOAc) gave the title compound as a colorless oil ($5.74 \mathrm{~g}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.85\left(\mathrm{ddt}, J_{1}=17.1 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.27\left(\mathrm{dt}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=6.0\right.$
$\mathrm{Hz}, 1 \mathrm{H}), 4.19$ (quartet, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.89$ $(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.

((4S,5R)-5-Allyl-2,2-dimethyl-1,3-dioxolan-4-yl)methanol ((4S,5R)-S7): The procedure above for the preparation of (R, S)-S7 was employed using acetonide (S, R)-S6 $(7.81 \mathrm{~g}, 44.8 \mathrm{mmol})$, methyltriphenylphosphonium iodide ($59.2 \mathrm{~g}, 0.144 \mathrm{~mol}$), and butyllithium (1.6 M in hexanes, $81.4 \mathrm{~mL}, 0.135 \mathrm{~mol}$). Flash chromatography of the crude product gave the title compound as a colorless oil ($6.12 \mathrm{~g}, 79 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85\left(\mathrm{ddt}, J_{1}=17.1 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}\right.$, $\left.J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.27\left(\mathrm{dt}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.19$ (quartet, $\left.J=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66(\mathrm{t}, J$ $=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;$ $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-116.2, \mathrm{c}=0.29, \mathrm{CHCl}_{3}$.

(\boldsymbol{E})-Methyl-3-((4R,5S)-5-allyl-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate ($\boldsymbol{R}, \boldsymbol{S} \boldsymbol{S})$-S8): $\quad \mathrm{SO}_{3}$ pyridine complex $(18.9 \mathrm{~g}, 0.117 \mathrm{~mol})$ was added in one portion to a solution of alcohol (R, S)-S7 $(5.74 \mathrm{~g}, 33.3 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(23.9 \mathrm{~mL}, 0.167 \mathrm{~mol})$ in $4: 1 \mathrm{DCM} / \mathrm{DMSO}(350 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 30 min and quenched at $0^{\circ} \mathrm{C}$ by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$ and the combined organic extracts were washed with 30% aqueous CuSO_{4} solution ($3 \times 100 \mathrm{~mL}$), then sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. After drying over MgSO_{4}, the organic extracts were concentrated by rotary evaporation. The crude aldehyde product was taken to the next step without further purification $(5.29 \mathrm{~g}, 31.1 \mathrm{mmol}):{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.69(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.17\left(\mathrm{dq}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.13(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44\left(\mathrm{td}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.32\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=\right.$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$.

The above procedure for preparation of diene $\mathbf{8}$ by the modified Horner-WadsworthEmmons olefination ${ }^{6}$ was used with the crude aldhehyde ($5.29 \mathrm{~g}, 31.1 \mathrm{mmol}$), trimethylphosphonoacetate ($5.56 \mathrm{~mL}, 37.3 \mathrm{mmol}$) , $\mathrm{LiCl}(1.61 \mathrm{~g}, 37.3 \mathrm{mmol})$, and DBU (5.27 $\mathrm{mL}, 34.2 \mathrm{mmol}$) in acetonitrile (350 mL) 。 ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed a $4: 1$ E / Z mixture of geometric isomers. Flash chromatography of the crude product (10:1 hexanes/EtOAc) gave the pure E-isomer as a colorless oil ($4.01 \mathrm{~g}, 57 \%$ over 2 steps): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.11\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=1.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.14\left(\mathrm{ddd}, J_{1}=17.8 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, J_{3}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.71\left(\mathrm{td}, J_{1}=6.3\right.$ $\left.\mathrm{Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.33\left(\mathrm{dt}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,143.7,133.8,122.6,117.7,109.0,77.6$, 77.1, 51.6, 35.1, 27.9, 25.4; FTIR (thin film) $v_{\max }$ 2987, 2939, 1726, 1380, 1307, 1256, 1217, $1165 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 249.1103, found 249.1086; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-2.75, \mathrm{c}=1.26, \mathrm{CHCl}_{3}$.

(\boldsymbol{E})-Methyl 3-((4S,5R)-5-allyl-2,2-dimethyl-1,3-dioxolan-4-yl)acrylate ((S, R)-S8). The alcohol $(S, R)-\mathbf{S 7}(6.12 \mathrm{~g}, 35.5 \mathrm{mmol})$ was taken through the same two-step oxidation/olefination procedure as (R, S)-S8 using SO_{3}-pyridine complex ($20.2 \mathrm{~g}, 0.124 \mathrm{~mol}$), $\mathrm{NEt}_{3}(25.0 \mathrm{~mL}, 0.178$ mol) in $4: 1 \mathrm{DCM} / \mathrm{DMSO}(350 \mathrm{~mL})$. The crude aldehyde product was taken to the next olefination step without further purification: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.69(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.17\left(\mathrm{dq}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.13(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44\left(\mathrm{td}, J_{1}=\right.$ $\left.7.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.32\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.44-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$, 1.43 ($\mathrm{s}, 3 \mathrm{H}$).

The above procedure for preparation of diene $\mathbf{8}$ by the modified Horner-WadsworthEmmons olefination ${ }^{6}$ was used with the crude aldhehyde ($4.11 \mathrm{~g}, 24.1 \mathrm{mmol}$), trimethylphosphonoacetate ($4.27 \mathrm{~mL}, 29.0 \mathrm{mmol}$), $\mathrm{LiCl}(1.25 \mathrm{~g}, 29.0 \mathrm{mmol})$, and DBU (4.05 $\mathrm{mL}, 26.6 \mathrm{mmol})$ in $\mathrm{MeCN}(250 \mathrm{~mL}) .{ }^{1} \mathrm{H}$ NMR analysis of the crude product showed a $4: 1 E / Z$ mixture of geometric isomers. Flash chromatogtaphy of the crude product (10:1 hexanes/EtOAc) gave the pure E-isomer as a colorless oil $(3.40 \mathrm{~g}, 62 \%$ over 2 steps $):{ }^{1} \mathrm{H}$ NMR
$\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.11\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=1.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.14\left(\mathrm{ddd}, J_{1}=17.8 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, J_{3}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.71\left(\mathrm{td}, J_{1}=6.3\right.$ $\left.\mathrm{Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.33\left(\mathrm{dt}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+13.1, \mathrm{c}=1.04, \mathrm{CHCl}_{3}$.

(4R,5S,E)-Methyl-4,5-bis(Diisopropyl-(3,3,4,4,4-pentafluorobutyl)silyloxy)octa-2,7-dienoate ($(\boldsymbol{R}, \boldsymbol{S})$-S9): Acetyl chloride ($3.82 \mathrm{~mL}, 52.5 \mathrm{mmol}$) was added by syringe to a stirring solution of the acetal (R, S)-S8 in $\mathrm{MeOH}(170 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred for 15 min at $0^{\circ} \mathrm{C}$, and then warmed to room temperature. The reaction was stirred at room temperature for 3 h , and then concentrated in vacuo. Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a pale yellow syrup which was taken to the next fluorous tagging step: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.99\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.16\left(\mathrm{dd}, J_{1}=15.8\right.$ $\left.\mathrm{Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.48$ $(\mathrm{m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,145.9,134.1,122.0$, $118.5,73.4,73.0,51.8,36.4$; FTIR (thin film) $v_{\max } 3426,2953,1708,1438,1281,1198,1174$ cm^{-1}; HRMS calcd (EI) for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}[\mathrm{M}]^{+}: 187.0970$, found 187.0964; $[\alpha]_{D}^{25^{5^{\circ}} \mathrm{C}}=+16.5, \mathrm{c}=$ $1.34, \mathrm{CHCl}_{3}$.

The pure diol ($3.08 \mathrm{~g}, 16.5 \mathrm{mmol}$) was subjected to the same procedure used above in the preparation of $(R, R) \mathbf{- 1 0}$ using the 3,3,4,4,4-pentafluorobutyl)diisopropylsilane (12.3 $\mathrm{g}, 45.6$ mmol), $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(3.85 \mathrm{~mL}, 42.9 \mathrm{mmol})$, and 2,6-lutidine ($5.87 \mathrm{~mL}, 49.5 \mathrm{mmol}$) in DCM (100 mL). Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) afforded the title compound as a colorless oil ($10.5 \mathrm{~g}, 87 \%$ over 2 steps): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92(\mathrm{dd}$, $\left.J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.96\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{ddd}$, $\left.J_{1}=16.4 \mathrm{~Hz}, J_{2}=10.9 \mathrm{~Hz}, J_{3}=5.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.30\left(\mathrm{dd}, J_{1}=6.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{br} \mathrm{s}, 28 \mathrm{H}), 0.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,146.6,133.7,122.6,118.5,76.8,75.5,51.7,38.7,25.2$ (m), 18.8, 17.6, 17.5 (br s), $17.4,13.4,12.9,12.8,12.7,12.6,10.4,1.0,0.9 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -85.01 (s, 3F), -85.06 (s, 3F), -120.46 (m, 4F); FTIR (thin film) $v_{\max }$ 2948, 2870, 1732, 1464, 1440,

1381, 1333, 1276, 1244, 1198, $1107 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{~F}_{10} \mathrm{Si} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 729.2829 , found 729.2823; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-1.25, \mathrm{c}=1.14, \mathrm{CHCl}_{3}$.

(4S,5R,E)-Methyl-4,5-bis(triisopropylsilyloxy)octa-2,7-dienoate ((S,R)-S9): The procedure used for the preparation of (R, S)-S9 was repeated using (S, R)-S8 $(3.40 \mathrm{~g}, 15.0 \mathrm{mmol})$ with acetyl chloride ($3.28 \mathrm{~mL}, 45.1 \mathrm{mmol}$) in $\mathrm{MeOH}(150 \mathrm{~mL})$. Flash chromatography of the crude product (1:1 hexanes/EtOAc) gave the diol as a pale yellow syrup which was taken to the next step (see below): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.16\left(\mathrm{dd}, J_{1}=\right.$ $\left.15.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $2.48(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}) ;[\alpha]_{D}^{5^{\circ} \mathrm{C}}=-16.3, \mathrm{c}=1.56, \mathrm{CHCl}_{3}$.

The diol from above ($2.70 \mathrm{~g}, 14.5 \mathrm{mmol}$) was subjected to the above procedure for the preparation of compound (S, S) - $\mathbf{1 0}$ using TIPSOTf ($10.1 \mathrm{~mL}, 36.2 \mathrm{mmol}$), and 2,6-lutidine (5.15 $\mathrm{mL}, 43.5 \mathrm{~mL}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($6.74 \mathrm{~g}, 90 \%$ over 2 steps): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.96\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.10\left(\mathrm{ddd}, J_{1}=16.8 \mathrm{~Hz}, J_{2}=10.7 \mathrm{~Hz}, J_{3}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.39\left(\mathrm{dq}, J_{1}=6.6\right.$ $\left.\mathrm{Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.01\left(\mathrm{ddd}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}, J_{3}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}$, 2 H), 1.07 (br s, 42 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,148.5,134.4,121.5,117.8,77.0$, $75.5,51.5,39.2,18.2$ (br s), 12.7 (br s); FTIR (thin film) $v_{\max } 2944,2893,2867,1731,1464$, 1271, 1244, 1166, 1119, $1064 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 521.3458, found 521.3481; $[\alpha]_{D}^{75^{\circ} \mathrm{C}}=-12.4, \mathrm{c}=1.44, \mathrm{CHCl}_{3}$.

(4S,5R,E)-Methyl 7-oxo-4,5-bis(triisopropylsilyloxy)hept-2-enoate ($(\boldsymbol{S}, \boldsymbol{R})-\mathbf{1 1})$. The same method employed below for the preparation of (R, S) - $\mathbf{1 1}$ was followed using 2,6-lutidine (3.17 $\mathrm{mL}, 26.8 \mathrm{mmol}), \mathrm{OsO}_{4}(2.5 \mathrm{wt} . \%, 3.36 \mathrm{~mL}, 0.27 \mathrm{mmol}), \mathrm{NaIO}_{4}(11.6 \mathrm{~g}, 53.6 \mathrm{mmol})$, and the
alkene (S, R)-S9 ($6.68 \mathrm{~g}, 13.4 \mathrm{mmol}$) in 3:1 dioxane/water $(120 \mathrm{~mL})$ at room temperature. Flash chromatography of the crude product ($10: 1$ hexanes $/ \mathrm{EtOAc}$) gave the title compound as a pale brown oil ($5.32 \mathrm{~g}, 79 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.91(\mathrm{~m}, 1 \mathrm{H}), 6.90\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}\right.$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.56\left(\mathrm{dd}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.31(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 1.09($ broad s, 42 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $200.9,166.3,147.9,122.3,77.3,72.5,51.7,46.7,18.1$ (br s), 12.5 (br s); FTIR (thin film) $v_{\max }$ 2945, 2892, 2867, 1728, 1463, 1274, 1243, 1166, $1131 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{26} \mathrm{H}_{52} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 523.3251$, found 523.3285; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+0.13, \mathrm{c}=1.26, \mathrm{CHCl}_{3}$.

(4R,5S,2E)-Methyl-4,5-bis(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-7-oxohept-2-
enoate ($\boldsymbol{R}, \boldsymbol{S} \boldsymbol{S})-11$): 2,6-lutidine ($1.60 \mathrm{~mL}, 13.5 \mathrm{mmol}$), $\mathrm{OsO}_{4}(2.5 \mathrm{wt} . \%, 1.70 \mathrm{~mL}, 0.135 \mathrm{mmol})$, and $\mathrm{NaIO}_{4}(5.96 \mathrm{~g}, 27.1 \mathrm{mmol})$ were sequentially added to a solution of the alkene (R, S) - $\mathbf{S 9}$ $(4.78 \mathrm{~g}, 6.76 \mathrm{mmol})$ in $3: 1$ dioxane/water $(80 \mathrm{~mL})$ at room temperature. The resultant suspension was stirred for 4 h at room temperature, and then water (100 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL) were added. The bilayer was then transferred to a separatory funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were then washed with water $(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, and then concentrated in vacuo. Flash chromatography of the crude product ($10: 1$ hexanes/EtOAc) gave the title compound as a pale brown oil ($3.27 \mathrm{~g}, 68 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82$ $(\mathrm{m}, 1 \mathrm{H}), 6.85\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.99(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.10\left(\right.$ broad s, 28H), $0.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 199.5,165.9,146.1,123.2,76.8,71.8,51.7,47.3,25.1$ (m), 17.4 (br s), 12.6 (br s), 0.9 , $0.8 ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl $\left.\mathrm{CD}_{3}\right)-84.96(\mathrm{~s}, 3 \mathrm{~F}),-85.00(\mathrm{~s}, 3 \mathrm{~F}),-120.29\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right)$, $-120.39\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right)$; FTIR (thin film) $v_{\max } 2948,2870,1729,1196,991 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{~F}_{10} \mathrm{~K}[\mathrm{M}+\mathrm{K}]^{+}: 747.2361$, found 747.2334; $[\alpha]_{D}^{75^{\circ} \mathrm{C}}=-3.00$, $\mathrm{c}=1.06, \mathrm{CHCl}_{3}$.

(4S,5R,7R,)-Methyl-4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate ($(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{R})-13 \mathrm{e})$: The in situ preparation of the Brown reagent used for $(4 R, 5 R, 7 S)$ - $\mathbf{1 2}$ was repeated with allylmagnesium bromide ($9.92 \mathrm{~mL}, 9.92 \mathrm{mmol}$), (+)-DIP-Cl ($3.55 \mathrm{~g}, 10.5 \mathrm{mmol}$), and aldehyde $(S, R)-11(1.51 \mathrm{~g}$, $3.01 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Flash chromatography of the crude product $(10: 1$ hexanes/EtOAc) gave the untagged homoallylic alcohol as an inseparable mixture of diastereomers ($\sim 6: 1$ d.r.) with minor impurities. This mixture was taken to the next step without further purification.

The same silylation procedure used above to obtain (R, R) - $\mathbf{1 0}$ was used for the inseparable mixture of diastereomers using TIPSOTf ($0.90 \mathrm{~mL}, 3.26 \mathrm{mmol}$) and 2,6-lutidine ($0.52 \mathrm{~mL}, 4.34$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Flash chromatography of the crude product gave the title compound as an inseparable mixture of diastereomers ($1.04 \mathrm{~g}, 6: 1$ d.r., 54% over 2 steps): ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.95(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H})$, $5.04\left(\mathrm{dd}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.02 (quintet, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.07$ (broad s, $63 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,148.7,134.4,121.4,117.4,74.2,69.2,51.6,41.7$, $40.8,18.3$ (br s), 12.7 (br s); FTIR (thin film) $v_{\max } 2945,2868,1733,1465,1062,996 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{38} \mathrm{H}_{78} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 721.5055$, found 721.5110; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-5.10, \mathrm{c}=1.93, \mathrm{CHCl}_{3}$.

(4S,5R,7S,2E)-Methyl-7-(diisopropyl-(3,3,4,4,4-pentafluorobutyl)silyloxy)-4,5-bis(triiso-propylsilyloxy)deca-2,9-dienoate ($(\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{S})$-13f). The in situ preparation of the Brown reagent used for the above preparation of $(R, R, S) \mathbf{- 1 2}$ was repeated with aldehyde $(S, R) \mathbf{- 1 1}(1.29 \mathrm{~g}, 3.01$ mmol), (-)-DIP-Cl ($3.04 \mathrm{~g}, 8.99 \mathrm{mmol}$), and allylmagnesium bromide ($8.48 \mathrm{~mL}, 8.48 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. Flash chromatography of the crude product ($10: 1$ hexanes/EtOAc) gave the
untagged homoallylic alcohol as an inseparable mixture of diastereomers ($\sim 6: 1$ d.r.) along with 3-pinanol by-product. This mixture was taken to the next tagging step without further purification.

