Supporting Information

Indentification of High Affinity Polo-like Kinase 1 (Plk1) Polo-box Domain Binding **Peptides Using Oxime-based Diversification**

Fa Liu,^{1,5} Jung-Eun Park,^{2,5} Wen-Jian Qian,¹ Dan Lim,³ Andrej Scharow,⁴ Thorsten Berg.⁴

Michael B. Yaffe,³ Kyung S. Lee²* and Terrence R. Burke, Jr.¹*

¹Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U. S. A., and ²Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, U. S. A. and ³Department of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, U. S. A. and ⁴Institute of Organic Chemistry, University of Leipzig, Leipzig, Germany

*Corresponding authors: Terrence R. Burke, Jr., Ph.D. National Cancer Institute National Institutes of Health Building 376 Boyles St., NCI-Frederick Frederick, MD 21702 U. S .A. Phone: (301) 846-5906; Fax: (301) 846-6033 E-mail: tburke@helix.nih.gov

And

Kyung S. Lee, Ph.D. National Cancer Institute National Institutes of Health 9000 Rockville Pike Building 37, Room 3118 Bethesda, MD 20892 U. S. A. Phone: (301) 496-9635, Fax: (301) 496-8419 E-mail: kyunglee@mail.nih.gov

⁵These authors contributed equally to this work.

Table of Contents

General Synthetic Procedures	S4
General Procedures for Peptide Synthesis	S6
Preparation of Proline Analogue s6	S 8
Preparation of Proline Analogue s7	S 8
Preparation of Proline Analogue s9	S10
Preparation of Proline Analogue s10	S10
Analytical HPLC Conditions	S10
X-ray Crystallography	S20
NMR Spectra for s6, s7, s9 & s10	S26
HPLC Traces of Peptides 2, 3, 4b, 5b, 7 & 8	S30
Supplementary References	S33

Supplementary Figures

Fig. S1 (3HIK and 3C5L crystal structure overlay) S3
Fig. S2 (Structures of aldehydes)S5
Fig. S3 (Structure of modified amino acids)S7
Fig. S4 (Preparation of reagent s7)S8
Fig. S5 (Preparation of reagent s10)S10
Fig S6 (Plk1 PBD ELISA binding data) S14
Fig S7 (Plk1 PBD ELISA binding data) S15
Fig S8 (Plk1 PBD ELISA binding data)
Fig S9 (Plk1 PBD ELISA binding data) S17
Fig S10 (Plk1 PBD ELISA binding data) S18
Fig. S11 (Plk1 PBD fluorescence polarization binding curves)
Fig. S12 (X-ray structure of PBD-bound 7) S21
Fig. S13 (Plk1 PBD contact regions for 7, 10 and 11)
Fig. S14 (Comparison of Plk1 PBD interactions of 1, 7, 10 and 11) S25

Supplementary Tables

Table S1. ESI-Mass Spectral Data and HPLC Purity of Synthetic Peptides	S12
Table S2. HRMS of Selected Peptides	S13
Table S3. Data Collection and Refinement Statistics	S21
Table S4. Ligand – residue Contact Areas for Plk1 PBD-bound Peptides	
Shown in Fig. S13	S24

Fig. S1. Overlay of co-crystal structure data comparing the Plk-1 PBD binding of "Ac-PLHSpT" (PDB: 3HIK; shown in gold) with "PPHSpT" (PDB: 3C5L; shown in green). Protein residues interacting with *N*-terminal Prolines are shown with residue numbering. Electrostatic surface is for the 3C5L structure. The Figure was generated using ICM Chemist Pro software by Molsoft, Inc. (www.molsoft.com). General Synthetic Procedures. All experiments involving moisture-sensitive compounds were conducted under dry conditions (positive argon pressure) using standard syringe, cannula, and septa apparatus. Solvents: All solvents were purchased anhydrous (Aldrich) and used directly. HPLC-grade hexanes, EtOAc, CH₂Cl₂, and MeOH were used in chromatography. TLC: analytical TLC was performed on Analtech pre-coated plates (Uniplate, silica gel GHLF, 250 microns) containing a fluorescence indicator; NMR spectra were recorded using a Varian Inova 400 MHz spectrometer. Coupling constants are reported in Hertz, and peak shifts are reported in δ (ppm) relative to TMS. Low resolution mass spectra (ESI) were measured using an Agilent 1200 LC/MSD-SL system, and high resolution mass spectra (ESI or APCI) were obtained from the UCR Mass Spectrometry Facility, Department of Chemistry, University of California, 3401 Watkins Dr., Riverside CA, 92521. Aldehydes **a** – **i** (**Fig. S2**) were purchased from Sigma-Aldrich. Aldehydes **j** – **m** were purchased from Rieke®Fine Chemicals. Aldehydes **n**¹ **o**² and **p**³ were prepared according to the indicated literature procedures.

