Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Non-Equilibrium Structural Evolution of LiFePO₄.

Neeraj Sharma^{1,*}, Xianwei Guo², Guodong Du³, Zaiping Guo³, Jiazhou Wang³, Zhaoxiang Wang^{2,*}, and Vanessa K. Peterson^{1,*}

1. The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia

 Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

 Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

* v.peterson@ansto.gov.au Ph.: +61-2-9717-9401. Fax: +61-2-9717-3606 (VKP); E-mail: zxwang@iphy.ac.cn Ph.: +86-10-8264-9050. (ZW). E-mail: n.sharma@ansto.gov.au Ph.: +61 2 9717 7253. (NS).

S1

Figure S1. Scanning electron microscopy image of the as-purchased LiFePO₄ powder.

Figure S2. The electrochemical performance of the LiFePO₄ materials used in this study under conventional conditions; between 2.5 and 4.2 V, and with a current density of 0.1 mA cm⁻². The charge/discharge curves (left) from the first to the fourth cycle and capacity retention on charge/discharge (right) over 35 cycles.

S3. Neutron powder diffraction

In situ NPD data were collected on WOMBAT, the high-intensity powder diffractometer, at the Open Pool Australian Light-water (OPAL) reactor facility at the Australian Nuclear Science and Technology Organisation (ANSTO)¹. NPD data were collected every 5 minutes for 67 hours between $16 \le 2\theta \le 136^{\circ}$ at $\lambda = 2.4053(1)$ Å. The wavelength was determined using an Al₂O₃ SRM 676 standard. Data correction, reduction, and visualisation were undertaken using the program LAMP². During NPD data collection the LiFePO₄ battery was electrochemically cycled in galvanostatic (constant-current) mode with applied currents ranging from ± 1 to 12 mA using an Autolab potentiostat/galvanostat (PG302N).

Rietveld refinements were carried out using the GSAS³ suite of programs with the EXPGUI⁴ interface. Single-peak fits using a Gaussian peakshape were undertaken using LAMP². The figures of merit for the sequential multi-phase Rietveld analyses were profile factors (R_p) ranging between 2.40 $\leq R_p \leq 3.02\%$, weighted profile factors (wR_p) between 3.08 $\leq wR_p \leq 3.82\%$, and the goodness of fit term (χ^2) between 1.76 $\leq \chi^2 \leq 2.71$. The time dependence of the lattice parameters and phase fractions were determined, and atomic parameters such as the lithium site-occupancy factors and atomic displacement parameters were refined only for the first dataset and fixed during subsequent refinements in a similar manner to our earlier work^{5.6}. The relatively low angular resolution of the powder diffraction data meant that simultaneous unconstrained modelling of the LiFePO₄ and FePO₄ lattice parameters and phase fractions using Rietveld analysis for the LiFePO₄ S3

and $FePO_4$ phases was performed using Rietveld analysis with lattice parameter constraints, and the results overlayed in Figure 4, where the lattice parameters of only the dominant phase were refined.

References:

(1) Studer, A. J.; Hagen, M. E.; Noakes, T. J. *Physica B* **2006**, *385-386*, 1013.

(2) Richard, D.; Ferrand, M.; Kearley, G. J. J. Neutron Research 1996, 4, 33.

(3) Larson, A. C.; Von Dreele, R. B.; Los Alamos National Laboratory Report LAUR 86-748: 1994.

(4) Toby, B. H. J. Appl. Cryst. 2001, 34, 210.

(5) Sharma, N.; Peterson, V. K.; Elcombe, M. M.; Avdeev, M.; Studer, A. J.; Blagojevic, N.; Yusoff, R.; Kamarulzaman, N. *J. Power Sources* **2010**, *195*, 8258.

(6) Du, G.; Sharma, N.; Kimpton, J. A.; Jia, D.; Peterson, V. K.; Guo, Z. Adv. Funct. Mater. **2011**, *21*, 3990.