The general procedure for fluorous tagging was used for the inseparable mixture of diastereomers with 3,3,4,4,4-pentafluorobutyl)diisopropylsilane ($1.17 \mathrm{~g}, 4.45 \mathrm{mmol}$), triflic acid ($0.36 \mathrm{~mL}, 3.92 \mathrm{mmol}$), and 2,6-lutidine ($0.64 \mathrm{~mL}, 5.34 \mathrm{mmol}$) in DCM (40 mL). Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as an inseparable mixture of diastereomers ($1.27 \mathrm{~g}, 6: 1$ d.r., 61% over 2 steps): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.00\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.97(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.07$ $\left(\mathrm{ddd}, J_{1}=16.7 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, J_{3}=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.38(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=6.5 \mathrm{~Hz})$, 3.87 (quintet, $J=5.6 \mathrm{~Hz}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.08$ (broad s, $56 \mathrm{H}), 0.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,148.0,134.2,121.7,117.7,76.7,74.3$, 69.7, 51.6, 42.4, 41.7, 25.4 (m), 18.1 (br s), 13.2 (br s), $0.9 ;{ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.97 ($\mathrm{s}, 3 \mathrm{~F}$), $-120.35\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.7 \mathrm{~Hz}, 2 \mathrm{~F}\right)$; FTIR (thin film) $v_{\max } 2947,2869,1733,1466,1201$, 1168, 1096, 1060, $994 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{39} \mathrm{H}_{75} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 825.4740$, found $825.4711 ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-6.41, \mathrm{c}=1.57, \mathrm{CHCl}_{3}$.

(4R,5S,7S)-Methyl-4,5-bis(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-7-(triiso-

propylsilyloxy)deca-2,9-dienoate $((\boldsymbol{R}, \boldsymbol{S}, \boldsymbol{R}) \mathbf{- 1 3 g})$. The in situ preparation of the Brown reagent used above for $(R, R, S) \mathbf{- 1 2}$ was repeated with aldehyde $(R, S)-\mathbf{1 1}(1.17 \mathrm{~g}, 1.65 \mathrm{mmol}),(+)$-DIP-Cl $(1.95 \mathrm{~g}, 5.77 \mathrm{mmol})$, and allylmagnesium bromide ($5.44 \mathrm{~mL}, 5.44 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. Flash chromatography of the crude product ($10: 1$ hexanes/EtOAc) gave the untagged homoallylic alcohol as an inseparable mixture of diastereomers ($\sim 6: 1$ d.r.) along with 3-pinanol by-product.

The mixture of diastereomers was taken to the next tagging step using TIPSOTf (0.813 $\mathrm{mL}, 2.95 \mathrm{mmol}$), 2,6-lutidine $(0.40 \mathrm{~mL})$ in $\mathrm{DCM}(15 \mathrm{~mL})$ in the same manner as above for preparation of $(S, S) \mathbf{- 1 0}$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as an inseparable mixture of diastereomers ($977 \mathrm{mg}, 6: 1$ d.r., 65% over 2 steps): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.97\left(\mathrm{dd}, J_{1}=\right.$
$\left.15.8 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.85(\mathrm{~m}, 1 \mathrm{H}), 5.08\left(\mathrm{ddd}, J_{1}=17.1 \mathrm{~Hz}, J_{2}=10.3 \mathrm{~Hz}, J_{3}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01\left(\mathrm{td}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.91$ (quintet, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\operatorname{broad} \mathrm{~s}, 49 \mathrm{H}), 0.86(\mathrm{~m}$, $4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,146.2,134.0,122.7,121.3,117.7,117.5,74.4,68.9$, 51.7, 41.9, 25.4 (m), 17.6 (br s), 12.9 (br s), 1.3, 0.9 ; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-85.01$ (s, $3 \mathrm{~F}),-85.04(\mathrm{~s}, 3 \mathrm{~F}),-120.47(\mathrm{~m}, 4 \mathrm{~F})$; FTIR (thin film) $v_{\max } 2948,2870,1734,1200,1104,1061$, $993 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{40} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 929.4426$, found 929.4446; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-3.88, \mathrm{c}=1.04, \mathrm{CHCl}_{3}$.

(4R,5S,7S,E)-Methyl-4,5,7-tris(diisopropyl-(3,3,4,4,4-pentafluorobutyl)silyloxy)deca-2,9-
dienoate $((R, S, S)-13 h)$. The in situ preparation of the Brown allylborane used for the preparation of $(R, R, S) \mathbf{- 1 2}$ was followed using the aldehyde $(R, S)-\mathbf{1 1}(1.02 \mathrm{~g}, 1.65 \mathrm{mmol}),(-)-$ DIP-Cl ($1.95 \mathrm{~g}, 5.77 \mathrm{mmol}$), and allylmagnesium bromide ($5.40 \mathrm{~mL}, 5.40 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (30 mL). Flash chromatography of the crude product (10:1 hexanes/EtOAc) gave the untagged homoallylic alcohol as an inseparable mixture of diastereomers ($\sim 6: 1$ d.r.) with minor impurities.

The mixture of diastereomers was taken to the next tagging step using 3,3,4,4,4pentafluorobutyl)diisopropylsilane ($0.861 \mathrm{~g}, 3.28 \mathrm{mmol}$), $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(0.27 \mathrm{~mL}, 3.02 \mathrm{mmol})$, and 2,6-lutidine ($0.47 \mathrm{~mL}, 3.94 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as an inseparable mixture of diastereomers ($1.17 \mathrm{~g}, 6: 1$ d.r., 80% over 2 steps): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.91\left(\mathrm{dd}, J_{1}=\right.$ $\left.15.8 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.94(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.07\left(\mathrm{ddd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=\right.$ $\left.10.8 \mathrm{~Hz} J_{3}=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.34(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.27$ $(\mathrm{m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.05($ broad s, 42 H$), 0.87(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 166.0,146.4,133.5,122.6,118.1,76.9,74.0,69.4,51.7,41.5,40.9,25.4$ (m), 17.5 (br s), 13.0 (br s), 1.2, 0.9, 0.8; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.97 (s, 3F), -84.99 (s, 3F), -85.03 (s, 3F), -120.45 (m, 6F); FTIR (thin film) $v_{\max }$ 2949, 2870, 1733, 1198, 1066, 993, $886 \mathrm{~cm}^{-1}$;

HRMS calcd (ESI, positive mode) for $\mathrm{C}_{41} \mathrm{H}_{69} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1,033.4111, found $1,033.4084 ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-5.26, \mathrm{c}=1.02, \mathrm{CHCl}_{3}$.

Fluorous Mixture Synthesis, Scheme 3 in the paper

(4S,5S,7R,E)-4,5,7-Tris(triisopropylsilyloxy)deca-2,9-dienoic acid, (4S,5S,7S,E)-4,5-Bis(tri-isopropylsilyloxy)-7-((1,1,1,2,2)-pentafluorobutyldiisopropylsilyloxy)deca-2,9-dienoic acid, (4R,5R,7R,E)-4,5-Bis((1,1,1,2,2)-pentafluorobutyl(diisopropylsilyloxy))-7-(triisopropyl-silyloxy)deca-2,9-dienoic acid, (4R,5R,7S,E)-4,5,7-Tris((1,1,1,2,2)-pentafluorobutyl-(diisopropylsilyloxy))deca-2,9-dienoic acid (M-4-trans). Potassium trimethylsilanolate (90\%, $3.05 \mathrm{~g}, 21.41 \mathrm{mmol}$) was added in one portion to a solution of $(S, S, R) \mathbf{- 1 3 a}(250 \mathrm{mg}, 0.36 \mathrm{mmol})$, $(S, S, S)-\mathbf{1 3 b}(287 \mathrm{mg}, 0.36 \mathrm{mmol}),(R, R, R)-\mathbf{1 3 c}(324 \mathrm{mg}, 0.36 \mathrm{mmol})$, and $(R, R, S)-\mathbf{1 3 d}(362 \mathrm{mg}$, $0.36 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min then at room temperature for 16 h . The reaction was quenched by addition of 0.5 M citric acid (13 mL) at $0^{\circ} \mathrm{C}$. After 10 minutes, the quenched mixture was transferred to a separatory funnel and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with water (15 mL) and brine (15 mL), dried over MgSO_{4}, filtered, and concentrated by rotary evaporation. Flash chromatography of the crude product (10:1 hexanes/EtOAc) gave the title compound as a colorless, viscous oil $(1.01 \mathrm{~g}, 84 \%$ based on average molecular weight): LRMS (ESI, positive mode) ((S,S,R)-4a) m/z $685(\mathrm{M})^{+} ;((S, S, S)-\mathbf{4 b})$ $m / z 789(\mathrm{M})^{+} ;((R, R, R)-4 \mathbf{c}) m / z 915(\mathrm{M}+\mathrm{Na})^{+} ;((R, R, R)-4 d) m / z 1019(\mathrm{M}+\mathrm{Na})^{+}$; fluorous analytical HPLC (90:10 $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ for 10 min , then $100 \% \mathrm{MeCN}$ for $60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}$): t_{R} $=9.0 \mathrm{~min}((S, S, R)-\mathbf{4 a}), 14.9 \mathrm{~min}((S, S, S)-\mathbf{4 b}), 20.3 \mathrm{~min}((R, R, R)-\mathbf{4 c}), 28.6 \mathrm{~min}(R, R, S)-\mathbf{4 d})$.

($4 S, 5 R, 7 R, E$)-4,5,7-Tris(triisopropylsilyloxy)deca-2,9-dienoic acid, (4S,5R,7S,E)-4,5-Bis-(triisopropylsilyloxy)-7-((1,1,1,2,2)-pentafluorobutyldiisopropylsilyloxy)deca-2,9-dienoic acid, (4R,5S,7R,E)-4,5-Bis((1,1,1,2,2)-pentafluorobutyl(diisopropylsilyloxy))-7-(triiso-
propylsilyloxy)-deca-2,9-dienoic acid, (4R,5S,7S,E)-4,5,7-Tris((1,1,1,2,2)-pentafluorobutyl-(diisopropylsilyloxy))deca-2,9-dienoic acid (M-4-cis). The same procedure employed above for compound M-4a-d was repeated using (S, R, R)-13e ($300 \mathrm{mg}, 0.43 \mathrm{mmol}$), (S, R, S) - $\mathbf{1 3 f}$ (345 $\mathbf{m g}, 0.43 \mathrm{mmol}),(R, S, R) \mathbf{- 1 3 g}(389 \mathrm{mg}, 0.43 \mathrm{mmol}),(R, S, S) \mathbf{- 1 3 h}(434 \mathrm{mg}, 0.43 \mathrm{mmol})$, and TMSOK ($3.61 \mathrm{~g}, 25.36 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(17.0 \mathrm{~mL})$. Flash chromatography of the crude product (3:1 hexanes/EtOAc) gave the title compound as a colorless oil ($1.14 \mathrm{~g}, 80 \%$ based on average molecular weight): LRMS (ESI, positive mode) $((S, R, R)-4 e) m / z 708(\mathrm{M}+\mathrm{Na})^{+} ;((S, R, S)-\mathbf{4 f})$ $m / z 811(\mathrm{M}+\mathrm{Na})^{+} ;((R, S, R)-\mathbf{4 g}) m / z 915(\mathrm{M}+\mathrm{Na})^{+} ;((R, S, S)-\mathbf{4 h}) m / z 1019(\mathrm{M}+\mathrm{Na})^{+}$; fluorous analytical HPLC ($90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ for 10 min , then $100 \% \mathrm{MeCN}$ for $60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}$): t_{R} $=15.0 \mathrm{~min}((S, R, R)-\mathbf{4 e}), 18.5 \mathrm{~min}((S, R, S)-\mathbf{4 f}), 20.9 \mathrm{~min}((R, S, R)-\mathbf{4 g}), 24.0 \mathrm{~min}((R, S, S)-\mathbf{4 h})$.

(4S,5S,7R)-((R)-Dec-1-en-5-yl)-4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate, (4S,5S,7S)-((R)-Dec-1-en-5-yl)-4,5-bis(triisopropylsilyloxy)-7-diisopropyl-(1,1,1,2,2-pentafluorobutyl-silyloxy)deca-2,9-dienoate, $\quad(4 R, 5 R, 7 R)-((R)$-Dec-1-en-5-yl)-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy))-7-triisopropylsilyloxydeca-2,9-dienoate, (4R,5R,7S,E)-((R)-Dec-1-en-5-yl)-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy)) deca-2,9-dienoate (M(\boldsymbol{R})-14a-d). Triethylamine ($385 \mu \mathrm{~L}, 23.46 \mathrm{mmol}$) was added to a solution of the acid M-4-trans $(1.16 \mathrm{~g}, 1.38 \mathrm{mmol}$ based on average molecular weight) in toluene (14.0 mL) at room temperature. 2,4,6-Trichlorobenzoyl chloride ($227 \mu \mathrm{~L}, 1.45 \mathrm{mmol}$) was then added by syringe and the resultant white slurry was stirred at room temperature for 1 h . A solution of the alcohol $(R) \mathbf{- 3}(237 \mathrm{mg}, 1.52 \mathrm{mmol})$ and DMAP ($338 \mathrm{mg}, 2.76 \mathrm{mmol}$) in toluene $(14.0 \mathrm{~mL})$ was slowly added to the reaction mixture by cannula transfer. The milky emulsion was stirred at room temperature for 3 h . Toluene $(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added and the emulsion became a clear bilayer. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with water (20 $\mathrm{mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated by rotary evaporation.

Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as a pale yellow oil ($1.29 \mathrm{~g}, 95 \%$ based on average molecular weight): HRMS (ESI, positive mode): calcd for $\mathrm{C}_{47} \mathrm{H}_{94} 0_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$845.6307, found 845.6340 for $(R) \mathbf{- 1 4 a}$; calcd for $\mathrm{C}_{48} \mathrm{H}_{91} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 949.5992$, found 949.6046 for $(R) \mathbf{- 1 4 b}$; calcd for $\mathrm{C}_{49} \mathrm{H}_{88} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 1,053.5678$, found $1,053.5725$ for $(R) \mathbf{- 1 4 c}$; calcd for $\mathrm{C}_{50} \mathrm{H}_{85} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 1,157.5363, found $1,157.5360$ for $(R) \mathbf{- 1 4 d}$; fluorous analytical HPLC $\left(90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ for 10 min , then $100 \% \mathrm{MeCN}$ for $60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=22.9 \mathrm{~min}((R) \mathbf{- 1 4 a}), 29.5 \mathrm{~min}((R) \mathbf{- 1 4 b})$, $33.9 \min ((R) \mathbf{- 1 4 c}), 40.5 \min ((R)-14 d)$.

(4S,5S,7R)-((S)-Dec-1-en-5-yl)-4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate, (4S,5S,7S)-((S)-Dec-1-en-5-yl)-4,5-bis(triisopropylsilyloxy)-7-diisopropyl-(1,1,1,2,2-pentafluorobutyl-silyloxy)deca-2,9-dienoate, (4R,5R,7R)-((S)-Dec-1-en-5-yl)-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy))-7-triisopropylsilyloxydeca-2,9-dienoate, (4R,5R,7S)-((S)-Dec-1-en-5-yl)-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy))-deca-2,9-dienoate (M-(S)-14a-d): The same method employed in the preparation of M-(R)-14a-d was repeated using mixture M-4-trans ($977 \mathrm{mg}, 1.16 \mathrm{mmol}$ based on average molecular weight), alcohol (S)-3 (236 $\mathrm{mg}, 1.51 \mathrm{mmol}$), $\mathrm{NEt}_{3}(1.78 \mathrm{~mL})$, DMAP ($369 \mathrm{mg}, 3.02 \mathrm{mmol}$), and 2,4,6-trichlorobenzoyl chloride ($360 \mu \mathrm{~L}, 2.32 \mathrm{mmol}$) in toluene $(25.0 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($1.16 \mathrm{~g}, 100 \%$ based on average molecular weight): HRMS (ESI, positive mode): calcd for $\mathrm{C}_{47} \mathrm{H}_{94} 0_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$845.6307, found 845.6323 for $(S)-14 a$; calcd for $\mathrm{C}_{48} \mathrm{H}_{91} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 949.5992$, found 949.6074 for $(S) \mathbf{- 1 4 b}$; calcd for $\mathrm{C}_{49} \mathrm{H}_{88} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1,053.5678$, found $1,053.5664$ for (S) $\mathbf{- 1 4 c}$; calcd for $\mathrm{C}_{50} \mathrm{H}_{85} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1,157.5363, found 1,157.5306 for $(S) \mathbf{- 1 4 d}$; fluorous analytical $\operatorname{HPLC}\left(90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ for 10 min , then $100 \% \mathrm{MeCN}$ for $60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=5.1 \mathrm{~min}$ $((S) \mathbf{- 1 4 a}), 7.3 \mathrm{~min}((S)-\mathbf{1 4 b}), 9.9 \mathrm{~min}((S)-\mathbf{1 4 c}), 15.8 \mathrm{~min}((S) \mathbf{- 1 4 d})$.

(4S,5R,7R)-((R)-Dec-1-en-5-yl)-4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate, (4S,5R,7S)-((R)-Dec-1-en-5-yl)-4,5-bis(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-pentafluorobutyl-silyloxy)deca-2,9-dienoate, $\quad(4 R, 5 S, 7 R)-((R)$-Dec-1-en-5-yl)-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy))-7-triisopropylsilyloxydeca-2,9-dienoate, (4R,5S,7S)-((R)-Dec-1-en-5-yl)-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy))deca-2,9-dienoate ((R)-M-14e-h): The same method employed above in the preparation of $\mathrm{M}-(R) \mathbf{- 1 4 a - d}$ was repeated using mixture M-4-cis (548 mg, $652 \mu \mathrm{~mol}$ based on average molecular weight), alcohol (R)-3 ($132 \mathrm{mg}, 847 \mu \mathrm{~mol}$), $\mathrm{NEt}_{3}(186 \mu \mathrm{~L})$, DMAP ($163 \mathrm{mg}, 1.30 \mathrm{mmol}$), and 2,4,6-trichlorobenzoyl chloride $(110 \mu \mathrm{~L}, 684 \mu \mathrm{~mol})$ in toluene $(13.0 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($577 \mathrm{mg}, 90 \%$ based on average molecular weight): LRMS (ESI, positive mode) ((R)-14e) m/z $846(\mathrm{M}+\mathrm{Na})^{+} ;((R) \mathbf{- 1 4 f}) \mathrm{m} / \mathrm{z} 950$ $(\mathrm{M}+\mathrm{Na})^{+} ;((R) \mathbf{- 1 4 g}) m / z 1054(\mathrm{M}+\mathrm{Na})^{+} ;((R) \mathbf{- 1 4 h}) m / z 1158(\mathrm{M}+\mathrm{Na})^{+}$; fluorous analytical HPLC ($90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ for 10 min , then $100 \% \mathrm{MeCN}$ for $\left.60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}\right): t_{\mathrm{R}}=17.8 \mathrm{~min}$ $((R) \mathbf{- 1 4 e}), 21.4 \min ((R) \mathbf{- 1 4 f}), 24.7 \mathrm{~min}((R) \mathbf{- 1 4 g}), 30.3 \mathrm{~min}((R) \mathbf{- 1 4 h})$.

