Supporting Information

Generation of an Isolable, Monomeric Manganese(V)-Oxo Complex from O_2 and Visible Light

Katharine A. Prokop and David P. Goldberg*

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland, 21218

General. The complexes (TBP₈Cz)Mn^{III} (1) and [(TBP₈Cz)P(OH)]OH (TBP₈Cz = octakis(*p-tert*-butylphenyl)corrolazinato³⁻) were synthesized according to published methods.^{1,2} Toluene was purified via a Pure-Solv solvent purification system from Innovative Technologies, Inc. Dioxygen gas (2.6 grade) was purchased from BOC Gases and dried by passage through a column of Drierite. H₂¹⁸O (97% ¹⁸O) was purchased from Cambridge Isotopes, Inc., and ¹⁸O₂ (98% ¹⁸O) was purchased from ICON (Isotope) Services, Inc. 9,10-dimethylanthracene was purchased from TCI. Cyclohexane was purified by washing with concentrated H₂SO₄, followed by water and 5% NaOH until neutral. It was then dried with MgSO₄ and distilled from CaH₂. PPh₃ was recrystallized from hexanes as described in published procedures.³ All other solvents and reagents were purchased from commercial sources at the highest available purity and used as received, unless otherwise noted.

Instrumentation. UV-vis spectroscopy was performed on a Hewlett-Packard 8542 diode-array spectrophotometer equipped with HPChemstation software. The light source was a General Electric Sunlamp Model RSK6A equipped with a 275-Watt bulb. For monitoring by UV-vis, reactions were run in a quartz cuvette (3 mL, 1 cm path length). The light source was positioned ~15 cm from the reaction mixture, and a 400 nm long-pass filter was placed directly between the quartz cuvette and light source. LDI-TOF mass spectrometry was conducted on a Bruker Autoflex III TOF/TOF instrument equipped with a nitrogen laser at 335 nm using an MTP 384 ground steel target plate. ¹H-NMR and ³¹P-NMR spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer at 298 K. All spectra were recorded in 5-mm o.d. NMR tubes, and chemical shifts were reported as δ values from standard peaks.

Laser Desorption Ionization Mass Spectrometry. For a typical experiment, an aliquot of sample dissolved in a small amount of solvent was transferred quickly to the steel target plate and allowed to evaporate to dryness, until a thin layer of compound remained on the target plate. LDI-TOF mass spectra were obtained in positive ion reflectron mode. Spectra were accumulated in multiples of 250 laser shots at a frequency of 200 Hz to a sum of 1000 shots total. Samples were deposited neat without the use of matrix, as done previously for metallocorrolazines^{4,5} and for other metalloporphyrins⁶ that can be analyzed in neat form. All mass assignments were made via external calibration using peptide ions as calibrants.

Aerobic Oxidation of (TBP₈Cz)Mn^{III} (1) for UV-vis Spectroscopy. An aerobic solution of 1 (12 μ M) in cyclohexane or toluene (2.5 mL) in a quartz cuvette was continuously irradiated with visible light (λ_{irr} > 400 nm) at 23 °C for 20 min. A color change from green-brown to green occurred. The reaction was monitored by UV-vis spectroscopy and showed the complete isosbestic conversion of 1 ($\lambda_{max}(C_6H_{12}) = 432$, 687 nm, $\lambda_{max}(toluene) = 434$, 689 nm) to (TBP₈Cz)Mn^V(O) 2 ($\lambda_{max}(C_6H_{12}) = 419$, 639 nm, $\lambda_{max}(toluene) = 419$, 634 nm).

Aerobic Oxidation of (1) for Isolation as a Solid. An aerobic solution of 1 (12 μM) in cyclohexane (25 mL) was continuously irradiated (λ_{irr} > 400 nm) 23 °C for 20 min. In this case, the reaction was run in a pyrex round-bottom flask, confirming that λ_{irr} > 400 nm is sufficient for the reaction to proceed. A color change from green-brown to green occurred. The reaction mixture was then dried under vacuum. The green solid was redissolved in CH₂Cl₂ and transferred onto a silica gel column (10 x 2 cm) and eluted as a green band with CH₂Cl₂. R_f = 0.9. ¹H NMR (400 MHz, CD₂Cl₂): δ (ppm), 8.42-8.39 (m,

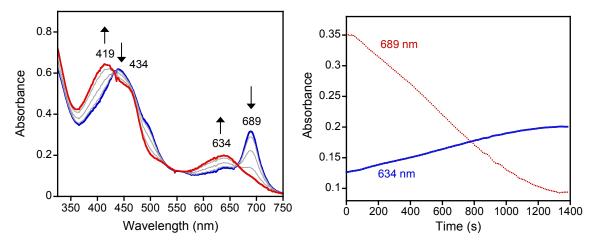
8H), 8.05 (d, J = 8.4 Hz, 4H), 7.75-7.70 (m, 8H), 7.61-7.52 (m, 8H), 7.25 (d, J = 8.4 Hz, 4H), 1.522 (s, 18H), 1.518 (s, 18H), 1.44 (s, 18H), 1.40 (s, 18H). UV-vis (CH₂Cl₂): λ_{max} (nm) ($\epsilon \times 10^{-4} \text{ M}^{-1} \text{ cm}^{-1}$) 418 (6.29) (soret), 634 (1.99) (Q band). LDI-TOF m/z isotopic cluster centered at 1426.8 (M⁺).