Fig. S2. Structures of aldehydes used to prepare oxime-containing peptides 4 and 5.

General Procedures for Peptide Synthesis. Boc-protected 4-trans-aminooxy and 4-cis-aminooxy proline derivatives (s1 and s2, respectively, Fig. S3) were prepared as previously reported⁴ and used in the preparation of aminooxy-containing peptides 2and **3**, respectively. Fmoc-Thr(PO(OBzl)OH)-OH and other Fmoc protected amino acids were purchased from Novabiochem. Peptides were synthesized on NovaSyn®TGR resin (Novabiochem, cat. no. 01-64-0060) using standard Fmoc solid-phase protocols in N-Methyl-2-pyrrolidone (NMP). 1-O-Benzotriazole-N,N,N',N'-tetramethyl-uroniumhexafluoro-phosphate (HBTU) (5.0 eq.), hydroxybenzotriazole (HOBT) (5.0 eq.) and N.N-Diisopropylethylamine (DIPEA) (10.0 eq.) were used as coupling reagents. The Nterminal was acetylated by 1-acetylimidazole. The final resin was washed with N, Ndimethylforamide (DMF), methanol, dichloromethane and ether then dried under vacuum (over night). Peptide 6 was prepared using N-trityl protection of the proline aminooxy group (s3) (Fig. S3).⁴ In this latter case, the fully assembled resin (200 mg) was treated with dichloromethane (DCM) (containing 1% trifluoroacetic acid. 2.5% triisopropylsilane) 5 times, 2 minutes for each time, then treated with 3-phenylpropionic acid (5.0 eq.), HOBT (5.0 eq.) and DIC (5.0 eq) for 2 hours at room temperature. All peptides were cleaved from resin (200 mg) by treatment with 5 mL of trifluoroacetic acid : triisopropylsilane : $H_2O(90:5:5)(4 h)$. Peptides 7 and 8 were prepared using the 4phenylbutyl-containing proline analogues s7 and s10, respectively (see below). Peptides having the pTyr residue substituted with (2S,3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) utilized the previously reported reagent s4 (Fig. S3).⁵ For peptide pull-down assays, a cysteine residue was attached to the amino-terminus by means of a 6aminohexanoylamide spacer. Completed resins were filtered off and the filtrate was concentrated under vacuum, then precipitated with cold ether and the precipitate washed with cold ether. The resulting solid was dissolved in 50% aqueous acetonitrile 5 mL) and purified by reverse phase preparative HPLC using a Phenomenex C_{18} column (21 mm dia x 250 mm, cat. no: 00G-4436-P0) with a linear gradient from 0% aqueous acetonitrile (0.1% trifluoroacetic acid) to 100% acetonitrile (0.1% trifluoroacetic acid) over 30 minutes at a flow rate of 10.0 mL/minute. Lyophilization gave product peptides as white powders.

Fig. S3. Structures of non-coded amino acid derivatives employed in the current work.

Fig. S4. Preparation of reagent s7.