(4S,5R,7R)-((S)-Dec-1-en-5-yl)-4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate, (4S,5R,7S)-((S)-Dec-1-en-5-yl)-4,5-bis(triisopropylsilyloxy)-7-diisopropyl-(1,1,1,2,2-pentafluorobutyl-silyloxy)deca-2,9-dienoate,
(4R,5S,7R)-((S)-Dec-1-en-5-yl)-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy))-7-triisopropylsilyloxydeca-2,9-dienoate, (4R,5S,7S)-((S)-Dec-1-en-5-yl)-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy))deca-2,9-dienoate (M-(S)-

14e-h): The same method employed above in the preparation of $\mathrm{M}-(R) \mathbf{- 1 4 a - d}$ was repeated
using mixture M-4-cis (584 mg , $694 \mu \mathrm{~mol}$ based on average molecular weight), alcohol (S)-3 $(141 \mathrm{mg}, 902 \mu \mathrm{~mol}), \mathrm{NEt}_{3}(197 \mu \mathrm{~L})$, DMAP ($173 \mathrm{mg}, 1.39 \mathrm{mmol}$), and 2,4,6-trichlorobenzoyl chloride $(117 \mu \mathrm{~L}, 729 \mu \mathrm{~mol})$ in toluene $(14.0 \mathrm{~mL})$. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($607 \mathrm{mg}, 89 \%$ based on average molecular weight): LRMS (ESI, positive mode) ((S)-14e) m/z $846(\mathrm{M}+\mathrm{Na})^{+} ;((S) \mathbf{- 1 4 f}) \mathrm{m} / \mathrm{z} 950$ $(\mathrm{M}+\mathrm{Na})^{+} ;((S) \mathbf{- 1 4 g}) m / z 1054(\mathrm{M}+\mathrm{Na})^{+} ;((S) \mathbf{- 1 4 h}) m / z 1158(\mathrm{M}+\mathrm{Na})^{+} ;$fluorous analytical $\operatorname{HPLC}\left(90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ for 10 min , then $100 \% \mathrm{MeCN}$ for $\left.60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}\right): t_{\mathrm{R}}=17.7 \mathrm{~min}$ $((S) \mathbf{- 1 4 e}), 21.4 \min ((S)-\mathbf{1 4 f}), 24.9 \min ((S) \mathbf{- 1 4 g}), 30.9 \min ((S)-\mathbf{1 4 h})$.

(4S,5S,7R,13R,E)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-3-en-2-one, (4S,5S,7S,13R,E)-13-Pentyl-4,5-bis(triisopropylsilyloxy)-7-diisopropyl-(1,1,1,2,2-penta-fluorobutylsilyloxy)-oxacyclo-tetra-dec-2-enone, (4R,5R,7R,13R,E)-13-Pentyl-4,5-bis-(di-isopropyl(1,1,1,2,2-pentafluoro-butyl-silyloxy)-7-triisopropylsilyloxy)oxacyclotetradec-2enone, $\quad(4 R, 5 R, 7 S, 13 R, E)$-13-Pentyl-4,5,7-tris(diisopropyl-(1,1,1,2,2-pentafluorobutyl-silyloxy)oxacyclotetradec-2-enone (M-(R)-15a-d): Grubbs $2^{\text {nd }}$ generation catalyst ($59 \mathrm{mg}, 69.5$ $\mu \mathrm{mol})$ was added in portion to a stirring solution of the mixture M- $(R) \mathbf{- 1 4 a - d}(682 \mathrm{mg}, 696 \mu \mathrm{~mol}$ based on average molecular weight) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (210 mL , degassed). The reaction flask was fitted with a reflux condenser, heated to a steady reflux ($55^{\circ} \mathrm{C}$, external bath temperature), and stirred for 24 h . The reaction mixture was cooled to room temperature and an additional loading of the catalyst ($59 \mathrm{mg}, 69.5 \mu \mathrm{~mol}$) was added in one portion. The reaction mixture was heated again to reflux ($55^{\circ} \mathrm{C}$, external bath temperature) and stirred for an additional 24 h . The reaction mixture was cooled to room temperature and concentrated by rotary evaporation. Two successive rounds of flash chromatography ($40: 1$ hexanes/EtOAc) gave the ring-closed product as a pale brown oil $(630 \mathrm{mg}, 663 \mu \mathrm{~mol})$, which was directly subjected to the hydrogenation without further purification.

The ring-closed product ($630 \mathrm{mg}, 663 \mu \mathrm{~mol}$) was dissolved in EtOH (20 mL) and treated with $\mathrm{Pd} / \mathrm{SrCO}_{3}(3.52 \mathrm{~g}, 663 \mu \mathrm{~mol})$. The flask was fitted with a three-junction vacuum adaptor,
connected to a vacuum line and a balloon full of hydrogen gas. The flask was purged of air through the vacuum line and the flask was entrained with hydrogen gas. This "vac-fill" cycle was repeated three times to completely purge the flask with dihydrogen. The reaction mixture was stirred for exactly 60 min and the vacuum adaptor/balloon assembly was removed. The catalyst was filtered and the supernatant liquid was concentrated by rotary evaporation. Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($584 \mathrm{mg}, 88 \%$ over two steps, based on average molecular weight): LRMS (EI) (R)15a $m / z 820(\mathrm{M}+\mathrm{Na})^{+} ;(R)-\mathbf{1 5 b} m / z 901(\mathrm{M})^{+} ;(R)-\mathbf{1 5 c} m / z 1028(\mathrm{M}+\mathrm{Na})^{+} ;(R)-\mathbf{1 5 d} \mathrm{m} / \mathrm{z} 1109$ $(\mathrm{M})^{+}$; HRMS (ESI, positive mode): calcd for $\mathrm{C}_{45} \mathrm{H}_{92} 0_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$819.6145, found 819.6192 for $(R)-\mathbf{1 5 a}$; calcd for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 923.5836$, found 923.5790 for (R) $\mathbf{1 5 b}$; calcd for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1,027.5516$, found $1,027.5504$ for $(R)-\mathbf{1 5 c}$; calcd for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1,131.5207, found $1,131.5256$ for $(R) \mathbf{- 1 5 d}$; fluorous analytical $\operatorname{HPLC}\left(90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ for 10 min , then $100 \% \mathrm{MeCN}$ for $\left.60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}\right): t_{\mathrm{R}}=5.7 \mathrm{~min}$ $((R) \mathbf{- 1 5 a}), 8.0 \min ((R) \mathbf{- 1 5 b}), 11.1 \min ((R)-\mathbf{1 5 c}), 17.2 \min ((R)-\mathbf{1 5 d})$.

(4S,5S,7R,13S,E)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-3-en-2-one, (4S,5S,7S,13S,E)-13-Pentyl-4,5-bis(triisopropylsilyloxy)-7-diisopropyl-(1,1,1,2,2-penta-fluorobutylsilyloxy)oxacyclotetradec-2-enone, (4R,5R,7R,13S,E)-13-Pentyl-4,5-bis-(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy)-7-triisopropylsilyloxy)oxacyclotetradec-2enone, $\quad(4 R, 5 R, 7 S, 13 S, E)-13-P e n t y l-4,5,7-t r i s(d i i s o p r o p y l-(1,1,1,2,2-p e n t a f l u o r o b u t y l-~$ silyloxy)oxacyclotetradec-2-enone (M-(S)-15a-d): The same procedure for the ring-closing metathesis in the preparation of $\mathrm{M}-(R)$ - $\mathbf{1 5 a - d}$ was repeated using mixture $\mathrm{M}-(S)$ - $\mathbf{1 4 a - d}$ (615 mg , $628 \mu \mathrm{~mol}$ based on average molecular weight) and the $2^{\text {nd }}$ generation Grubbs catalyst (107 mg , $126 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(210 \mathrm{~mL})$. Two successive rounds of flash chromatography ($40: 1$ hexanes/EtOAc) gave the title compound as a pale brown oil ($564 \mathrm{mg}, 576 \mu \mathrm{~mol}$), which was directly subjected to the hydrogenation without further purification.

The ring-closed product ($564 \mathrm{mg}, 576 \mu \mathrm{~mol}$) was hydrogenated by the same procedures reported for the preparation of $\mathrm{M}-(R) \mathbf{- 1 5 a - d}$ (see above) using $\mathrm{Pd} / \mathrm{SrCO}_{3}(3.15 \mathrm{~g}, 593 \mu \mathrm{~mol})$ in EtOH (20 mL). Flash chromatography of the crude product (40:1 hexanes/EtOAc) gave the title compound as a colorless oil ($524 \mathrm{mg}, 87 \%$ over two steps, based on average molecular weight): LRMS (EI) (S)-15a m/z $797(\mathrm{M})^{+} ;(S) \mathbf{- 1 5 b} \mathrm{m} / \mathrm{z} 901(\mathrm{M})^{+} ;(S)$-15c $\mathrm{m} / \mathrm{z} 1005(\mathrm{M})^{+} ;(S)$-15d m / z $1109(\mathrm{M})^{+}$; HRMS (ESI, positive mode): calcd for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}]^{+} 796.6253$, found 796.6273 for (S)-15a; calcd for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 923.5836$, found 923.5803 for (S) $\mathbf{1 5 b}$; calcd for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 1,027.5516$, found $1,027.5506$ for (S) $\mathbf{- 1 5 c}$; calcd for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1,131.5207, found $1,131.5254$ for (S) - $\mathbf{1 5 d}$; fluorous analytical HPLC ($90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ for 10 min , then $100 \% \mathrm{MeCN}$ for $60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=5.4 \mathrm{~min}$ $(S) \mathbf{- 1 5 a}, 8.5 \min (S) \mathbf{- 1 5 b}, 9.9 \min (S) \mathbf{- 1 5 c}, 17.3 \min (S) \mathbf{- 1 5 d}$.

(4S,5R,7R,13R)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-2-enone, (4S,5R,7S,13R)-13-Pentyl-4,5-bis(triisopropylsilyloxy)-7-diisopropyl-(1,1,1,2,2-pentafluoro-butylsilyloxy)oxacyclotetradec-2-enone, (4R,5S,7R,13R)-13-Pentyl-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy)-7-triisopropylsilyloxy)oxacyclotetradec-2-enone, (4R,5S,7S,13R)-13-Pentyl-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy)oxacyclo-tetradec-2-enone $\mathbf{M}-(\boldsymbol{R}) \mathbf{- 1 5 e - h})$: The procedure for the ring-closing metathesis as reported above for compound M-(R)-15a-d was repeated using mixture M-(R)-14e-h ($577 \mathrm{mg}, 589 \mu \mathrm{~mol}$ based on average molecular weight) and the $2^{\text {nd }}$ generation Grubbs catalyst ($103 \mathrm{mg}, 118 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). Two successive rounds of flash chromatography (40:1 hexanes/EtOAc) gave the title compound as a pale brown oil ($541 \mathrm{mg}, 569 \mu \mathrm{~mol}$), which was taken directly to the next step without further purification.

The ring-closed product ($528 \mathrm{mg}, 555 \mu \mathrm{~mol}$) was then directly subjected to the hydrogenation procedures as reported above for the preparation of compound $\mathrm{M}-(R) \mathbf{- 1 5 a - d}$ using $\mathrm{Pd} / \mathrm{SrCO}_{3}(2.95 \mathrm{~g}, 555 \mu \mathrm{~mol})$ in $\mathrm{EtOH}(27 \mathrm{~mL})$. Flash chromatography of the crude product
(40:1 hexanes/EtOAc) gave the title compound as a colorless oil ($463 \mathrm{mg}, 84 \%$ over two steps, based on average molecular weight): LRMS (ESI, positive mode) $(R)-\mathbf{1 5 e} m / z 820(\mathrm{M}+\mathrm{Na})^{+}$; (R)-15f $m / z 924(\mathrm{M}+\mathrm{Na})^{+} ;(R)-\mathbf{1 5 g} \mathrm{m} / \mathrm{z} 1028(\mathrm{M}+\mathrm{Na})^{+} ;(R)-\mathbf{1 5 h} \mathrm{m} / \mathrm{z} 1132(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI, positive mode): calcd for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 819.6150$, found 819.6223 for (R)-15e; calcd for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 923.5836$, found 923.5826 for (R) - 15f; calcd for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1,027.5521, found $1,027.5491$ for $(R) \mathbf{- 1 5 g}$; calcd for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1,131.5207, found $1,131.5283$ for $(R) \mathbf{- 1 5 h}$; fluorous analytical $\operatorname{HPLC}\left(90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ for 10 min , then $100 \% \mathrm{MeCN}$ for $\left.60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}\right): t_{\mathrm{R}}=15.0 \mathrm{~min}$ $((R)-\mathbf{1 5 e}), 18.0 \min ((R)-\mathbf{1 5 f}), 22.8 \mathrm{~min}((R) \mathbf{- 1 5 g}), 28.4 \min ((R) \mathbf{- 1 5 e})$.

(4S,5R,7R,13R,E)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-3-en-2-one, (4S,5R,7S,13R,E)-13-Pentyl-4,5-bis(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-penta-fluorobutylsilyloxy)oxacyclotetradec-2-enone, (4R,5S,7R,13R,E)-13-Pentyl-4,5-bis(di-isopropyl(1,1,1,2,2-pentafluorobutylsilyloxy)-7-triisopropylsilyloxy)oxacyclotetradec-2enone, ($4 R, 5 S, 7 S, 13 R, E)$-13-Pentyl-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyl-oxy)oxacyclotetradec-2-enone (M-(S)-15e-h): The procedure for the ring-closing metathesis as reported above for the preparation of $\mathrm{M}-(R) \mathbf{- 1 5 a - d}$ was repeated using mixture $\mathrm{M}-(S) \mathbf{- 1 4 e - h}$ (607 $\mathrm{mg}, 620 \mu \mathrm{~mol}$ based on average molecular weight) and the $2^{\text {nd }}$ generation Grubbs catalyst (109 $\mathrm{mg}, 124 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). Two successive rounds of flash chromatography ($40: 1$ hexanes/EtOAc) gave the ring-closed product as a pale brown oil ($584 \mathrm{mg}, 614 \mu \mathrm{~mol}$), which was taken directly to the next step without further purification.

The ring-closed product ($572 \mathrm{mg}, 601 \mu \mathrm{~mol}$) was hydrogenated using the same procedures as reported above for the preparation of $\mathrm{M}-(R) \mathbf{- 1 5 a}$-d using $\mathrm{Pd} / \mathrm{SrCO}_{3}(3.20 \mathrm{~g}, 601$ $\mu \mathrm{mol}$) in EtOH (30 mL). Flash chromatography of the crude product ($40: 1$ hexanes/EtOAc) gave the title compound as a colorless oil $(547 \mathrm{mg}, 94 \%$ over two steps, based on average molecular weight): LRMS (ESI, positive mode) (S)-15e m/z $820(\mathrm{M}+\mathrm{Na})^{+} ;(S)$ - $\mathbf{1 5 f} \mathrm{m} / \mathrm{z} 924$ (M $+\mathrm{Na})^{+} ;(S) \mathbf{- 1 5 g} m / z 1028(\mathrm{M}+\mathrm{Na})^{+} ;(S) \mathbf{- 1 5 h} m / z 1132(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI, positive mode):
calcd for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}]^{+} 796.6253$, found 796.6250 for (S) $\mathbf{- 1 5 e}$; calcd for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 923.5836$, found 923.5859 for $(S) \mathbf{- 1 5 f}$; calcd for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 1,027.5521, found $1,027.5510$ for $(S) \mathbf{- 1 5 g}$; calcd for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1,131.5207, found $1,131.5223$ for $(S) \mathbf{- 1 5 h}$; fluorous analytical HPLC $\left(90: 10 \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}\right.$ for 10 min , then $100 \% \mathrm{MeCN}$ for $60 \mathrm{~min}, 1.0 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=15.7 \mathrm{~min}((S) \mathbf{- 1 5 e}), 19.8 \mathrm{~min}((S) \mathbf{- 1 5 f}), 21.0 \mathrm{~min}$ $((S)-\mathbf{1 5 g}), 27.0 \min ((S)-\mathbf{1 5 h})$.

Demixing of M-(R)-14a-d

Semi-preparative separation of M-(R)-14a-d was carried out on a Waters 600E HPLC system. The mixture M- (R) - $\mathbf{1 4 a - d}$ of four compounds was dissolved in THF (4.5 mL) and filtered through a Whatman syringe filter ($0.45 \mu \mathrm{~m}$ pore size) prior to injection. The separation was carried out on a FluoroFlash PF-C8 HPLC column ($20 \mathrm{~mm} \times 250 \mathrm{~mm}$). The separation was achieved by gradient elution with 90:10 acetonitrile/water up to 100\% acetonitrile in 15 minutes, followed by isocratic elution with 100% acetonitrile for 180 minutes with a constant flow rate of $10.0 \mathrm{~mL} / \mathrm{min}$. A UV detector (230 nm) was used to manually identify the peaks. Aliquots of M$(R) \mathbf{- 1 4 a - d}(50 \mathrm{mg} / \mathrm{mL})$ were injected per chromatographic run. The yield of the demixing over six injections was 93% and the following four compounds were isolated (see Figure S1 below): $(R) \mathbf{- 1 4 a :} 58.8 \mathrm{mg}, \mathrm{t}_{R}=62.2 \mathrm{~min} ;(R) \mathbf{- 1 4 b}: 68.2 \mathrm{mg}, \mathrm{t}_{R}=91.8 \mathrm{~min} ;(R) \mathbf{- 1 4 c}: 111.6 \mathrm{mg}, \mathrm{t}_{R}=114.9$ $\min ;(R)-\mathbf{1 4 d}: 60.0 \mathrm{mg}, \mathrm{t}_{R}=163.4 \mathrm{~min}$.