Preparation of (TBP₈Cz)Mn^V(¹⁸O). To a solution of 1 (10 μM) in toluene (2.5 mL) under a N₂ atmosphere was added 10 mL of 18 O₂ transferred via gas-tight syringe. The reaction was performed in a quartz cuvette and continuously irradiated ($\lambda_{irr} > 400$ nm) for for 20 min at 23 °C. The reaction was monitored by UV-vis spectroscopy to ensure full formation of 2. The reaction mixture was then concentrated under vacuum to approx. 100 μL and transferred under a stream of Ar to the target plate. LDI-TOF: m/z isotopic cluster centered at 1427.7 (55% 18 O incorporation based on simulated spectral fitting to the observed isotopic pattern).

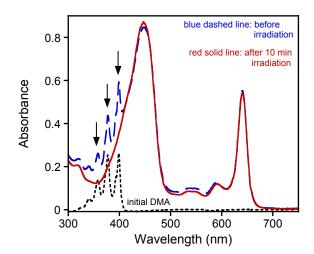
Aerobic Oxidation of (1) in the Presence of $H_2^{18}O$. To an aerobic solution of 1 (12 μ M) in cyclohexane (2.5 mL) was added 25 μ L of $H_2^{18}O$. The reaction was performed in a quartz cuvette and continuously irradiated ($\lambda_{irr} > 400$ nm) for 20 min. Isosbestic conversion of 1 ($\lambda_{max} = 432$, 687 nm) to 2 ($\lambda_{max} = 419$, 639 nm) was observed by UV-vis spectrocopy. LDI-TOF m/z (percent intensity): isotopic cluster centered at 1426.8 (M^+ , 100%, no ^{18}O incorporation).

Photocatalytic Oxidation of PPh₃. In a typical reaction, to an aerobic solution of **1** (10 μ M) in C₆H₁₂ (3 mL) in a quartz cuvette was added excess PPh₃ (13 mM). The solution was stirred and continuously irradiated ($\lambda_{irr} > 400$ nm) for 20 – 60 min at 23 °C. The reaction mixture was then concentrated to dryness under vacuum and redissolved in CDCl₃. The yield of O=PPh₃ was analyzed by ³¹P NMR spectroscopy by determining the

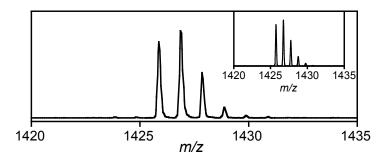
ratio of PPh₃ to OPPh₃ from spectral integrations. For solutions involving excess O₂, a stream of dry dioxygen gas was purged through the solvent during irradiation.

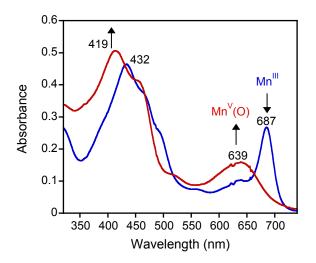

Aerobic Oxidation of (1) in the Presence of the Singlet Oxygen Trap 9,10-Dimethylanthracene (DMA). To an aerobic solution of DMA (0.24 mM) in cyclohexane (3 mL) was added complex 1 (18 μ M). The solution was continuously irradiated ($\lambda_{irr} > 400$ nm) in a quartz cuvette at 23 °C. The reaction mixture was monitored by UV-vis spectroscopy in 10 min intervals, and complete conversion of 1 ($\lambda_{max} = 432$, 687 nm) to 2 ($\lambda_{max} = 419$, 639 nm) was observed after 20 min. The peaks corresponding to DMA (300 – 400 nm) were observed both before and after irradiation (Figure 3), indicating no significant loss of DMA.

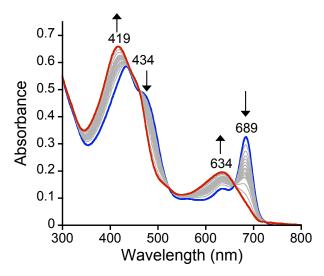
Irradiation of [(TBP₈Cz)P(OH)]OH in the Presence of DMA. To an aerobic solution of 9,10-dimethylanthracene (DMA, 0.24 mM) in cyclohexane (3 mL) was added phosphorus corrolazine ([(TBP₈Cz)P(OH)]OH, 6.2 μ M). The solution was continuously irradiated ($\lambda_{irr} > 400$ nm) in a quartz cuvette. The reaction mixture was monitored by UV-vis spectroscopy after 10 min. and showed complete loss of peaks for DMA (300 – 400 nm), indicating the generation and trapping of singlet O₂ (Figure S2).