Preparation of Proline Analogue s6. To a suspension of sodium hydride (60% in mineral oil, 1.90 g, 47.5 mmol) in DMF (30 mL) at 0°C, was added a solution of Boc-L-hydroxyproline (**s5**) (5.0 g, 21.6 mmol) in DMF (30 mL) dropwise over 5 minutes. The mixture was kept at 0 °C (15 minutes) then 4-phenyl-1-iodobutane (prepared from 4-phenyl-1-butanol⁶) (16.9 g, 64.8 mmol) was added and the mixture was allowed to come to room temperature and stirred (over night). The reaction was quenched by the addition of saturated aqueous NH₄Cl (50 mL) and extracted with EtOAc (300 mL). The organic layer was washed, dried and purified by silica gel column chromatography (hexanes : EtOAc) to yield **s6 (Fig. S4)** as a colorless oil (5.1 g, 48% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.23 (m, 5 H), 7.16 – 7.13 (m, 5 H), 4.34 (dd, *J* = 8.0, 6.4 Hz, 0.3 H), 4.27 (t, *J* = 7.6 Hz, 0.7 H), 4.14 – 4.08 (m, 2 H), 3.98 (m, 1 H), 3.60 – 3.55 (m, 2 H), 3.42 – 3.33 (m, 2 H), 2.65 – 2.58 (m, 4 H), 2.25 (m, 1 H), 1.98 (m, 1 H), 1.70 – 1.60 (m, 8 H), 1.41 (s, 3.5 H), 1.36 (s, 5.5 H). ESI (+VE) *m/z*: 518.4 (M + Na)⁺. HR-ESI/APCI MS cacld for C₃₀H₄2NO₅ (M + H)⁺: 496.3058, Found: 496.3072.

Preparation of Proline Analogue s7. A mixture of **s6** (5.00 g, 10.1 mmol) and LiOH monohydrate (848 mg, 20.2 mmol) in a solution of THF (30 mL), MeOH (10 mL) and H₂O (15 mL) was stirred at room temperature (3 h). Organic solvent was removed by

rotary evaporation and the resulting aqueous phase was washed with ether (50 mL \times 2), acidified to pH 3-4 using 1N aqueous HCl and extracted with EtOAc (150 mL). The EtOAc extract was washed, dried (NaSO₄) and evaporated to a colorless oil, which was treated with a mixture of TFA (30 mL) and dichloromethane (30 mL) at room temperature (2 h). Solvent was removed and the resulting residue was dried under igh vacuum (2 h). The residue was then dissolved in dioxane (30 mL) and to this was added H₂O (30 mL), followed by solid NaHCO₃ (4.20 g, 50.0 mmol) and FmocOSu (3.71 g, 11.0 mmol), and and them mixture was stirred at room temperature (overnight). Dioxane was removed by rotary evaporation the remaining aqueous phase was washed with ether (50 mL x 20), acidfifed to pH 3–4 using 1N aqueous HCl and extracted with EtOAc (200 mL). The EtOAc layer was washed (brine), dried (NaSO4) and evaporated to provide analytically pure s7 as a thick oil (5.1g, 100% yield).¹H NMR (400 MHz, CDCl₃) δ 10.36 (brs, 1 H), 7.74 (d, J = 7.6 Hz, 1 H), 7.68 (d, J = 7.6 Hz, 1 H), 7.57 – 7.46 (m, 2 H), 7.40 -7.22 (m, 7 H), 7.18 - 7.12 (m, 2 H), 4.49 (t, J = 7.6 Hz, 0.5 H), 4.45 - 4.32 (m, 2.5 H), 4.24 (t, J = 7.2 Hz, 0.5 Hz), 4.15 - 4.00 (m, 1.5 H), 3.70 (m, 0.40 H), 3.60 - 3.55 (m, 1.6 H), 3.44 – 3.34 (m, 2 H), 2.64 – 2.57 (m, 2 H), 2.35 (m, 1 H), 0.86 (m, 1 H), 1.70 – 1.55 (m, 4 H). ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 176.5, 171.8, 159.1, 158.6, 155.9, 154.9, 143.7, 142.2, 141.3, 128.4, 128.3, 127.1, 119.9, 76.8, 76.2, 69.2, 68.0, 60.7, 58.1, 57.5, 52.0, 51.7, 47.1, 36.8, 35.6, 35.0, 29.3, 27.9, 21.0, 14.1. ESI (+VE) m/z: 508.3 (M + Na)⁺. HR-ESI/APCI MS cacld for $C_{30}H_{32}NO_5$ (M + H)⁺: 486.2275, Found: 486.2278.

Fig. S5. Preparation of reagent s10.