Figure S1: Fluorous semi-preparative HPLC demix trace of M-(R)-14a-d

(4S,5S,7R,E)-((R)-Dec-1-en-5-yl)-4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate ((R)-14a): From the demixing of $\mathbf{M}-(R) \mathbf{- 1 4 a}$, the first peak $(R) \mathbf{- 1 4 a}(58.8 \mathrm{mg})$ at 62.2 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08$ $\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.80\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.6\right.$
$\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 5 \mathrm{H}), 4.58\left(\mathrm{td}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20($ sextet, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.33\left(\mathrm{ddd}, J_{1}=12.9 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, J_{3}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.80$ $\left(\mathrm{ddd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=8.1 \mathrm{~Hz}, J_{3}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.59(2 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{br}$ $\mathrm{s}, 63 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8,147.6,138.0,135.0,122.5$, $116.9,114.8,76.4,73.7,72.6,68.3,41.6,41.2,34.2,33.4,31.2,29.7,29.6,25.0,22.6,18.3,18.2$, 18.1, 14.0, 12.8, 12.7, 12.4; FTIR (thin film) $v_{\max } 2943,2867,1722,1463,1261,1106,1063$, $994 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{47} \mathrm{H}_{94} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 845.6307$, found 845.6340; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-24.1, \mathrm{c}=1.10, \mathrm{CHCl}_{3}$.

(4S,5S,7S,E)-((R)-Dec-1-en-5-yl)-4,5-bis(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-penta-
fluorobutylsilyloxy)deca-2,9-dienoate $(\boldsymbol{(R)} \mathbf{- 1 4 b})$: From the demixing of $\mathrm{M}-(R)$-14a-d, the second peak $(R) \mathbf{- 1 4 b}(68.2 \mathrm{mg})$ at 91.8 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.81\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.3 \mathrm{~Hz}, J_{3}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.01(\mathrm{~m}, 5 \mathrm{H}), 4.59$ $\left(\mathrm{td}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.02\left(\mathrm{ddd}, J_{1}=9.8 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 5 \mathrm{H}), 1.89\left(\mathrm{ddd}, J_{1}=13.2 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{br} \mathrm{s}, 21 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}, 21 \mathrm{H}), 1.02(\mathrm{br} \mathrm{s}, 14 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,147.2,138.0,134.8,122.5$, $117.3,114.8,74.2,73.7,73.1,69.5,40.9,39.8,34.1,33.4,31.8,29.7,29.6,25.4,24.9,22.6,18.2$, $18.1,17.7,17.6,14.0,13.1,12.9,12.5,0.8 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -85.02 (s, 3F), $-120.42\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right.$); FTIR (thin film) $v_{\max } 2946,2869,1721,1465,1267,1107,994$ cm^{-1}; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{48} \mathrm{H}_{91} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 949.5992, found 949.6046; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-41.0, \mathrm{c}=1.28, \mathrm{CHCl}_{3}$.

(4R,5R,7R,E)-((R)-Dec-1-en-5-yl)-4,5-bis(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy))-7-triisopropylsilyloxydeca-2,9-dienoate ((\boldsymbol{R})-14c): From the demixing of M-(R)-14a-d, the third peak $(R) \mathbf{- 1 4 c}(111.6 \mathrm{mg})$ at 114.9 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.05\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.00\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.90$ (ddt, $\left.J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, J_{3}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, J_{3}=6.5\right.$ $\mathrm{Hz} 1 \mathrm{H}), 5.02(\mathrm{~m}, 5 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.95\left(\mathrm{dt}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.37$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 1.88\left(\mathrm{ddd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.67$ $(\mathrm{m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{br} \mathrm{s}, 21 \mathrm{H}), 1.06(\mathrm{br} \mathrm{s}, 28 \mathrm{H}), 0.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.4,146.2,137.9,134.3,122.9,117.3,114.8,74.4,74.0,73.3,68.6,41.1,39.1,34.1$, $33.4,31.7,29.6,25.7,25.6,25.4,25.3,25.1,22.5,17.7,17.6,17.5,14.1,14.0,13.0,12.8,12.7$, $12.6,12.5,1.6,0.9 ;{ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.93 (s, 3F), -85.01 ($\mathrm{s}, 3 \mathrm{~F}$), -120.44 (m, 4F); FTIR (thin film) $v_{\max } 2946,2869,1723,1201,1108 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{49} \mathrm{H}_{88} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 1,053.5678$, found $1,053.5725 ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+22.4, \mathrm{c}=1.11$, CHCl_{3}.

(4R,5R,7S,E)-((R)-Dec-1-en-5-yl)-4,5,7-tris(diisopropyl(1,1,1,2,2-penta-fluorobutylsilyloxy)) deca-2,9-dienoate ($(\boldsymbol{R}) \mathbf{- 1 4 d})$: From the demixing of M- (R)-14a-d, the fourth peak $(R) \mathbf{- 1 4 d}(60.0$ $\mathrm{mg})$ at 163.4 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05\left(\mathrm{dd}, J_{1}\right.$ $\left.=15.8 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.03\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.79(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~m}$, $5 \mathrm{H}), 4.45\left(\mathrm{td}, J_{1}=4.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}$, $8 \mathrm{H}), 1.70(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{br} \mathrm{s}, 42 \mathrm{H}), 0.88(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,145.9,137.9,133.9,123.1,117.8,114.8,75.9,74.1,72.7,69.1$, $41.8,40.8,34.0,33.3,31.7,29.7,29.6,25.6,25.5,25.4,25.3,25.2,25.0,24.9,22.5,17.8,17.7$, $17.6,17.5,13.9,13.1,13.0,12.9,12.8,12.6,12.5,1.3,1.2,0.8 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $-84.99(\mathrm{~s}, 3 \mathrm{~F}),-85.03(\mathrm{~s}, 3 \mathrm{~F}),-85.05(\mathrm{~s}, 3 \mathrm{~F})-120.42(\mathrm{~m}, 6 \mathrm{~F})$; FTIR (thin film) $v_{\max }$ 2947, 2871, 1723, 1200, 1107, 1063, 993, $887 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{50} \mathrm{H}_{85} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1,157.5363$, found $1,157.5360 ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+18.6, \mathrm{c}=1.11, \mathrm{CHCl}_{3}$.

Demixing of M-(S)-14a-d

The semi-preparative separation of the four-compound mixture M-(S)-14a-d was carried out in the same manner as M-(R)-14a-d. Aliquots of $\mathrm{M}-(S) \mathbf{- 1 4 a - d}(50 \mathrm{mg} / \mathrm{mL})$ were injected per chromatographic run. The yield of the demixing over six injections was 80% and the following four compounds were isolated (see Figure S 2 below): $(S) \mathbf{- 1 4 a}: 83.0 \mathrm{mg}, \mathrm{t}_{R}=37.8 \mathrm{~min}$; $(S) \mathbf{- 1 4 b}$: $92.4 \mathrm{mg}, \mathrm{t}_{R}=54.9 \mathrm{~min} ;(S) \mathbf{- 1 4 c}: 90.4 \mathrm{mg}, \mathrm{t}_{R}=68.1 \mathrm{~min} ;(S) \mathbf{- 1 4 d}: 105.7 \mathrm{mg}, \mathrm{t}_{R}=91.5 \mathrm{~min}$.

Figure S2: Fluorous semi-preparative HPLC demix trace of M-(S)-14a-d

(4S,5S,7R,E)-((S)-Dec-1-en-5-yl) 4,5,7-tris(triisopropylsilyloxy)deca-2,9-dienoate ((S)-14a):
From the demixing of M-(S)-14a-d, the first peak $(S) \mathbf{- 1 4 a}(83.0 \mathrm{mg})$ at 37.8 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08$ $\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.81\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, J_{3}=6.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.34\left(\mathrm{ddd}, J_{1}=\right.$ $\left.13.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, J_{3}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.80\left(\mathrm{ddd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, J_{3}=\right.$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{br} \mathrm{s}, 42 \mathrm{H}), 1.05(\mathrm{br} \mathrm{s}, 21 \mathrm{H}), 0.88$ ($\mathrm{t}, J=7.0 \mathrm{~Hz}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,147.6,138.0,135.0,122.5,116.9,114.8$, $76.4,73.7,72.6,68.3,41.6,41.2,34.0,33.4,31.8,29.7,24.9,22.6,18.3,18.2,18.1,14.0,12.8$,
12.7, 12.4; FTIR (thin film) $v_{\max } 2946,2868,1722,1465,1262,1201,1111,1064,995 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{47} \mathrm{H}_{94} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 845.6307, found 845.6323; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-22.8, \mathrm{c}=1.07, \mathrm{CHCl}_{3}$.

($4 S, 5 S, 7 S, E)$-((S)-Dec-1-en-5-yl)-4,5-bis(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-penta-fluorobutylsilyloxy)deca-2,9-dienoate $((S) \mathbf{- 1 4 b})$: From the demixing of $\mathrm{M}-(S) \mathbf{- 1 4 a - d}$, the second peak $(S) \mathbf{- 1 4 b}(92.4 \mathrm{mg})$ at 54.9 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.80\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.0 \mathrm{~Hz}, J_{3}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.01(\mathrm{~m}, 5 \mathrm{H}), 4.59$ $(\mathrm{m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 5 \mathrm{H}), 1.89\left(\mathrm{ddd}, J_{1}=13.0 \mathrm{~Hz}, J_{2}=\right.$ $\left.10.5 \mathrm{~Hz}, J_{3}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{br} \mathrm{s}, 21 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}$, 21 H), $1.02(\mathrm{br} \mathrm{s}, 14 \mathrm{H}), 0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,147.2,138.0,134.8,122.5,117.3,114.7,74.3,73.7,73.1,69.5,40.9,39.8,34.1,33.4$, 31.7, 29.7, 25.7, 25.4, 24.9, 22.6, 18.2, 18.1, 17.7, 17.6, 14.0, 13.1, 12.9, 12.5, 0.8; ${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-85.03(\mathrm{~s}, 3 \mathrm{~F}),-120.43\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right)$; FTIR (thin film) $v_{\max } 2946$, 2869, 1722, 1465, 1267, 1107, $994 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{48} \mathrm{H}_{91} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 949.5992$, found 949.6074; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-46.4, \mathrm{c}=1.08, \mathrm{CHCl}_{3}$.

(4R,5R,7R,E)-((R)-Dec-1-en-5-yl)-4,5-bis(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy))-7-triisopropylsilyloxydeca-2,9-dienoate ((\boldsymbol{S})-14c): From the demixing of M-(S)-14a-d, the third peak $(S) \mathbf{- 1 4 c}(90.4 \mathrm{mg})$ at 68.1 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.05\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.00\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.90$ $\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, J_{3}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.80\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, J_{3}=6.5\right.$ $\mathrm{Hz} 1 \mathrm{H}), 5.02(\mathrm{~m}, 5 \mathrm{H}), 4.44(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (sextet, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 2.38$ $(\mathrm{m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 1.88\left(\mathrm{ddd}, J_{1}=13.5 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 6 \mathrm{H}), 1.06(\mathrm{br} \mathrm{s}, 49 \mathrm{H}), 0.88(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,146.2,137.9,134.3,122.9,117.3,114.8,74.3,74.0,73.3,68.6,41.0,39.1,34.1,33.4$, $31.7,29.6,25.7,25.6,25.4,25.3,25.1,24.9,22.5,17.6,17.5,14.0,13.0,12.7,12.6,1.6,0.9,{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3}) -84.95 (s, 3F), -85.02 ($\left.\mathrm{s}, 3 \mathrm{~F}\right),-120.42\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.0 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.48$ ($\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.0 \mathrm{~Hz}, 2 \mathrm{~F}$); FTIR (thin film) $v_{\max } 2947,2870,1723,1466,1266,1201,1107,1065$, 994, $885 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{49} \mathrm{H}_{88} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 1,053.5678$, found $1,053.5664 ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+22.9, \mathrm{c}=1.08, \mathrm{CHCl}_{3}$.

(4R,5R,7S,E)-((S)-Dec-1-en-5-yl)-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy))
deca-2,9-dienoate $(\boldsymbol{S} \boldsymbol{S} \mathbf{- 1 4 d})$: From the demixing of $\mathrm{M}-(S) \mathbf{- 1 4 a - d}$, the fourth peak $(S) \mathbf{- 1 4 d}$ $(105.7 \mathrm{mg})$ at 91.5 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.03\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.79(\mathrm{~m}, 2 \mathrm{H})$, $5.02(\mathrm{~m}, 5 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 8 \mathrm{H}), 1.70(\mathrm{~m}$, $3 \mathrm{H}), 1.57(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{br} \mathrm{s}, 42 \mathrm{H}), 0.88(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,145.9,137.9,133.9,123.1,117.8,114.8,75.9,74.1,72.7,69.1,41.8$, $40.8,34.1,33.3,31.7,29.6,25.7,25.6,25.4,25.3,25.2,25.1,25.0,24.9,22.5,17.8,17.7,17.6$, $17.5,14.0,13.1,13.0,12.9,12.8,12.6,12.5,1.3,1.2,0.8 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.99 $(\mathrm{s}, 3 \mathrm{~F}),-85.03(\mathrm{~s}, 3 \mathrm{~F}),-85.05(\mathrm{~s}, 3 \mathrm{~F}),-120.40\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=18.0 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.47\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=18.0\right.$ $\mathrm{Hz}, 2 \mathrm{~F}$), $-120.48\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=18.0 \mathrm{~Hz}, 2 \mathrm{~F}\right)$; FTIR (thin film) $v_{\max }$ 2949, 2870, 1723, 1200, 1107, 1065, 993, $886 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{50} \mathrm{H}_{85} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 1,157.5363, found 1,157.5306; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+18.7, \mathrm{c}=1.12, \mathrm{CHCl}_{3}$.

Demixing of M-(R)-15a-d

The semi-preparative separation of $\mathrm{M}-(R) \mathbf{- 1 5 a - d}$ was carried out in the same manner as M-(R)-14a-d. Aliquots of $\mathrm{M}-(R) \mathbf{- 1 5 a - d}(90 \mathrm{mg} / \mathrm{mL})$ were injected per chromatographic run. The yield of the demixing over six injections was 48% and the following four compounds were isolated (see Figure S3 below): $(R) \mathbf{- 1 5 a}: 82.4 \mathrm{mg}, \mathrm{t}_{R}=34.7 \mathrm{~min} ;\left((R) \mathbf{- 1 5 b}: 80.5 \mathrm{mg}, \mathrm{t}_{R}=49.7\right.$ $\min ;\left((R)-15 \mathrm{c}: 66.8 \mathrm{mg}, \mathrm{t}_{R}=64.7 \mathrm{~min} ;\left((R)-\mathbf{1 5 d}: 52.3 \mathrm{mg}, \mathrm{t}_{R}=87.0 \mathrm{~min}\right.\right.$

Figure S1: Fluorous semi-preparative HPLC demix trace of M-(R)-15a-d

(4S,5S,7R,13R,E)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-2-en-one ((R)-
15a): From the demixing of $\mathrm{M}-(R) \mathbf{- 1 5 a - d}$, the first peak $(R) \mathbf{- 1 5 a}(82.4 \mathrm{mg})$ at 34.7 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.11\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (quintet, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 5 \mathrm{H}), 1.50(\mathrm{~m}, 3 \mathrm{H})$, $1.37(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{br} \mathrm{s}, 63 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.2,149.0,122.6,74.9,74.5,73.1,69.4,37.0,35.3,33.5,33.1,31.8,30.3,25.3,23.3$, $22.6,21.1,18.3,18.2,18.1,14.0,13.1,12.5$; FTIR (thin film) $v_{\max } 2943,2867,1718,1463$, 1255, 1200, 1106, 1059, 996, $883 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 819.6145$, found 819.6192; $[\alpha]_{D}^{25^{\circ^{\circ}} \mathrm{C}}=-34.6, \mathrm{c}=0.76, \mathrm{CHCl}_{3}$.

(4S,5S,7S,13R)-13-Pentyl-4,5-bis(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-pentafluoro-butylsilyloxy)oxacyclotetradec-2-enone $((R)-15 b)$: From the demixing of $\mathrm{M}-(R) \mathbf{- 1 5 a - d}$, the second peak (R) - $\mathbf{1 5 b}(80.5 \mathrm{mg})$ at 49.7 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.11\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.25$ (quintet, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 2.18\left(\mathrm{dt}, J_{1}=14.5\right.$ $\left.\mathrm{Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.05(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 3 \mathrm{H}), 1.51(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{br} \mathrm{s}, 10 \mathrm{H}), 1.11(\mathrm{br} \mathrm{s}$, 42 H), $1.03(\mathrm{br} \mathrm{s}, 14 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,148.7,120.9,74.1,73.9,73.3,71.0,40.7,35.6,32.5,31.8,30.0,25.7,25.4,23.4,22.5$, $19.8,18.2,18.1,18.0,17.9,17.8,14.0,12.9,12.7,12.5,12.4,1.6 ;{ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl_{3}) $-84.98(\mathrm{~s}, 3 \mathrm{~F}),-120.08\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=18.0 \mathrm{~Hz}, 2 \mathrm{~F}\right) ;$ FTIR (thin film) $v_{\max } 2944,2868,1717,1463$, 1258, 1199, 1106, 1056, 1014, 995, $883 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 923.5836$, found 923.5790; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-21.4, \mathrm{c}=0.89, \mathrm{CHCl}_{3}$.

