Removal of Thiophenic Sulfurs Using Extractive Oxidative Desulfurization Process with Three New Phosphotungstate Catalysts

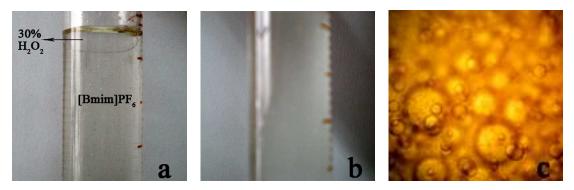
Hongxing Zhang^{†,‡}, Jiajun Gao^{†,‡}, Hong Meng[‡], and Chun-Xi Li*^{†,‡}

SUPPORTING INFORMATION

Table 1s Comparison of the reactivity between the present ECODS system and other literatures

References		Present work		(10)	(19)	(23)	(26)
S-removal rate (%)	99.8	99.7	99.8	99.2	98.6	99.0	100
$m(\text{oil})/m(\text{IL})^{c}$	4:1	4:1	4:1	2.57:1 ^b	1.56:1 ^b	3.13:1 ^b	2.87:1 ^b
$n(\mathrm{H_2O_2})/n(\mathrm{S})^{\mathrm{c}}$	3:1	3:1	3:1	4:1	10:1	4:1	4:1
n(S)/n(Catalyst)	100:1	100:1	100:1	10:1	25:1	20:1	120:1
Temperature (°C)	40	40	40	70	70	70	30
Time (h)	1.5	1	1.5	3	3	3	1
Ionic Liquid	[Bmim]PF ₆	[Bmim]PF ₆	[Bmim]PF ₆	[Bmim]PF ₆	[Bmim]BF ₄	[Bmim]BF ₄	[Omim]PF ₆
Catalyst ^a	I	II	III	IV	V	VI	VII
S-content (ppm)	1000	1000	1000	1000	1000	1000	500

^a Catalyst I = $[C_5H_5NH]_3PW_{12}O_{40}$, II= $[C_4H_6N_2H]_3PW_{12}O_{40}$ ·3 $C_4H_6N_2$, III = $[(C_4H_9)_4N]_3PW_{12}O_{40}$, IV = $MoO(O_2)_2\cdot C_2H_5NO_2$, V = $WO(O_2)_2\cdot Phen\cdot H_2O$, VI = Na_2MoO_4 , VII = $[MIMPS]_3PW_{12}O_{40}$ (MIMPS = 1-(3-sulfonic group) propyl-3-methyl imidazolium); ^b The calculated results of mass ratio of m(oil)/m(IL) are based on the densities of n-octane $(0.70 \text{ g/cm}^3)^1$, $[Bmim]PF_6$ $(1.36 \text{ g/cm}^3)^2$ $[Bmim]BF_4$ $(1.12 \text{ g/cm}^3)^2$, and $[Omim]PF_6$ $(1.22 \text{ g/cm}^{-3})^2$; ^c m means mass and n means mole.


[†] State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China, [‡] College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

^{*}Author to whom correspondence should be addressed: licx@mail.buct.edu.cn; Tel. & Fax: +86-10-6441-0308

^{*}To whom correspondence should be addressed. E-mail: licx@mail.buct.edu.cn, Tel. & Fax: +86 10 64410308.

[†] State Key Lab of Chemical Resource Engineering.

[‡] College of Chemical Engineering.

Figure 1s. The photographs of formed water-in-IL emulsion system. (a): 30 % H₂O₂ liquid film suspended on [Bmim]PF₆ IL with dissolved catalyst [C₅H₅NH]₃PW₁₂O₄₀; (b): the emulsion system formed under vigorous stirring; (c) optical micrograph of the water-in-IL emulsion system.

REFERENCES:

- (1) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156-164.
- (2) Ramos-Estrada, M.; Iglesia-Silva, G. A.; Hall, K. R.; Castillo-Borja, F. Experimental Liquid Densities of n-Pentane, n-Octane, and n-Nonane and Their Binary Mixtures from (273.15 to 363.15) K at 0.1 MPa. J. Chem. Eng. Data. 2011, 56, 4461-4465.