Preparation of Proline Analogue s9. Proline analogue s9 was prepared from N-Boc-*cis*-4-hydroxy-L-proline (s8) in 29% yield by the same method described above for the preparation of s6. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 5 H), 7.18 – 7.12 (m, 5 H), 4.39 (dd, J = 8.4, 3.6 Hz, 0.4 H), 4.27 (dd, J = 8.4, 4.0 Hz, 0.6 H), 4.15 – 3.98 (m, 2 H), 3.93 (m, 1 H), 3.63 (m, 0.60 H), 3.55 (dd, J = 11.2, 5.2 Hz, 0.4 H), 3.43 (ddd, J = 18.4, 11.6, 3.2 Hz, 1 H), 3.36 – 3.28 (m, 2 H), 2.65 – 2.55 (m, 4 H), 2.30 – 2.15 (m, 2 H), 1.70 – 1.55 (m, 6 H), 1.55 – 1.46 (m, 2 H), 1.45 (s, 3.5 H), 1.40 (s, 5.5 H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 172.0, 154.2, 153.8, 142.3, 142.1, 141.9, 128.3, 125.8, 79.9, 79.8, 77.4, 76.3, 68.9, 64.8, 57.8, 57.4, 52.0, 51.4, 36.2, 35.7, 35.4, 35.0, 29.4, 28.4, 28.3, 28.1, 27.9, 27.6. ESI (+VE) *m/z*: 518.4 (M + Na)⁺. HR-ESI/APCI MS cacld for C₃₀H₄₂NO₅ (M + H)⁺: 496.3058, Found: 496.3068. Preparation of Proline Analogue s10. Proline analogue s10 was prepared from s9 in 30% yield using the same methodology described above for the preparation of s7. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (brs, 1 H), 7.73 (d, J = 7.6 Hz, 1 H), 7.69 (d, J = 7.2Hz, 1 H), 7.60 – 7.50 (m, 2 H), 7.40 – 7.25 (m, 7 H), 7.17 – 7.10 (m, 2 H), 4.50 -4.43 (m, 1.6 H), 4.40 – 4.30 (m, 1.4 H), 4.23 (m, 0.60 H), 4.17 (m, 0.40 H), 4.00 (m, 1 H), 3.63 – 3.53 (m, 2 H), 3.45 (m, 0.5 H), 3.40 – 3.30 (m, 1.5 H), 2.60 – 2.53 (m, 2 H), 2.42 (m, 0.5 H), 2.30 (m, 1 H), 2.20 (m, 0.5 H), 1.70-1.50 (m, 4 H). ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 174.5, 155.7, 143.9, 143.6, 142.3, 141.3, 128.3, 127.8, 127.0, 125.7, 125.0, 120.0, 76.3, 68.8, 67.8, 60.4, 58.1, 57.6, 52.2, 47.1, 36.0, 35.5, 34.1, 31.6, 29.1, 27.8, 25.4, 22.6, 21.0, 14.4. ESI (+VE) *m/z*: 508.3 (M + Na)⁺. HR-ESI/APCI MS cacld for C₃₀H₃₂NO₅ (M + H)⁺: 486.2275, Found: 486.2299.

Analytical HPLC Conditions. The purities of peptides were determined by either using a Waters XBridgeTM BEH 130 column (C_{18} 5 µm 4.6 mm dia x 250 mm) with a linear gradient from 0% aqueous acetonitrile (0.1% trifluoroacetic acid) to 100% acetonitrile (0.1% trifluoroacetic acid) over 30 minutes at a flow rate of 1.0 mL/minute, detection at 220 nm or a Phenomenex column Gemini column (C_{18} 5 µm, 110 Å, 4.60 mm dia x 250 mm) with a linear gradient from 5% aqueous acetonitrile (0.1% trifluoroacetic acid) to 100% acetonitrile (0.1% trifluoroacetic acid) over 40 minutes at a flow rate of 1.0 mL/minute, detection at 220 nm.