($4 R, 5 R, 7 R, 13 R$)-13-Pentyl-4,5-bis(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy)-7-triiso-propylsilyloxy)oxacyclotetradec-2-enone $((\boldsymbol{R})-\mathbf{1 5 c})$: From the demixing of $\mathrm{M}-(R)$-15a-d, the third peak $(R)-15 c(66.8 \mathrm{mg})$ at 64.7 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.85\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.95(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 4.44$ $(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.05$ (quintet, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.72$ $(\mathrm{m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 5 \mathrm{H}), 1.27(\mathrm{~m}, 11 \mathrm{H}), 1.06(\mathrm{br} \mathrm{s}, 49 \mathrm{H}), 0.88(\mathrm{~m}, 7 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,146.7,123.7,77.2,75.9,73.9,69.9,42.1,37.3,33.8,31.7,31.0,28.4$, $25.4,25.3,25.2,24.1,22.5,18.3,17.7,17.6,17.5,14.0,13.0,12.7,12.6,12.5,0.9,0.8 ;{ }^{19}$ F NMR
$\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-84.91(\mathrm{~s}, 3 \mathrm{~F}),-84.93(\mathrm{~s}, 3 \mathrm{~F}),-120.19\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.29(\mathrm{t}$, ${ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}$); FTIR (thin film) $v_{\max } 2944,2867,1721,1199,1104,1065 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1,027.5516, found 1,027.5504; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+2.04, \mathrm{c}=0.90, \mathrm{CHCl}_{3}$.

(4R,5R,7S,13R)-13-Pentyl-4,5,7-tris(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy)oxa-cyclotetradec-2-enone $((\boldsymbol{R}) \mathbf{- 1 5 d})$: From the demixing of $\mathrm{M}-(R)$-15a-d, the fourth peak (R)-15d $(52.3 \mathrm{mg})$ at 87.0 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86($ $\left.\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08\left(\mathrm{dt}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz} 1 \mathrm{H}\right), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}$, $3 \mathrm{H}), 1.54(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 11 \mathrm{H}), 1.20(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{br} \mathrm{s}, 42 \mathrm{H}), 0.89(7 \mathrm{H}), 0.82$ ($\mathrm{m}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,145.8,124.3,75.6,74.9,72.7,69.7,38.9,36.6$, $34.6,32.5,31.7,29.4,25.5,25.3,25.1,25.0,24.6,23.1,22.5,17.7,17.6,17.4,14.0,13.2,13.0$, $12.8,12.6,1.4,1.3,0.8 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.93 ($\mathrm{s}, 3 \mathrm{~F}$), $-84.95(\mathrm{~s}, 3 \mathrm{~F}),-84.98(\mathrm{~s}$, $3 \mathrm{~F}),-120.09\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.24\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.39\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}\right.$, 2F); FTIR (thin film) $v_{\max }$ 2930, 2360, 2340, 1610, 1465, 1195, $1023 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1,131.5207$, found 1,131.5256; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+16.1$ $\mathrm{c}=1.30, \mathrm{CHCl}_{3}$.

Demixing of M-(S)-15a-d

The semi-preparative separation of $\mathrm{M}-(S) \mathbf{- 1 5 a}-\mathrm{d}$ was carried out in the same manner as M-(R)-15a-d. Aliquots of M-(S)-15a-d $(90 \mathrm{mg} / \mathrm{mL})$ were injected per chromatographic run. The yield of the demixing over six injections was 60% and the following four compounds were isolated (see Figure S4 below): $(S) \mathbf{- 1 5 a}: 89.1 \mathrm{mg}, \mathrm{t}_{R}=50.3 \mathrm{~min} ;(S) \mathbf{- 1 5 b}: 69.6 \mathrm{mg}, \mathrm{t}_{R}=85.5$ $\min ;(S) \mathbf{- 1 5 c}: 69.9 \mathrm{mg}, \mathrm{t}_{R}=99.8 \mathrm{~min} ;(S) \mathbf{- 1 5 d}: 87.4 \mathrm{mg}, \mathrm{t}_{R}=161.7 \mathrm{~min}$.

Figure S4: Fluorous semi-preparative HPLC demix trace of M-(S)-15a-d

(4S,5S,7R,13S,E)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-2-enone
$\mathbf{1 5 a}$): From the demixing of $(S) \mathbf{- 1 5 a - d}$, the first peak $(S) \mathbf{- 1 5 a}(89.1 \mathrm{mg})$ at 50.3 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30\left(\mathrm{dt}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=\right.$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.32(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}, 63 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,147.7,123.5,75.3,74.5,72.7,69.3,37.3,37.2,34.7,32.7,31.8,29.7,25.1,24.9$, $22.6,22.4,18.3,18.1,14.0,13.0,12.9,12.3$; FTIR (thin film) $v_{\max } 2942,2866,1722,1462$,

1261, 1106, 1063, $1016 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}]^{+}$: 796.6253, found 796.6273; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-30.4, \mathrm{c}=1.12, \mathrm{CHCl}_{3}$.

(4S,5S,7S,13S)-13-Pentyl-4,5-bis-(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-penta-fluoro-butylsilyloxy)oxacyclotetradec-2-enone ((S)-15b): From the demixing of M-(S)-15a-d, the second peak $(S) \mathbf{- 1 5 b}(69.6 \mathrm{mg})$ at 85.5 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.98(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~m}$, $1 \mathrm{H}), 4.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (septet, $J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.79$ (quintet, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.30$ (br s, 6H), $1.20(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{br} \mathrm{s}, 56 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,148.0,123.3,76.3,75.5,73.3,71.5,41.9,37.1,34.2,31.7,31.0,29.7$, $28.0,25.0,24.3,23.9,22.6,18.2,18.1,18.0,17.9,17.8,14.0,13.4,13.1,12.4,12.3,1.5,{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.95 ($\mathrm{s}, 3 \mathrm{~F}$), $-120.26\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=18.0 \mathrm{~Hz}, 2 \mathrm{~F}\right.$); FTIR (thin film) $v_{\max }$ 2943, 2867, 1722, 1463, 1261, 1200, 1103, 1065, 996, $884 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 923.5836, found 923.5803; $[\alpha]_{D}^{5^{\circ} \mathrm{C}}=-1.15, \mathrm{c}=1.08$, CHCl_{3}.

(4R,5R,7R,13S)-13-Pentyl-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutyl-silyloxy)-7-triiso-propylsilyloxy)oxacyclotetradec-2-enone ((\boldsymbol{S})-15c): From the demixing of M-(S)-15a-d, the third peak $(S)-\mathbf{1 5 c}(69.9 \mathrm{mg})$ at 99.8 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (600 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.31\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.97$ $(\mathrm{m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 6 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 4 \mathrm{H})$, $1.53(\mathrm{~m}, 5 \mathrm{H}), 1.31(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 1.08(\mathrm{br} \mathrm{s}, 28 \mathrm{H}), 1.04(\mathrm{br} \mathrm{s}, 21 \mathrm{H}), 0.90(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,147.1,121.6,74.5,74.3,73.7,70.1,40.9,37.1,34.2$, $32.8,31.8,31.0,30.3,29.7,28.0,26.9,25.4,25.3,25.2,25.0,24.3,23.9,23.6,22.6,22.5,20.6$, $18.3,18.2,17.5,14.0,13.4,13.1,12.9,12.6,12.4,12.3,0.9 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.85 $(\mathrm{s}, 3 \mathrm{~F}),-84.99(\mathrm{~s}, 3 \mathrm{~F}),-120.31\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.48\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right)$; FTIR (thin film) $v_{\max } 2944,2868,1719,1463,1260,1199,1106,1054,995,884 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1,027.5521, found 1,027.5506; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+2.04, \mathrm{c}=0.90, \mathrm{CHCl}_{3}$.

(4R,5R,7S,13S)-13-Pentyl-4,5,7-tris(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy)oxa-cyclotetradec-2-enone ((S)-15d): From the demixing of M-(S)-15a-d, the fourth peak (S)-15d $(87.4 \mathrm{mg})$ at 161.7 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11$ (dd, $\left.J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (quintet, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~m}, 5 \mathrm{H}), 1.26(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.10(\mathrm{br} \mathrm{s}$, 14 H), 1.1.06 (br s, 14H), 1.01 (br s, 14H), $0.89(7 \mathrm{H}), 0.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 165.7,147.0,75.3,74.5,72.9,69.8,37.1,35.8,33.7,32.9,31.8,30.4,30.2,29.7,25.7,25.6$, $25.4,25.2,25.1,24.9,23.6,22.7,22.5,21.7,17.6,17.5,17.4,14.1,14.0,13.0,12.9,12.8,12.7$, $12.6,1.5,0.8,0.7 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.90 ($\mathrm{s}, 3 \mathrm{~F}$), $-84.95(\mathrm{~s}, 3 \mathrm{~F}),-84.96(\mathrm{~s}, 3 \mathrm{~F})$, $-120.32\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.38\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right),-120.48\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=17.5 \mathrm{~Hz}, 2 \mathrm{~F}\right) ;$ FTIR (thin film) $v_{\max }$ 2944, 2869, 1719, 1199, 1106, 1051, $996 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}:$1,131.5207, found 1,131.5254; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+16.1, \mathrm{c}=1.30, \mathrm{CHCl}_{3}$.

Demixing of M-(R)-15e-h

The semi-preparative separation of $\mathrm{M}-(R) \mathbf{- 1 5 e - h}$ was carried out in the same manner as M-(R)-15a-d. Aliquots of M- $(R) \mathbf{- 1 5 e - h}(90 \mathrm{mg} / \mathrm{mL})$ were injected per chromatographic run. The yield of the demixing over five injections was 69% and the following four compounds were isolated (see Figure S5 below): $(R) \mathbf{- 1 5 e}: 59.2 \mathrm{mg}, \mathrm{t}_{R}=29.2 \mathrm{~min} ;(R) \mathbf{- 1 5 f : ~} 94.1 \mathrm{mg}, \mathrm{t}_{R}=39.4 \mathrm{~min}$; $(R)-\mathbf{1 5 g}: 114 \mathrm{mg}, \mathrm{t}_{R}=58.9 \mathrm{~min} ;(R)-\mathbf{1 5 h}: 41.5 \mathrm{mg}, \mathrm{t}_{R}=78.4 \mathrm{~min}$.

Figure S5: Fluorous semi-preparative HPLC demix trace of M-(R)-15e-h

(4S,5R,7R,13R,E)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-2-en-one (R)-
15e): From the demixing of $\mathrm{M}-(R)-\mathrm{M}-\mathbf{1 5 e} \mathrm{eh}$, the first peak $(R) \mathbf{- 1 5 e}(59.2 \mathrm{mg})$ at 29.2 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=3.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36\left(\mathrm{td}, J_{1}=12.6 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.05(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{br} \mathrm{s}, 63 \mathrm{H}), 0.89(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,148.5,128.4,77.3,74.5,72.3,68.7,36.8$, $34.6,32.5,32.3,32.1,31.8,31.6,30.6,30.3,22.6(\mathrm{br} \mathrm{s}), 18.4(\mathrm{br} \mathrm{s}), 14.1$; FTIR (thin film) $v_{\max }$

2944, 2867, 1731, 1464, 1255, 1200, 1106, 1059, 998, $883 \mathrm{~cm}^{-1}$; HRMS calcd (ESI) for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 819.6150$, found 819.6223; $[\alpha]_{D}^{75^{5^{\circ} \mathrm{C}}}=-1.36, \mathrm{c}=1.26, \mathrm{CHCl}_{3}$.

(4S,5R,7S,13R)-13-Pentyl-4,5-bis(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-pentafluoro-butylsilyloxy)oxacyclotetradec-2-enone $((R)-\mathbf{1 5 f})$: From the demixing of $\mathrm{M}-(R) \mathbf{- 1 5 e} \mathbf{- h}$, the second peak $(R) \mathbf{- 1 5 f}(94.1 \mathrm{mg})$ at 39.4 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.07\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.96(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64\left(\mathrm{td}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.45\left(\mathrm{td}, J_{1}=12.8 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 8 \mathrm{H})$, $1.40-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{br} \mathrm{s}, 42 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}, 14 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83$ (m, 2H) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4,148.4,121.6,77.0,74.3,73.7,69.5,42.4,34.0$, $33.4,32.7,32.3,32.2,31.7,30.3,29.9,25.4,23.1,22.6,20.0,18.3,17.8,1.5 ;{ }^{19} \mathrm{~F}$ NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)-84.99(\mathrm{~s}, 3 \mathrm{~F}),-120.26\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=18.0 \mathrm{~Hz}, 2 \mathrm{~F}\right)$; FTIR (thin film) $v_{\max } 2945,2868$, 1720, 1464, 1257, 1120, 1054, 992, $884 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 923.5836$, found 923.5826; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-12.7, \mathrm{c}=1.37, \mathrm{CHCl}_{3}$.

(4R,5S,7R,13R)-13-Pentyl-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy)-7-triiso-propylsilyloxy)oxacyclotetradec-2-enone $((\boldsymbol{R}) \mathbf{- 1 5 g})$: From the demixing of $\mathrm{M}-(R)-\mathbf{1 5 e}-\mathrm{h}$, the third peak $(R)-\mathbf{1 5 g}(114.0 \mathrm{mg})$ at 58.9 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68\left(\mathrm{dd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.86(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~m}$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92\left(\mathrm{td}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.08(\mathrm{br} \mathrm{s}, 49$
H), $0.88(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7,147.2,122.7,76.2,75.5,69.7,69.5,42.8$, $42.2,36.1,35.1,34.7,34.5,33.4,32.0,30.3,27.2,25.6,22.5,18.3,14.0,13.4,13.0,12.8,1.5$, $0.9 ;{ }^{19}$ F NMR (282 MHz, CDCl_{3}) -85.00 ($\mathrm{s}, 3 \mathrm{~F}$), -85.03 ($\mathrm{s}, 3 \mathrm{~F}$), -120.19 (m, 4F); FTIR (thin film) $v_{\max } 2946,2869,1723,1465,1200,1106,1051,993,885 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1,027.5521, found 1,027.5491; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+15.6$, $\mathrm{c}=1.17, \mathrm{CHCl}_{3}$.

(4R,5S,7S,13R)-13-Pentyl-4,5,7-tris(diisopropyl(1,1,1,2,2-pentafluorobutylsilyloxy)oxa-cyclotetradec-2-enone ($(\boldsymbol{R}) \mathbf{- 1 5 h})$: From the demixing of M- $(R) \mathbf{- 1 5 e - h}$, the fourth peak $(R) \mathbf{- 1 5 h}$ $(41.5 \mathrm{mg})$ at 78.4 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86$ ($\left.\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~m}$, $6 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}, 42 \mathrm{H}), 0.88(9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,147.8$, $122.7,76.2,76.0,75.7,69.2,35.1,34.8,34.2,31.7,28.2,24.8(\mathrm{~m}), 22.5,17.7,13.2,12.8,1.5$, $0.8,0.7 ;{ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$) -85.01 ($\mathrm{s}, 3 \mathrm{~F}$), $-85.04(\mathrm{~s}, 3 \mathrm{~F}),-85.09(\mathrm{~s}, 3 \mathrm{~F}),-120.45(\mathrm{~m}$, 6 F); FTIR (thin film) $v_{\max } 2947,2870,1724,1465,1200,1105,1052,993,886,750 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1,131.5207, found $1,131.5283 ;[\alpha]_{D}^{5^{\circ} \mathrm{C}}=+8.88, \mathrm{c}=1.08, \mathrm{CHCl}_{3}$.

Demixing of M-(S)-15e-h

The semi-preparative separation of $\mathrm{M}-(S) \mathbf{- 1 5 e} \mathrm{eh}$ was carried out in the same manner as M- $(R) \mathbf{- 1 5 a - d}$. Aliquots of $\mathrm{M}-(S) \mathbf{- 1 5 e}-\mathrm{h}(50 \mathrm{mg} / \mathrm{mL})$ were injected per chromatographic run. The yield of the demixing over ten injections was 56% and the following four compounds were isolated (see Figure S6 below): (S)-15e: $73.4 \mathrm{mg}, \mathrm{t}_{R}=30.2 \mathrm{~min}$; $(S) \mathbf{- 1 5 f : ~} 52.0 \mathrm{mg}, \mathrm{t}_{R}=42.8 \mathrm{~min}$; $(S) \mathbf{- 1 5 g}: 60.3 \mathrm{mg}, \mathrm{t}_{R}=42.1 \mathrm{~min} ;(S) \mathbf{- 1 5 h}: 65.8 \mathrm{mg}, \mathrm{t}_{R}=70.9 \mathrm{~min}$. Four additional injections were needed for compound $(S) \mathbf{- 1 5 g}$ to improve its isomeric purity.

Figure S6: Fluorous semi-preparative HPLC demix trace of M-(S)-15e-h

(4S,5R,7R,13S,E)-14-Pentyl-5,6,8-tris(triisopropylsilyloxy)oxacyclotetradec-2-enone
15e): From the demixing of $\mathrm{M}-(S) \mathbf{- 1 5 e - h}$, the first peak $(S) \mathbf{- 1 5 e}(73.4 \mathrm{mg})$ at 30.2 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=8.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.84\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.91(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}$, $1 \mathrm{H}), 3.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.00(\mathrm{t}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79\left(\mathrm{ddd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, J_{3}=3.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.17$ $(\mathrm{m}, 3 \mathrm{H}), 1.07(\mathrm{br} \mathrm{s}, 63 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,150.1$,
$121.5,77.6,76.3,75.7,68.9,34.7,34.3,31.8,31.6,29.7,28.6,24.7,22.6,20.1,18.3$ (br s), 14.0, $13.0(\mathrm{br} \mathrm{s}) ;$ FTIR (thin film) $v_{\max } 2944,2867,1723,1464,1259,1058,1014,995,883 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{45} \mathrm{H}_{92} \mathrm{O}_{5} \mathrm{Si}_{3}[\mathrm{M}]^{+}: 796.6253$, found 796.6250; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-12.0, \mathrm{c}=1.10$, CHCl_{3}.