Aerobic Oxidation of (1) with AIBN. To an aerobic solution of 1 (8 μ M) in cyclohexane (2.5 mL) was added AIBN (12 mM). The reaction was carried out in the dark at 50 °C (heated to initiate radical formation from AIBN). The UV-vis spectrum of the reaction mixture was obtained after 20 min and showed complete conversion of 1 ($\lambda_{max} = 432, 687$ nm) to 2 ($\lambda_{max} = 419, 639$ nm) (Figure S4).

References.


- (1) Lansky, D. E.; Mandimutsira, B.; Ramdhanie, B.; Clausen, M.; Penner-Hahn, J.; Zvyagin, S. A.; Telser, J.; Krzystek, J.; Zhan, R.; Ou, Z.; Kadish, K. M.; Zakharov, L.; Rheingold, A. L.; Goldberg, D. P. *Inorg. Chem.* **2005**, *44*, 4485-4498.
- (2) Ramdhanie, B.; Stern, C. L.; Goldberg, D. P. J. Am. Chem. Soc. 2001, 123, 9447-9448.
- (3) Armarego, W. L. F., Perrin D. D. *Purification of Laboratory Chemicals*; 4th ed.; Butterworth-Heinemann: Oxford, UK, 1997.
- (4) Prokop, K. A.; de Visser, S. P.; Goldberg, D. P. Angew. Chem. Int. Ed. 2010, 49, 5091-5095.
- (5) Prokop, K. A.; Neu, H. M.; de Visser, S. P.; Goldberg, D. P. J. Am. Chem. Soc. 2011, 133, 15874-15877.
- (6) Srinivasan, N.; Haney, C. A.; Lindsey, J. S.; Zhang, W. Z.; Chait, B. T. *J Porphyrins Phthalocyanines* **1999**, *3*, 283-291.


Figure S1. Time resolved UV-vis spectra of **1** (11 μ M) in toluene (2.5 mL) continuously irradiated ($\lambda_{irr} > 400$ nm) at 23 °C (left) with corresponding time profile (right) showing the loss of **1** (689 nm) and the formation of **2** (634 nm).


Figure S2. UV-vis spectra of [(TBP₈Cz)P(OH)]OH (6.2 μ M) and 9,10-dimethylanthracene (0.24 mM) in cyclohexane (3 mL) (blue dashed line) and following irradiation ($\lambda_{irr} > 400$ nm) for 10 min (red solid line).

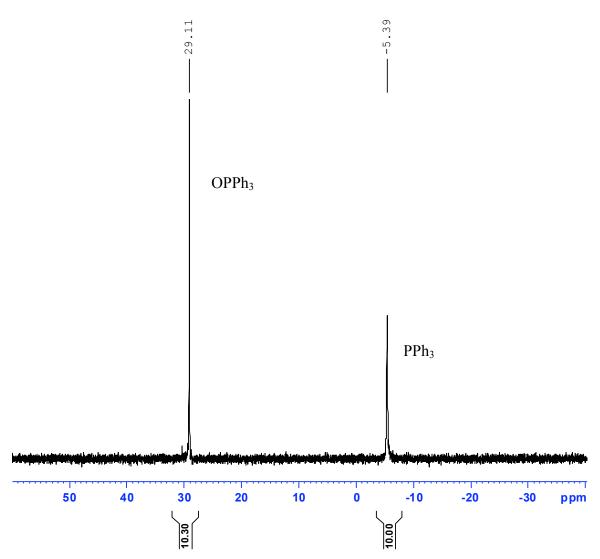

Figure S3. LDI-MS of **2** derived from the aerobic oxidation of **1** in a solution of toluene and $H_2^{18}O$. Calculated isotope pattern for **2** (insert) matches the experimental pattern, which shows no ^{18}O incorporation.

Figure S4. Initial (blue) and final (red) UV-vis spectra for the aerobic reaction between **1** (8 μM) and AIBN (12 mM) in cyclohexane (2.5 mL).

Figure S5. Time-resolved UV-vis spectra for the reaction between $(TBP_8Cz)Mn^{III}$ (10 μ M) and *t*-BuOOH (50 mM) in CH_2Cl_2 at 23 °C.

Figure S6. Representative ³¹P NMR spectrum for the catalytic reaction mixture of **1** (10 μ M) and PPh₃ (13 mM) following the addition of O₂ gas and continuous irradiation (λ_{irr} > 400 nm) for 60 min in C₆H₁₂ (3 mL). The reaction mixture was dried and redissolved in CDCl₃ prior to obtaining the spectrum.