N T	Expected	Observed	Expected	Observed		
No	$(M + H)^+$	$(\mathbf{M} + \mathbf{H})^+$	(M - H) ⁻	(M - H) ⁻	HPLC Purity	
2	706.3	706.6			95.8%	
3	706.3	706.6			98.0%	
4b	822.3	822.3			100% (two oxime isomer ratio: ~1/4)	
5b	822.3	822.3			100% (two oxime isomer ratio: ~1/4)	
6	838.3	838.3			79.9%	
7	823.4	823.3			100%	
7(S4A)	807.4	807.4	805.4	805.3	80.2%	
7(pT5T)	743.4	743.2			100%	
7*	821.4	821.4	819.4	819.3	100%	
7*(S4A)	805.4	805.3	803.4	803.4	77%	
8	823.4	823.5	821.4	821.4	100%	
8(S4A)	807.4	807.4	805.4	805.4	82.2%	
7	997.5	997.3	995.5	994.6	92.6%	
7*	995.4	995.2	993.5	992.7	90.6%	

Table S1. ESI-Mass Spectral Data and HPLC Purity of Synthetic Peptides.^a

7*(S5A)	979.5	979.3	977.5	976.6	89.0%
7(pT5T)	917.5	917.4			92.8%

^aCompound numbers in red italics indicate that the peptides are *N*-terminally modified to contain Cys-(6-aminohexanoylamide) functionality for use in peptide pull-down assays.

Table S2. HRMS of Selected Peptides.

NI -	Expected	Observed	Expected	Observed
INO	$(\mathbf{M} + \mathbf{H})^+$	$(\mathbf{M} + \mathbf{H})^+$	(M - H) ⁻	(M - H) ⁻
2			704.2774	704.2745
3			704.2774	704.2787
4b	822.3546	822.3551		
5b			820.3400	820.3357
7			821.3604	821.3590
8			821.3604	821.3585
7*	821.3957	821.3977		
7*(S4A)	805.4008	805.4033		

a

b

Fig. S6. Plk1 PBD binding curves obtained from ELISA-based PBD inhibition assays as described in the Experimental Methods. Peptide structures are shown in Figure 2 of the published text: (a) Data obtained with oxime library **4**; (b) Data obtained with oxime library **5**. Representative graphs from three independent experiments are shown.

Fig S7. Plk1 PBD binding curves obtained from ELISA-based PBD inhibition assays as described in the above. A representative graph from three independent experiments is shown.

Fig S8. Plk1 PBD binding curves obtained from ELISA-based, Plk1 PBD inhibition assays as described in the Experimental Methods. Representative graphs are shown from three independent experiments.

Fig S9. Plk1 PBD binding curves obtained from ELISA-based, Plk1 PBD inhibition assays as described in the Experimental Methods. Representative graphs are shown from three independent experiments.

Fig. S10. Plk1 PBD binding curves obtained from ELISA-based PBD inhibition assays as described in the Experimental Methods using an expanded concentration range. A representative graph from three independent experiments is shown.

Fig. S11. Results of fluorescence polarization assays showing inhibition of binding of 5-carboxyfluorescein-GPMQSpTPLNG-OH (5-CF-9) and the Plk1 PBD as described in the Experimental Procedures of the published text.

X-ray Crystallography

Protein purification and crystallization. Plk1 PBD protein (residues 371-603) was purified as previously described.⁷ Crystals were grown using the hanging drop vapor diffusion method. PBD protein at 12 mg/mL in 10 mM Tris pH 8, 0.5 M NaCl, 10 mM DTT, 2% DMSO and 2 mM peptide 7 was mixed with an equal volume of reservoir solution consisting of 31% (w/v) PEG 3350, 0.1 M bis-Tris pH 5.5 and 240 mM MgCl₂. Crystals began appearing overnight and reached maximum size over several days.

Data collection, and structure determination and refinement. Crystals were flash cooled by direct transfer from the mother liquor into a nitrogen cold stream. Data were collected at 100 K on a Mar345 image plate detector with a Rigaku RU-300 home X-ray source. The data were processed with the HKL⁸ and CCP4⁹ software suites. The structure was solved by molecular replacement using AMoRe¹⁰ using chain A of structure 3FVH (RCSB accession code)⁷ as a search model, and refined using PHENIX¹¹ with manual fitting in XtalView¹² **Fig. S12** was created using Xtalview¹² and PyMOL (http://www.pymol.org/).