(4S,5R,7S,13S)-13-Pentyl-4,5-bis(triisopropylsilyloxy)-7-diisopropyl(1,1,1,2,2-pentafluoro-butylsilyloxy)oxacyclotetradec-2-enone ($(\boldsymbol{S}) \mathbf{- 1 5 f})$: From the demixing of M-(S)-15e-h, the second peak $(S) \mathbf{- 1 5 f}(52.0 \mathrm{mg})$ at 42.8 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73\left(\mathrm{dd}, J_{1}=15.9 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.86(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~m}$, $1 \mathrm{H}), 4.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88\left(\mathrm{td}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}\right.$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.45(\mathrm{~m}, 9 \mathrm{H}), 1.44-1.21(\mathrm{~m}, 8 \mathrm{H}), 1.08(\mathrm{br} \mathrm{s}$, $56 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.0,149.3,121.6$, $178.9,75.7,75.5,70.3,42.6,35.1,34.3,31.8,31.7,27.1,25.1,23.2,18.2,14.5,12.5,1.5 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.98 ($\mathrm{s}, 3 \mathrm{~F}$), $-120.34\left(\mathrm{t},{ }^{3} J_{\mathrm{HF}}=18.0 \mathrm{~Hz}, 2 \mathrm{~F}\right.$); FTIR (thin film) $v_{\max }$ 2945, 2868, 1722, 1465, 1261, 1200, 1052, $993,884 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{5} \mathrm{~F}_{5} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 923.5836$, found $923.5859 ;[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-20.0, \mathrm{c}=1.01, \mathrm{CHCl}_{3}$.

($4 R, 5 S, 7 R, 13 S$)-13-Pentyl-4,5-bis(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy)-7-triiso-propylsilyloxy)oxacyclotetradec-2-enone ($(S)-15 g)$: From the demixing of $\mathrm{M}-(S)$-15e-h, the third peak $(S) \mathbf{- 1 5 g}(60.3 \mathrm{mg})$ at 42.1 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~m}$,
$2 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 1.21(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{br} \mathrm{s}, 49 \mathrm{H}), 0.92(\mathrm{~m}$, $4 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,146.8,122.0,77.2,74.5,73.9$, $68.8,42.7,33.9,31.8,30.2,26.5,25.7,25.5,25.4(\mathrm{~m}), 23.3,22.6,18.2,1.0,0.7 ;{ }^{19}$ F NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) -85.01 (br s, 6F), -120.38 (m, 4F); FTIR (thin film) $v_{\text {max }} 2946$, 2869, 1720, 1464, 1260, 1201, 1108, 1054, 992, $885 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{47} \mathrm{H}_{86} \mathrm{O}_{5} \mathrm{~F}_{10} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1,027.5521$, found $1,027.5510 ;[\alpha]_{D}^{75^{5} \mathrm{C}}=+9.27, \mathrm{c}=1.12, \mathrm{CHCl}_{3}$.

($4 R, 5 S, 7 S, 13 S$)-13-Pentyl-4,5,7-tris(diisopropyl-(1,1,1,2,2-pentafluorobutylsilyloxy)oxa-cyclotetradec-2-enone ($(\mathbf{S}) \mathbf{- 1 5 h}$): From the demixing of M-(R)-15e-h, the fourth peak (S)-15h $(65.8 \mathrm{mg})$ at 70.9 minutes was isolated as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}$, $6 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.21(\mathrm{~m}, 10 \mathrm{H}), 1.09$ (br s, 42 H), $0.89(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,146.5$, $125.5,76.0,73.0,69.4,68.7,40.3,37.2,34.3,32.5,31.7,30.3,29.7,25.7,25.3$ (m), 22.5 (br s), $17.8,17.5$ (br s), 14.0, 1.5, 0.8, 0.7; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) -84.96 (s, 3F), $-85.02(\mathrm{~s}, 3 \mathrm{~F})$, $-85.05(\mathrm{~s}, 3 \mathrm{~F}),-120.44$ (m, 6F); FTIR (thin film) $v_{\text {max }} 2948,2871,1730,1466,1200,1105$, 1062, 995, 886, $750 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{O}_{5} \mathrm{~F}_{15} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: $1,131.5207$, found $1,131.5223 ;[\alpha]_{b}^{5^{5} \mathrm{C}}=+0.19, \mathrm{c}=1.17, \mathrm{CHCl}_{3}$.

Detaggings

(5S,6S,8R,14R,E)-4,6,8-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4S,5S,7R,13R)-
1): Tetrabutylammonium fluoride (TBAF, $0.61 \mathrm{~mL}, 0.61 \mathrm{mmol}, 6$ equiv) was added dropwise to a solution of the ester $(R) \mathbf{- 1 5 a}(81.1 \mathrm{mg}, 102 \mu \mathrm{~mol})$ in THF $(1.00 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , and then warmed to room temperature. After stirring at room temperature for 4 h , the reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(3.0 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 15 minutes, the white suspension was diluted with water (1.0 mL) and ether (3.0 mL) and transferred to a separatory funnel. The aqueous layer was separated and extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were then washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The product after flash chromatography (3:1 hexanes/EtOAc, then 100% EtOAc) was dissolved in THF (3.0 mL), filtered using a Whatman syringe filter ($0.45 \mu \mathrm{~m}$ pore size), and then further purified using a (S, S)-Whelk-O-1 column ($25 \mathrm{~cm} \times 21.1 \mathrm{~mm}$). The purification was achieved by isocratic elution first with 90:10 hexanes/isopropanol for the first 15 minutes, then isocratic elution with 80:20 hexanes/isopropanol for 30 minutes. A constant flow rate of $10.0 \mathrm{~mL} / \mathrm{min}$ was run throughout the separation and a UV detector (230 nm) was used to manually identify the peaks. The reaction after purification on the (S, S)-Whelk- O-1 column after three injections furnished the title compound as an amorphous white solid (6.4 mg): ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.04$ (dd, $\left.J_{1}=15.8 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.11\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.95\left(\mathrm{dddd}, J_{1}=12.5\right.$ $\left.\mathrm{Hz}, J_{2}=7.6 \mathrm{~Hz}, J_{3}=5.0 \mathrm{~Hz}, J_{4}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.26\left(\mathrm{ddd}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, J_{3}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.77\left(\mathrm{dt}, J_{1}=7.4 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.70\left(\mathrm{dd}, J_{1}=5.4 \mathrm{~Hz}, J_{2}\right.$ $=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{br} \mathrm{s}, 7 \mathrm{H}), 1.19(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.91(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.0,148.7,123.5,77.6,75.8,74.4,69.2$, $37.9,36.8,36.4,34.2,33.0,29.7,26.6,26.4,25.3,23.8,14.5$; FTIR (thin film) $v_{\max } 2926,2857$,

1705, 1270, $1100 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}]^{+}$: 328.2250, found 328.2243; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-9.43, \mathrm{c}=0.54, \mathrm{MeOH}$.

(5S,6S, $\mathbf{S S}, 14 R, E)-5,6,8$-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4S,5S,7S,13R)-
1): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(R) \mathbf{- 1 5 b}(79.3 \mathrm{mg}, 88.0 \mu \mathrm{~mol})$ and TBAF $(0.53 \mathrm{~mL}, 0.53 \mathrm{mmol}, 6$ equiv) in THF (0.90 mL). Flash chromatography ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) of the crude product gave the title compound as an amorphous white solid ($14.6 \mathrm{mg}, 51 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$) $\delta 6.96\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.10\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.93(\mathrm{~m}, 1 \mathrm{H})$, $4.03\left(\mathrm{ddd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, J_{3}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.54\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.47$ $(\mathrm{m}, 1 \mathrm{H}), 1.76\left(\mathrm{ddd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, J_{3}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{br} \mathrm{s}, 9 \mathrm{H}), 1.26(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.1,149.4,123.1,77.8,75.9,74.6,68.3,43.8,35.8,35.6,33.3,33.0,27.6$, 26.4, 24.2, 23.9, 23.8, 14.5; FTIR (thin film) $v_{\max } 3318,2930,2854,1708,1284 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}]^{+}: 328.2250$, found 328.2260; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-18.8, \mathrm{c}=0.77, \mathrm{MeOH}$.

$(5 R, 6 R, 8 R, 14 R, E)-5,6,8-T r i h y d r o x y-14-p e n t y l o x a c y c l o t e t r a d e c-3-e n-2-o n e ~((4 R, 5 R, 7 R, 13 R)-$ 1): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$ above was followed using $(R) \mathbf{- 1 5 c}(66.0 \mathrm{mg}, 65.8 \mu \mathrm{~mol})$ and TBAF $(0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}, 6$ equiv) in THF (0.66 mL). Flash chromatography ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) of the crude product gave the title compound as an amorphous white solid ($13.1 \mathrm{mg}, 60 \%$): ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.91\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.11(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=$
$6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82\left(\mathrm{ddd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, J_{3}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.79(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H})$, $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 4 \mathrm{H}) 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~m}, 7 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H})$ $0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.2,148.4,124.3,77.6,77.5,73.4$, $67.6,42.0,37.0,36.0,34.5,32.9,30.1,26.6,26.5,25.2,23.8,14.5$; FTIR (thin film) $v_{\max } 3384$, 2927, 2858, 1716, 1650, $1267 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 329.2338$, found 329.2328; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+24.8, \mathrm{c}=1.25, \mathrm{MeOH}$.

(5R,6R,8S,14R,E)-5,6,8-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4R,5R,7S,13R)1): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$ above was followed using $(R) \mathbf{- 1 5 d}(50.0 \mathrm{mg}, 45.0 \mu \mathrm{~mol})$ and TBAF $(0.27 \mathrm{~mL}, 0.27 \mathrm{mmol}, 6$ equiv) in THF (0.45 mL). Flash chromatography of the crude product ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) gave the title compound as an amorphous white solid ($7.6 \mathrm{mg}, 51 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}$ ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.07\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.12\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.97(\mathrm{~m}, 1 \mathrm{H})$, $4.26\left(\mathrm{td}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90\left(\mathrm{td}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78$ (septet, $J=$ $4.20 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 9 \mathrm{H}), 1.21(\mathrm{~m}$, $1 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.8,149.8,123.2,75.8,75.3$, $73.8,68.9,38.3,35.8,35.5,33.7,33.0,27.8,26.5,25.1,24.5,23.8,14.5$; FTIR (thin film) $v_{\max }$ 3195, 2924, 2854, 1709, 1554, $1272 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}]^{+}: 328.2250$, found 328.2242; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+7.66, \mathrm{c}=0.38, \mathrm{MeOH}$.

(5S,6S, $8 R, 14 S, E)-5,6,8-T r i h y d r o x y-13-p e n t y l o x a c y c l o t e t r a d e c-3-e n-2-o n e \quad((4 S, 5 S, 7 R, 13 S)-$
1): The same method employed in the preparation of $(4 R, 5 R, 7 R, 13 R)-1$ was followed using (S) -

15a ($88.1 \mathrm{mg}, 111 \mu \mathrm{~mol}$) and TBAF ($0.66 \mathrm{~mL}, 0.66 \mathrm{mmol}, 6$ equiv) in THF (1.11 mL). The product after flash chromatography ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) was further purified using a (S, S)-Whelk- $O-1$ column as described for compound ($4 S, 5 S, 7 R, 13 R$)-1 (see above) and the title compound was isolated as an amorphous white solid ($5.4 \mathrm{mg}, 15 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 R, 5 R, 7 S, 13 R)-\mathbf{1}$ (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-4.04, \mathrm{c}=0.27, \mathrm{MeOH}$.

($5 S, 6 S, 8 S, 14 S, E)-5,6,8$-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4S,5S,7S,13S)1): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$ above was followed using (S)-15b $(68.0 \mathrm{mg}, 75.4 \mu \mathrm{~mol})$ and TBAF $(0.45 \mathrm{~mL}, 0.45 \mathrm{mmol}, 6$ equiv) in THF (0.75 mL). Flash chromatography of the crude product ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) gave the title compound as an amorphous white solid ($16.5 \mathrm{mg}, 67 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 R, 5 R, 7 R, 13 R)-1$ (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-25.9, \mathrm{c}=0.83, \mathrm{MeOH}$.

($5 R, 6 R, 8 R, 13 S, E)-5,6,8-T r i h y d r o x y-14-p e n t y l o x a c y c l o t e t r a d e c-3-e n-2-o n e ~((4 R, 5 R, 7 R, 13 S)-~$
1): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$ above was followed using (S)-15c ($68.8 \mathrm{mg}, 68.4 \mu \mathrm{~mol}$) and TBAF ($0.41 \mathrm{~mL}, 0.41 \mathrm{mmol}, 6$ equiv) in THF (0.68 mL). The product after flash chromatography ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) was dissolved in $1: 1$ hexanes/isopropanol $(1.0 \mathrm{~mL})$, filtered through a Whatman syringe filter (0.45 $\mu \mathrm{m}$ pore size), and further purified using a Chiralcel OD semi-preparative HPLC column. The purification was done with isocratic elution (92:8 hexanes/isopropanol, $4.5 \mathrm{~mL} / \mathrm{min}$), a UV detector (230 nm) was used to identify the peaks, and the desired compound ($4 R, 5 R, 7 R, 13 S$) $\mathbf{- 1 1}$
was isolated as an amorphous white solid (1 injection, $3.2 \mathrm{mg}, 14 \%$) The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 S, 5 S, 7 S, 13 R)-1$ (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+16.5, \mathrm{c}=0.32, \mathrm{MeOH}$.

($5 R, 6 R, 8 S, 14, E S)-5,6,8$-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ($(4 R, 5 R, 7 S, 13 S)$ -
1): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$ during the single isomer pilot synthesis (see Chapter 2.0) was followed using (S)-15d ($84.9 \mathrm{mg}, 76.5 \mu \mathrm{~mol}$) and TBAF ($0.46 \mathrm{~mL}, 0.46 \mathrm{mmol}, 6$ equiv) in THF $(0.77 \mathrm{~mL})$. Flash chromatography of the crude product (3:1 hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) gave the title compound as an amorphous white solid ($16.5 \mathrm{mg}, 66 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of ($4 S, 5 S, 7 R, 13 R$)-1 (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+11.3, \mathrm{c}=0.89, \mathrm{MeOH}$.

(5S,6R,8R,14R,E)-5,6,8-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4S,5R,7R,13R)-
1): The tagged lactone $(R)-\mathbf{1 5 e}(91.4 \mathrm{mg}, 115 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ and transferred to a polyethylene culture tube. The solution was diluted with acetonitrile (8.0 mL). Aqueous hydrofluoric acid ($48 \mathrm{wt} . \%, 0.60 \mathrm{~mL}$) was then added to the solution at room temperature and the reaction mixture was stirred for 16 h at room temperature. The reaction was then quenched by dropwise addition of sat. aq. $\mathrm{NaHCO}_{3}(10.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the layers were separated. The aqueous layer was extracted with ether (3 x 20 mL). The combined organic extracts were then washed with brine, dried over MgSO 4 , and concentrated in vacuo. The product after flash chromatography ($3: 1$ hexanes/EtOAc, then 100% EtOAc) was further purified using a (S, S)-Whelk- $O-1$ column as described for $(4 S, 5 S, 7 R, 13 R)-1$, and the desired compound
was isolated as an amorphous white solid (6 injections, $11.0 \mathrm{mg}, 29 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}$ (700 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.94\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.09\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.01(\mathrm{~m}, 1 \mathrm{H}), 4.47\left(\mathrm{ddd}, J_{1}=4.7 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, J_{3}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.89\left(\mathrm{ddd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=\right.$ $\left.4.7 \mathrm{~Hz}, J_{3}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.71\left(\mathrm{ddd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, J_{3}=\right.$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 5 \mathrm{H}), 1.33(\mathrm{~m}, 8 \mathrm{H}) 1.21(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H})$, $0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.0,148.6,123.4,77.4,74.6,72.3$, $68.8,39.1,36.4,35.7,34.4,33.0,30.3,26.6,26.0,24.3,23.8,14.5$; FTIR (thin film) $v_{\max } 3288$, 2922, 2855, 1703, 1265, 1183, $990 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}$ $+\mathrm{Na}]^{+}: 351.2147$, found 351.2142; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+15.5, \mathrm{c}=0.55, \mathrm{MeOH}$.

(5S,6R,8S,14R,E)-5,6,8-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4S,5R,7S,13R)1): The same method employed above in the preparation of $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$ above was followed using (R) - $\mathbf{1 5 f}(91.1 \mathrm{mg}, 101 \mu \mathrm{~mol})$ and TBAF ($0.60 \mathrm{~mL}, 0.60 \mathrm{mmol}, 6$ equiv). The product after flash chromatography ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) was further purified using a (S, S)-Whelk- $O-1$ column as described above for $(4 S, 5 S, 7 R, 13 R)$-1, and the desired compound was isolated as an amorphous white solid ($12.4 \mathrm{mg}, 37 \%, 12: 1$ d.r.): ${ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.00\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.06\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.95(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 3.95\left(\mathrm{ddd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68$ (septet, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02\left(\mathrm{ddd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=8.1 \mathrm{~Hz}, J_{3}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right), 1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~m}, 9 \mathrm{H}), 1.28(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta{ }^{13} \mathrm{C}$ NMR (175 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.0,150.2,122.3,76.1,75.7,72.1,68.8,39.5,34.9,34.6,33.0,32.8$, 28.6, 26.6, 24.9, 23.4, 14.5; FTIR (thin film) $v_{\max } 2932,2360,2340,1717,1270,1009 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 351.2147, found 351.2171; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+1.66, \mathrm{c}=0.54, \mathrm{MeOH}$.

(5R,6S,8R,14R,E)-5,6,8-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4R,5S,7R,13R)-
1, (+)-nat-Sch 725674): The same method employed above in the preparation of $(4 S, 5 R, 7 R, 13 R)-\mathbf{1}$ was followed using $(R) \mathbf{- 1 5 g}(55.1 \mathrm{mg}, 54.8 \mu \mathrm{~mol})$. The product after flash chromatography ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) was further purified using a (S, S) -Whelk- $O-1$ column as described above for $(4 S, 5 S, 7 R, 13 R)$-1 , and the desired compound was isolated as an amorphous white solid (6 injections, $5.7 \mathrm{mg}, 32 \%$). The NMR spectroscopic data of $(4 R, 5 S, 7 R, 13 R)-\mathbf{1}$ are in complete agreement with those of the natural product ${ }^{10}$: ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.87\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.95 (dddd, $J_{1}=10.4 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, J_{3}=5.4 \mathrm{~Hz}, J_{4}=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.49 (ddd, $J_{1}=5.8$ $\left.\mathrm{Hz}, J_{2}=2.7 \mathrm{~Hz}, J_{3}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.99$ (quintet, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.85(\mathrm{~m}, 1 \mathrm{H}), 1.83\left(\mathrm{dt}, J_{1}=14.7\right.$ $\left.\mathrm{Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.71\left(\mathrm{dddd}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=4.6 \mathrm{~Hz}, J_{4}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.65$ $\left(\mathrm{dt}, J_{1}=14.7 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 10 \mathrm{H}) 1.18$ $(\mathrm{m}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.4,149.3,123.1,77.6$, $76.0,72.9,69.5,38.3,36.8,36.5,34.1,33.0,29.5,27.0,26.4,25.8,23.8,14.5$; FTIR (thin film) $v_{\max } 3436,2926,2857,1703,1461,1274,1077 \mathrm{~cm}^{-1}$; HRMS calcd (EI) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}]^{+}$: 328.2250, found 328.2248; $[\alpha]_{D}^{75^{\circ} \mathrm{C}}=+5.15, \mathrm{c}=0.27, \mathrm{MeOH}$.

($5 R, 6 S, 8 S, 14 R, E)-5,6,8$-Trihydroxy-13-pentyloxacyclotetradec-3-en-2-one ($(4 R, 5 S, 7 S, 13 R)$ 1): The same method employed above in the preparation of $(4 S, 5 R, 7 R, 13 R)$-1 was followed using $(R)-\mathbf{1 5 h}(40.1 \mathrm{mg}, 36.1 \mathrm{mmol})$. The product after flash chromatography (3:1 hexanes/EtOAc, then 100% EtOAc) was further purified using a (S, S)-Whelk- $O-1$ column as
described above for $(4 S, 5 S, 7 R, 13 R)$-1, and the desired compound was isolated as an amorphous white solid (3 injections, $4.7 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.95$ (dd, $J_{1}=15.8 \mathrm{~Hz}$, $\left.J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.14\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.93(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 3.89\left(\mathrm{dt}, J_{1}\right.$ $\left.=8.8 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.02\left(\mathrm{ddd}, J_{1}=14.6 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.65(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 10 \mathrm{H}), 1.20(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=$ 6.9 Hz, 3H); $\delta{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169.0,150.0,121.8,75.5,75.0,72.1,68.8,40.5$, $36.2,35.9,33.9,33.0,27.2,26.5,24.7,24.5,23.8,14.5$; FTIR (thin film) $v_{\max } 3360,2935,2340$, $1715,1286 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 351.2147$, found 351.2174; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-38.6, \mathrm{c}=0.24$, MeOH .

($5 S, 6 R, 8 R, 14 S, E)-5,6,8$-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ($(4 S, 5 R, 7 R, 13 S)$ 1): The same method employed in the preparation of $(4 S, 5 R, 7 R, 13 R)$ - $\mathbf{1}$ was followed using (S) $\mathbf{1 5 e}(72.7 \mathrm{mg}, 91.2 \mu \mathrm{~mol})$. The product after flash chromatography ($3: 1$ hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) was further purified using a (S, S)- Whelk- $O-1$ column as described above for $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$, and the desired compound was isolated as an amorphous white solid (5 injections, $13.4 \mathrm{mg}, 45 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 R, 5 S, 7 S, 13 R)-\mathbf{1}$ (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-38.7, \mathrm{c}=0.67, \mathrm{MeOH}$.

($5 S, 6 R, 8 S, 14 S, E)-5,6,8$-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4S,5R,7S,13S)1): The same method employed above in the preparation of $(4 S, 5 R, 7 R, 13 R)$-1 was followed using (S)-15f (87.0 mg, $96.5 \mu \mathrm{~mol})$. The product after flash chromatography (3:1 hexanes/EtOAc, then 100% EtOAc) was further purified using a (S, S)-Whelk- O - 1 column as
described above for $(4 S, 5 S, 7 R, 13 R)$-1, and the desired compound was isolated as an amorphous white solid (3 injections, $5.5 \mathrm{mg}, 17 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 R, 5 S, 7 R, 13 R)$ 1 (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-2.93, \mathrm{c}=0.21, \mathrm{MeOH}$.

($5 R, 6 S, 8 R, 14, E S)-5,6,8$-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ($(4 R, 5 S, 7 R, 13 S)$ 1): The same method employed above in the preparation of $(4 S, 5 R, 7 R, 13 R)$-1 was followed using $(S)-\mathbf{1 5 g}(59.1 \mathrm{mg}, 58.8 \mu \mathrm{~mol})$. The product after flash chromatography (3:1 hexanes/EtOAc, then $100 \% \mathrm{EtOAc}$) was further purified using a (S, S)-Whelk- O - 1 column as described above for $(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$, and the desired compound was isolated as an amorphous white solid (4 injections, $14.0 \mathrm{mg}, 73 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 S, 5 R, 7 S, 13 R)-1$ (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-2.14, \mathrm{c}=0.70, \mathrm{MeOH}$.

(5R,6S,8S,14S,E)-5,6,8-Trihydroxy-14-pentyloxacyclotetradec-3-en-2-one ((4R,5S,7S,13S)1): The same method employed above in the preparation of $(4 S, 5 R, 7 R, 13 R)$ - $\mathbf{1}$ was followed using $(S) \mathbf{- 1 5 h}(59.1 \mathrm{mg}, 58.8 \mu \mathrm{~mol})$. The product after flash chromatography ($3: 1$ hexanes/EtOAc, then 100% EtOAc) was further purified using a (S, S)-Whelk- O - 1 column as described above for $(4 S, 5 S, 7 R, 13 R)$-1, and the desired compound was isolated as an amorphous white solid (3 injections, $6.9 \mathrm{mg}, 36 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 S, 5 R, 7 R, 13 R)$ 1 (see above); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-13.8, \mathrm{c}=0.35, \mathrm{MeOH}$.

(4S,5S,7R,E)-((R)-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate ((4S,5S,7R,13R)-16): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(R) \mathbf{- 1 4 a}$. Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($16.5 \mathrm{mg}, 65 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 R, 5 R, 7 S, 13 S)-16$ (see below); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-30.7, \mathrm{c}=1.08, \mathrm{MeOH}$.

(4S,5S,7S,E)-((R)-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate
((4S,5S,7S,13R)-16):
The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(R) \mathbf{- 1 4 b}(68.2 \mathrm{mg}, 44.1 \mu \mathrm{~mol})$ and $\operatorname{TBAF}(0.27 \mathrm{~mL}, 0.27 \mathrm{mmol}, 6$ equiv) in THF $(0.44 \mathrm{~mL})$. Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($15.6 \mathrm{mg}, 94 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 R, 5 R, 7 R, 13 S)$ - $\mathbf{1 6}$ (see below); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-15.1, \mathrm{c}=0.83, \mathrm{MeOH}$.

(4R,5R,7R,2E)-((R)-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate ((4R,5R,7R,13R)-16):
The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(R) \mathbf{- 1 4 c}(112 \mathrm{mg}, 108 \mu \mathrm{~mol})$ and TBAF ($0.65 \mathrm{~mL}, 0.65 \mathrm{mmol}, 6$ equiv) in THF (1.10 mL). Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a
colorless oil ($26.4 \mathrm{mg}, 69 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 S, 5 S, 7 S, 13 S)$ - $\mathbf{1 6}$ (see below); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+17.9, \mathrm{c}=1.02, \mathrm{MeOH}$.

(4R,5R,7S,2E)-((R)-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate ($4 R, 5 R, 7 S, 13 R)-16)$:
The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(R) \mathbf{- 1 4 d}(137 \mathrm{mg}, 120 \mu \mathrm{~mol})$ and TBAF ($0.72 \mathrm{~mL}, 0.72 \mathrm{mmol}, 6$ equiv) in THF (1.20 mL). Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($11.0 \mathrm{mg}, 63 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum matched that of $(4 S, 5 S, 7 R, 13 S)$ - $\mathbf{1 6}$ (see below); $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+34.6, \mathrm{c}=1.43$, MeOH .

(4S,5S,7R)-((S)-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate ((4S,5S,7R,13S)-16): The same method employed in the preparation of $(4 S, 5 S, 7 R, 13 R)$-1 above was followed using (S) $\mathbf{1 4 a}(83.0 \mathrm{mg}, 101 \mu \mathrm{~mol})$ and TBAF ($0.61 \mathrm{~mL}, 0.61 \mathrm{mmol}, 6$ equiv) in THF (1.00 mL). Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($23.9 \mathrm{mg}, 67 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.05\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=4.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.10\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.87\left(\mathrm{ddt}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=7.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.82\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.02(\mathrm{~m}, 5 \mathrm{H}), 4.19\left(\mathrm{td}, J_{1}=4.7\right.$ $\left.\mathrm{Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.54$ $(\mathrm{m}, 2 \mathrm{H}), 1.32(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,149.8$, $139.2,136.5,122.8,117.5,115.6,75.5,75.2,71.8,68.8,43.9,40.6,35.4,34.8,32.9,30.9,26.2$, $23.8,14.5$; FTIR (thin film) $v_{\max } 3364,2925,2857,1696,1641,1271,1172,1066,990 \mathrm{~cm}^{-1}$;

HRMS calcd (ESI, positive mode) for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 377.2304, found 377.2276; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-23.0, \mathrm{c}=1.20, \mathrm{MeOH}$.

(4S,5S,7S)-((S)-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate ((4S,5S,7S,13S)-16): The same method employed above in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(S) \mathbf{- 1 4 b}(92.4 \mathrm{mg}, 99.6 \mu \mathrm{~mol})$ and TBAF $(0.60 \mathrm{~mL}, 0.60 \mathrm{mmol}, 6$ equiv) in THF (1.00 mL). Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a colorless oil ($30.1 \mathrm{mg}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.05$ (dd, $J_{1}=15.7 \mathrm{~Hz}, J_{2}=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.87\left(\mathrm{ddt}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=7.0\right.$ $\mathrm{Hz} 1 \mathrm{H}), 5.82\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00(\mathrm{~m}, 5 \mathrm{H}), 4.22\left(\mathrm{td}, J_{1}=4.5\right.$ $\left.\mathrm{Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82$ (quintet, $\left.J=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H})$, $1.74\left(\mathrm{dt}, J_{1}=14.2 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.55\left(\mathrm{dt}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=\right.$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,149.9$, $139.2,136.2,122.8,117.7,115.6,75.2,74.7,73.8,70.9,43.1,39.8,35.4,34.8,32.9,31.0,26.2$, 23.7, 14.5; FTIR (thin film) $v_{\max } 3364,2925,2858,1697,1274,1172 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 377.2304$, found 377.2279; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=-13.3, \mathrm{c}=1.51$, MeOH .

$(4 R, 5 R, 7 R)-((S)$-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate ($(4 R, 5 R, 7 R, 13 S)-16)$:The same method employed above in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(S) \mathbf{- 1 4 c}(90.4 \mathrm{mg}, 87.6 \mu \mathrm{~mol})$ and TBAF $(0.53 \mathrm{~mL}, 0.53 \mathrm{mmol}, 6$ equiv) in THF (0.88 mL). Flash chromatography of the crude product ($1: 1$ hexanes/EtOAc) gave the title compound as a
colorless oil ($23.8 \mathrm{mg}, 77 \%$): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.05\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=4.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.87\left(\mathrm{ddt}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=7.1\right.$ $\mathrm{Hz} 1 \mathrm{H}), 5.82\left(\mathrm{ddt}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.01(\mathrm{~m}, 5 \mathrm{H}), 4.22\left(\mathrm{td}, J_{1}=4.4\right.$ $\left.\mathrm{Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.82$ (quintet, $\left.J=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H})$, $1.74\left(\mathrm{dt}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.54\left(\mathrm{dt}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=\right.$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1$, $149.9,139.2,136.2,122.8,117.7,115.6,75.2,74.7,73.8,70.9,43.1,39.8,35.4,34.8,32.9,31.0$, 26.2, 23.8, 14.5; FTIR (thin film) $v_{\max } 3388,2927,2859,1698,1656,1270,1077 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 377.2304, found 377.2305; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+15.2, \mathrm{c}=1.19, \mathrm{MeOH}$.

(4R,5R,7S)-((S)-Dec-1-en-5-yl)-4,5,7-trihydroxydeca-2,9-dienoate ((4R,5R,7S,13S)-16): The same method employed above in the preparation of $(4 S, 5 S, 7 R, 13 R)-1$ above was followed using $(S) \mathbf{- 1 4 d}(106 \mathrm{mg}, 93.1 \mu \mathrm{~mol})$ and $\operatorname{TBAF}(0.56 \mathrm{~mL}, 0.56 \mathrm{mmol}, 6$ equiv) in THF (0.93 mL). Flash chromatography of the crude product (1:1 hexanes/EtOAc) gave the title compound as a colorless oil ($29.0 \mathrm{mg}, 88 \%$): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.05$ (dd, $J_{1}=15.7 \mathrm{~Hz}, J_{2}=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.11\left(\mathrm{dd}, J_{I}=15.7 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.87\left(\mathrm{ddt}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=7.1\right.$ $\mathrm{Hz} 1 \mathrm{H}), 5.82\left(\mathrm{ddt}, J_{1}=17.0 \mathrm{~Hz}, J_{2}=10.2 \mathrm{~Hz}, J_{3}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00(\mathrm{~m}, 5 \mathrm{H}), 4.19\left(\mathrm{td}, J_{1}=4.7\right.$ $\left.\mathrm{Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.32$ (br s, 6H), $0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,149.8,139.2,136.5$, $122.8,117.5,115.6,75.5,75.2,71.8,68.8,44.0,40.6,35.4,34.8,32.9,31.0,26.2,23.8,14.5$; FTIR (thin film) $v_{\max } 3344,2924,2857,1695,1642,1269,1172 \mathrm{~cm}^{-1}$; HRMS calcd (ESI, positive mode) for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 377.2304$, found 377.2277; $[\alpha]_{D}^{25^{\circ} \mathrm{C}}=+33.2, \mathrm{c}=1.45$, MeOH .

Figure S7: Stereostructures of Sch $\mathbf{7 2 5 6 7 4}$ lactone library members 1

(4S,5S,7R,13R)-1
(4S,5S,7S,13R)-1
$(4 R, 5 R, 7 R, 13 R)-1$
(4R,5R,7S,13R)-1

(4S,5S,7R,13S)-1
(4S,5S,7S,13S)-1
$(4 R, 5 R, 7 R, 13 S)-1$
(4R,5R,7S,13S)-1

(4S,5R,7R,13R)-1
(4S,5R,7S,13R)-1
(4R,5S,7R,13R)-1
(4R,5S,7S,13R)-1

(4S,5R,7R,13S)-1
(4S,5R,7S,13S)-1
(4R,5S,7R,13S)-1
(4R,5S,7S,13S)-1

Figure S8: Stereostructures of ring-open ester library members 16

$(4 S, 5 S, 7 R, 13 R)-16$
$(4 S, 5 S, 7 S, 13 R)-16$
$(4 R, 5 R, 7 R, 13 R)-16$
$(4 R, 5 R, 7 S, 13 R)-16$

(4S,5S,7R,13S)-16
$(4 S, 5 S, 7 S, 13 S)-16$
(4R,5R,7R,13S)-16
(4R,5R,7S,13S)-16

Table S1: ${ }^{1} \mathrm{H}$ NMR data $(700 \mathrm{MHz})$ of the ring-closed 4,5-trans-13R-1 series in \boldsymbol{d}_{4}-MeOD

C no.	(4S,5S,7R, 13R)-1	($4 S, 5 S, 7 S, 13 R)-\mathbf{1}$	$(4 R, 5 R, 7 R, 13 R) \mathbf{- 1}$	(4R,5R, $7 S, 13 R) \mathbf{- 1}$
2	6.11 (dd, 15.8, 1.5, 1H)	6.10 (dd, 15.8, 1.3, 1H)	6.11 (d, 15.8, 1H)	$6.12(\mathrm{dd}, 15.8,1.5,1 \mathrm{H})$
3	7.04 (dd, 15.8, 5.3, 1H)	6.96 (dd, 15.8, 5.9, 1H)	6.91 (dd, 15.8, 6.4, 1H)	7.07 (dd, 15.8, 5.4, 1H)
4	4.95 (dddd, 12.5, 7.6, 5.0, 2.3, 1H)	4.03 (ddd, 7.6, 6.0, 1.5, 1H)	4.16 (t, 6.0, 1H)	4.26 (td, 6.5, 1.5, 1H)
5	3.77 (dt, 7.4, 4.5, 1H)	3.54 (td, 8.5, 1.5, 1H)	3.82 (ddd, 9.2, 6.0, 3.8, 1H)	3.90 (td, 6.5, 2.8, 1H)
6	1.70 (dd, 5.4, 4.5, 2H)	$\begin{gathered} 1.76(\mathrm{ddd}, 14.6,8.5,2.7,1 \mathrm{H}) \\ 1.67(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	$\begin{aligned} & 1.63(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.45(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	1.70 (m, 2H)
7	3.92 (m, 1H)	3.47 (m, 1H)	3.79 (m, 1H)	3.78 (sept, 4.20, 1H)
8	$\begin{aligned} & 1.43(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.33(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.55(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.34(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	1.45 (m, 2H)	1.31 (m, 2H)
9	1.19 (m, 2H)	nd*	nd	nd
10	nd	nd	nd	nd
11	nd	nd	nd	nd
12	$\begin{gathered} 1.62(\mathrm{~m}, 1 \mathrm{H}) \\ 1.54(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	1.67 (m, 2H)	$\begin{aligned} & 1.78(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.56(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	1.70 (m, 2H)
13	4.95 (dddd, 12.5, 7.6, 5.0, 2.3, 1H)	4.93 (m, 1H)	5.03 (m, 1H)	4.97 (m, 1H)
14	$\begin{aligned} & 1.62(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.54(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.67(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.64(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.56(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.45(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	1.63 (m, 2H)
15	1.33 (m, 2H)	1.34 (m, 2H)	1.33 (m, 2H)	1.31 (m, 2H)
16	1.33 (m, 2H)	1.34 (m, 2H)	1.33 (m, 2H)	1.31 (m, 2H)
17	1.33 (m, 2H)	1.34 (m, 2H)	1.33 (m, 2H)	1.31 (m, 2H)
18	0.91 (t, 6.9, 3H)	0.91 (t, 6.9, 3H)	0.90 (t, 6.9, 3H)	0.91 (t, 6.9, 3H)

* nd $=$ not determined

Table S2: ${ }^{1} \mathrm{H}$ NMR data $(\mathbf{7 0 0} \mathbf{M H z})$ of the ring-closed $4,5-c i s-13 R-1$ series in d_{4}-MeOD

C no.	($4 S, 5 R, 7 R, 13 R)-\mathbf{1}$	($4 S, 5 R, 7 S, 13 R)-\mathbf{1}$	(4R, 5S, $7 R, 13 R)-\mathbf{1}$	(4R,5S, 7S, 13R)-1
2	6.09 (dd, 15.8, 1.8, 1H)	6.06 (dd, 15.8, 2.2, 1H)	6.08 (dd, 15.8, 1.5, 1H)	6.14 (dd, 15.8, 1.4, 1H)
3	6.94 (dd, 15.8, 4.7, 1H)	7.00 (dd, 15.8, 3.6, 1H)	6.87 (dd, 15.8, 6.1, 1H)	6.95 (dd, 15.8, 4.2, 1H)
4	4.47 (ddd, 4.7, 3.0, 1.8, 1H)	4.46 (m, 1H)	4.49 (ddd, 5.8, 2.7, 1.5, 1H)	4.54 (m, 1H)
5	3.89 (ddd, 7.2, 4.7, 3.0, 1H)	3.95 (ddd, 7.6, 4.5, 2.2, 1H)	3.85 (m, 1H)	3.89 (dt, 8.8, 2.1, 1H)
6	$\begin{gathered} 1.71(\mathrm{ddd}, 14.6,7.2,4.7,1 \mathrm{H}) \\ 1.33(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	$\begin{gathered} 2.02(\mathrm{ddd}, 14.1,8.1,4.5,1 \mathrm{H}) \\ 1.54(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	$\begin{aligned} & 1.83(\mathrm{dt}, 14.7,6.1,1 \mathrm{H}) \\ & 1.65(\mathrm{dt}, 14.7,5.0,1 \mathrm{H}) \end{aligned}$	1.32 (m, 2H)
7	3.71 (m, 1H)	3.68 (sept, 4.5, 1H)	3.99 (quint, 6.2, 1H)	3.38 (m, 1H)
8	1.45 (m, 2H)	1.28 (m, 2H)	1.34 (m, 2H)	1.32 (m, 2H)
9	$n d^{*}$	nd	nd	nd
10	nd	nd	nd	nd
11	nd	nd	nd	nd
12	$\begin{aligned} & 1.76(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.63(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	1.69 (m, 2H)	$\begin{gathered} 1.65(\mathrm{~m}, 2 \mathrm{H}) \\ 1.71(\mathrm{dddd}, 14.2,6.7,4.6,2.0,1 \mathrm{H}) \end{gathered}$	nd
13	5.01 (m, 1H)	4.95 (m, 1H)	4.95 (dddd, 10.4, 7.9, 5.4, 2.9, 1H)	4.93 (m, 1H)
14	$\begin{aligned} & 1.56(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.45(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	1.61 (m, 2H)	$\begin{aligned} & 1.55(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.61(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & 1.65(\mathrm{~m}, 1 \mathrm{H}) \\ & 1.54(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$
15	1.33 (m, 2H)	1.34 (m, 2H)	1.34 (m, 2H)	1.32 (m, 2H)
16	1.33 (m, 2H)	1.34 (m, 2H)	1.34 (m, 2H)	1.32 (m, 2H)
17	1.33 (m, 2H)	1.34 (m, 2H)	1.34 (m, 2H)	1.32 (m, 2H)
18	0.90 (t, 6.9, 3H)			

* nd $=$ not determined

Table S3: ${ }^{13} \mathrm{C}$ NMR data ($\mathbf{1 7 5} \mathbf{~ M H z) ~ f o r ~ t h e ~ f u l l ~ r i n g - c l o s e d ~ (1 3 R) - 1 ~ e n a n t i o s e r i e s ~ i n ~} \boldsymbol{d}_{4}$ - MeOD

C no.	$(4 S, 5 S, 7 R, 13 R)-\mathbf{1}$	$(4 S, 5 S, 7 S, 13 R)-\mathbf{1}^{a}$	$(4 R, 5 R, 7 R, 13, R)-\mathbf{1}^{a}$	$(4 R, 5 R, 7 S, 13 R)-\mathbf{1}$	$(4 S, 5 R, 7 R, 13 R)-1$	$(4 S, 5 R, 7 S, 13 R)-\mathbf{1}$	$(4 R, 5 S, 7 R, 13 R)-1$	$(4 R, 5 S, 7 S, 13 R)-1$
1	168.0	168.1	168.2	168.9	168.0	168.0	168.4	169.0
2	123.5	123.1	124.3	123.3	123.4	122.3	123.1	121.8
3	148.7	149.4	148.4	149.8	148.6	150.2	149.3	150.0
4	75.8	77.8	77.5	75.3	74.6	75.7	76.0	75.0
5	74.4	74.6	73.4	73.9	72.3	72.1	72.9	72.1
6	37.9	43.8	42.0	$n d^{b}$	39.1	39.5	38.3	40.5
7	69.2	68.3	67.6	69.9	68.8	68.8	69.5	68.8
8	nd	nd	nd	nd	36.4	39.5	nd	nd
9	nd							
10	nd							
11	nd							
12	36.4	35.8	34.5	nd	34.4	34.9	34.1	33.9
13	77.6	75.9	77.6	75.8	77.4	76.1	77.6	75.5
14	36.8	33.3	36.0	nd	35.7	32.8	36.5	36.2
15	26.4	26.4	26.6	26.5	26.6	26.6	26.4	23.8
16	33.0	33.0	32.9	33.0	33.0	33.0	33.0	33.0
17	23.8	23.8	23.8	23.8	23.8	23.8	23.8	23.8
18	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5

[^0]Table S4: Optical rotation measurements of all 16 lactones 1

Isomer	$c(\mathrm{~g} / 100 \mathrm{~mL})$	$[\alpha]_{D}{ }^{a}$
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{R}, 13 \mathrm{R})-\mathbf{1}$	0.54	-9.43
$(4 \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{~S}, 13 \mathrm{~S})-1$	0.89	+11.3
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{~S}, 13 \mathrm{R})-\mathbf{1}$	0.77	-18.8
$(4 \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{R}, 13 \mathrm{~S})-1$	0.32	+16.5
$(4 \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{R}, 13 \mathrm{R})-1$	1.25	+24.8
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{~S}, 13 \mathrm{~S})-1$	0.83	-25.9
$(4 \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{~S}, 13 \mathrm{R})-\mathbf{1}$	0.38	+7.66
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{R}, 13 \mathrm{~S})-1$	0.27	-4.04
$(4 \mathrm{~S}, 5 \mathrm{R}, 7 \mathrm{R}, 13 \mathrm{R})-1$	0.55	+15.5
(4R,5S,7S,13S)-1	0.35	-13.8
(4S,5R,7S,13R)-1	0.54	+1.66
(4R,5S,7R,13S)-1	0.70	-2.14
(4R,5S,7R,13R)-1	0.27	+5.15
(4S,5R,7S,13S)-1	0.21	-2.93
(4S,5R,7S,13R)-1	0.24	-38.6
(4S,5R,7R,13S)-1	0.67	+38.7

${ }^{a}$ Measured at the same temperature in absolute MeOH

Table S5: ${ }^{1} \mathrm{H}$ NMR data (600 MHz) for the full ring-open $\mathbf{1 3 S}$ - 16 enantioseries in $\boldsymbol{d}_{\mathbf{4}}$ - MeOD

C no.	($4 S, 5 S, 7 R, 13 S)$-16	($4 S, 5 S, 7 S, 13 S)$-16	$(4 R, 5 R, 7 R, 13 S) \mathbf{- 1 6} \quad(4 R, 5 R, 7 S, 13 S) \mathbf{- 1 6}$	
2	6.10 (dd, 15.7, 1.7, 1H)	6.11 (dd, 15.7, 1.8, 1H)	6.11 (dd, 15.7, 1.7, 1H) 6.	6.11 (dd, 15.7, 1.7, 1H)
3	7.05 (dd, 15.7, 4.7, 1H)	7.05 (dd, 15.7, 4.6, 1H)	7.05 (dd, 15.7, 4.6, 1H) 7.	7.05 (dd, 15.7, 4.7, 1H)
4	4.19 (td, 4.7, 1.7, 1H)	4.22 (td, 4.5, 1.8, 1H)	4.22 (td, 4.4, 1.8, 1H) 4	4.19 (td, 4.7, 1.7, 1H)
5	3.87 (m, 2H)	3.82 (quint, 4.3, 1H)	3.82 (quint, 4.4 Hz, 1H)	3.88 (m, 2H)
6	1.54 (m, 2H)	$\begin{gathered} 1.74(\mathrm{dt}, 14.2,4.4,1 \mathrm{H}) \\ 1.55(\mathrm{dt}, 17.2,8.7,1 \mathrm{H}) \end{gathered}$	$\begin{gathered} 1.74(\mathrm{dt}, 14.1,4.4,1 \mathrm{H}) \\ 1.54(\mathrm{dt}, 14.1,8.7,1 \mathrm{H}) \end{gathered}$	1.55 (m, 2H)
7	3.87 (m, 2H)	3.87 (m, 1H)	3.87 (m, 1H)	3.88 (m, 2H)
8	2.24 (m, 2H)	2.25 (m, 2H)	2.25 (m, 2H)	2.24 (m, 2H)
9	5.87 (ddt, 17.2,10.2,7.0,1H)	5.87 (ddt, 17.2,10.2,7.0,1H)	5.87 (ddt, 17.2,10.2, $7.0,1 \mathrm{H})$	5.87 (ddt, 17.2,10.2,7.0,1H)
10	5.82 (ddt, 16.9,10.2,6.7,1H)	5.82 (ddt, 16.9,10.2,6.7,1H)	5.82 (ddt, 16.9,10.2,6.7,1H)	5.82 (ddt, 16.9,10.2,6.7,1H)
11	2.07 (m, 2H)	2.08 (m, 2H)	2.08 (m, 2H)	2.08 (m, 2H)
12	1.68 (m, 2H)	1.67 (m, 2H)	1.68 (m, 2H)	1.68 (m, 2H)
13	5.02 (m, 1H)	5.00 (m, 1H)	5.01 (m, 1H)	5.00 (m, 1H)
14	1.58 (m, 2H)	1.59 (m, 2H)	1.59 (m, 2H)	1.58 (m, 2H)
15	1.32 (m, 2H)	1.32 (m, 2H)	1.32 (m, 2H)	1.32 (m, 2H)
16	1.32 (m, 2H)	1.32 (m, 2H)	1.32 (m, 2H)	1.32 (m, 2H)
17	1.32 (m, 2H)	1.32 (m, 2H)	1.32 (m, 2H)	1.32 (m, 2H)
18	0.90 (t, 6.9, 3H)			
a	5.02 (m, 2H)	5.00 (m, 2H)	5.01 (m, 2H)	5.00 (m, 2H)
b	5.02 (m, 2H)	5.00 (m, 2H)	5.01 (m, 2H)	5.00 (m, 2H)

Table S6: ${ }^{13} \mathrm{C}$ NMR data $(\mathbf{1 2 5} \mathbf{~ M H z})$ for the ring-open $13 S$ - 16 enantioseries in \boldsymbol{d}_{4}-MeOD See Table S5 structure for numbering

C no. (4S, $5 S, 7 R, 13 S)$-16(4S,5S, $7 S, 13 S)$ - $\mathbf{6 6}(4 R, 5 R, 7 R, 13 S) \mathbf{- 1 6 (4 R , 5 R , 7 S , 1 3 S) - \mathbf { 1 6 }}$				
1	168.1	168.1	168.1	168.1
2	122.8	122.8	122.8	122.8
3	149.8	149.9	149.9	149.8
4	75.5	74.7	74.7	75.5
5	71.8	70.9	70.9	71.8
6	40.6	39.8	39.8	40.6
7	68.8	73.8	73.8	68.8
8	43.9	43.1	43.1	44.0
9	136.5	136.2	136.2	136.5
10	139.2	139.2	139.2	139.2
11	30.9	30.9	31.0	31.0
12	34.8	34.8	34.8	34.8
13	75.2	75.2	75.2	75.2
14	35.4	35.4	35.4	35.4
15	26.2	26.2	26.2	26.2
16	32.9	32.9	32.9	32.9
17	23.8	23.7	23.8	23.8
18	14.5	14.5	14.5	14.5
a	117.5	117.7	117.7	117.5
b	115.6	115.6	115.6	115.6

Table S7: Optical rotation measurements of the ring-open esters 16

Isomer	$c(\mathrm{~g} / 100 \mathrm{~mL})$	$[\alpha]_{D}{ }^{a}$
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{R}, 13 \mathrm{R})-16$	1.08	-30.7
$(4 \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{~S}, 13 \mathrm{~S})-16$	1.45	+33.2
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{~S}, 13 \mathrm{R})-16$	0.83	-15.1
$(4 \mathrm{R}, 5 \mathrm{R}, 13 \mathrm{~S})-16$	1.19	+15.2
(4R,5R,7R,13R)-16	1.02	+17.9
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{~S}, 13 \mathrm{~S})-16$	1.51	-13.3
$(4 \mathrm{R}, 5 \mathrm{R}, 7 \mathrm{~S}, 13 \mathrm{R})-16$	1.02	+34.6
$(4 \mathrm{~S}, 5 \mathrm{~S}, 7 \mathrm{R}, 13 \mathrm{~S})-16$	1.20	-23.0

[^1]
References

1. Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307-1315.
2. Eaborn, C.; El-Hamruni, S. M.; Hill, M. S.; Hitchcock, P. B.; Smith, J. D. J. Chem. Soc., Dalton Trans. 2002, 2002, 3975-3979.
3. Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451-2458.
4. Kagawa, N.; Ihara, M.; Toyota, M. J. Org. Chem. 2006, 71, 6796-6805.
5. Furstner, A.; Kattnig, E.; Lepage, O. J. Am. Chem. Soc. 2006, 128, 9194-9204.
6. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tet. Lett. 1984, 25, 2183-2186.
7. Mancuso, A. J.; Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482.
8. Barbat, J.; Gelas, J.; Horton, D. Carbohydr. Res. 1983, 116, 312-316.
9. Geng, X.; Danishefsky, S. J. Org. Lett. 2004, 6, 413-416.
10. Yang, S.-W.; Chan, T.-M.; Terracciano, J.; Loebenberg, D.; Patel, M.; Chu, M. J. Antibiot. 2005, 58, 535-538.

(R)-3

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$(S, S, R)-13 a$

(R, R, R)-13c

$(S, R, R)-13 e$

みলл

(R)-14a

(S)-14a

(R)-14b

（R） $\mathbf{- 1 4 b}$

(S)-14b

(1)

(S)-14b

(R)-14c

(R)-14c

$\infty \omega \boldsymbol{\omega}$

(S) -14 c

 $\begin{array}{lllllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

(R)-14d

$\stackrel{\text { M }}{\text { M }}$

(R)-14d

(S)-14d

 $\longrightarrow ᄂ$

$$
\text { mositicith }) ~ / 1 / 1 \pi \text { inss }
$$

(R)-15a
Mー
$\neg-1 \circ \infty \infty \infty \infty \infty \infty \times \infty \in \infty$

(S)-15a

(R)-15b

(S)-15b

(R)-15c

(R)-15c

(S)-15c

1 H

(S)-15c

(R)-15d

(S)-15d

 N|

(S)-15d

(R)-15e

(S)-15e

|r

(S)-15e

(S)-15f

○曰

(R)-15g

(S)-15g

3xinili711

(R)-15h

 ○○○の

$(4 S, 5 S, 7 R, 13 R)-16$

(4R,5R,7S,13R)-16

$(4 S, 5 S, 7 R, 13 S)-16$

(4S,5S,7S,13S)-16

 ののののののののトののののののののの

(4S,5S,7S,13R)-1

 のन○

$(4 R, 5 R, 7 R, 13 R)-\mathbf{1}$

$(4 R, 5 R, 7 R, 13 R)-1$

(4R,5R,7S,13R)-1

-168.84
-149.78
-123.22
N (

 ¢ ,
N

(4S,5S,7R,13S)-1

$(4 S, 5 S, 7 S, 13 S)-1$

(4R,5R,7R,13S)-1

$(4 R, 5 R, 7 S, 13 S)-1$

$(4 S, 5 R, 7 R, 13 R)-\mathbf{1}$

$(4 S, 5 R, 7 S, 13 R)-1$

$(4 R, 5 S, 7 R, 13 R)-1$

$(4 R, 5 S, 7 S, 13 R)-1$

(4S,5R,7S,13S)-1

(4R,5S,7R,13S)-1

$\begin{array}{llllllllllllll} \\ 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 \\ \mathrm{ppm}\end{array}$

のゥ

(4R,5S,7S,13S)-1

8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	$1{ }^{1}$		0.0	ppm
		$\begin{gathered} 7.0 \\ \stackrel{\rightharpoonup}{0} \\ \hline-1 \end{gathered}$		$\underbrace{6.0}_{0}$	5.5	$\begin{gathered} 5.0 \\ \stackrel{8}{8} \\ \hline 0 \end{gathered}$	$$			3.0		2.0			0	0.0	

[^0]: ${ }^{a}$ Measured at 125 MHz
 ${ }^{b}$ nd $=$ not determined

[^1]: ${ }^{a}$ Measured at room temperature in absolute MeOH