	-
PBD ID	4DFW
Space group	P1
a (Å)	35.7
b (Å)	34.8
c (Å)	47.1
α (°)	76.4
β (°)	87.0
γ (°)	69.1
Resolution range (Å)	15-1.55
Average redundancy	3.1
Completeness ¹	91.0% (82.4%)
R _{sym} ¹	0.042 (0.100)
Average I/σ^1	21.5 (5.0)
R/R_{free} (%)	15.5 / 19.6

Table S3. Data Collection and Refinement Statistics

¹Values for the highest resolution shell are shown in parentheses.

Fig. S12. SigmaA weighted 2Fo-Fc electron density map contoured at 1 σ and 1.55 Å resolution around peptide 7 ligand (stick rendering with yellow carbons). The PBD protein is shown in green cartoon rendering with hydrophobic side chains around the phenyl-alkyl substituent on peptide 7 shown in stick rendering with orange carbons.

b

Fig. S13. Depiction of Plk1 PBD-bound ligands (a) **7**; (b) **10** PDB: 3RQ7) and (c) **11** (PDB: 3P37) showing contact regions for selected regions. Green = hydrophobic contact, with ball and stick size relative to degree of interaction. Graphics and numberical data (provided in Table S2) were produced using the Contact Residues option within ICM Chemist Pro by Molsoft, Inc. (<u>www.molsoft.com</u>). Final graphics were assembled using Adobe Photoshop CS4.

Table S4. Ligand – residue Contact Areas for Plk1 PBD-bound Peptides Shown in Fig.

S13.^a

Peptide		V415			Y417		Y421		¥481			
	CA	EA	%	CA	EA	%	СА	EA	%	СА	EA	%
7	34	78	44	48	171	28	10	189	5	28	186	15
10	40	86	46	36	146	24	8	181	4	26	199	13
11	32	82	40	74	110	67	8	125	6	30	191	15

Peptide	F482			Y485			L478			
	CA	EA	%	CA	EA	%	СА	EA	%	
7	23	129	18	50	139	36	14	146	10	
10	22	141	16	46	204	23	17	147	12	
11	17	133	13	52	158	33	5	141	4	

^aColumn Heading: CA (contact area); EA (exposed area); % (ratio of CA to EA). Data was generated using the Contact Residues option of ICM Chemist Pro by Molsoft, Inc. (<u>www.molsoft.com</u>).

Fig. S14. Plk1 PBD interactions. (a) Overlay of the Ph-(CH₂)₄-O-Pro portion of peptide **7** (shown carbon = grey) with the *N*-terminal residues Phe-Asp-Pro-Pro of peptide **11** (PBD: 3P37, shown carbon = red). (b) Comparison of key side chain residues observed with the Plk1 PBD binding of **7** (yellow); **1** (PBD: 3HIK, cyan); **10** (PBD: 3RQ7, blue) and **11** (PBD: 3P37, red). The Ph-(CH₂)₄-O-Pro portion of peptide **7** is shown carbon with carbon = grey, nitrogen = blue and oxygen = red. Superposition was generated using ICM Chemist Pro by Molsoft, Inc. (<u>www.molsoft.com</u>). Final graphics were assembled using Adobe Photoshop CS4.

¹H and ¹³C NMR spectra of s6, s7, s9, s10 and Selected HPLC Traces of Peptides 2, 3, 4b, 5b, 7 & 8.

¹H Spectrum of s6

¹H and ¹³C NMR Spectra of s7

¹H and ¹³C NMR Spectra of s9

¹H and ¹³C NMR Spectra of s10

Selected analytical HPLC Traces for Peptides 2, 3, 4b, 5b, 7 & 8.

Peptide 3

Peptide 4b (2 peaks are oxime bond isomers)

Peptide 5b (2 peaks are oxime bond isomers)

Peptide 8

Supplementary References

(1) Rahman bin Manas, A.; Smith, R. A. J. *Tetrahedron* **1987**, *43*, 1847-1856.

(2) Hamza, K.; Blum, J. *Eur. J. Org. Chem.* **2007**, 4706-4710.

(3) Hashizume, H.; Ito, H.; Yamada, K.; Nagashima, H.; Kanao, M.; Tomoda,

H.; Sunazuka, T.; Kumagai, H.; Omura, S. *Chem. Pharm. Bull.* **1994**, *42*, 512-520.

(4) Liu, F.; Stephen, A. G.; Fisher, R. J.; Burke, T. R. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 1096-1101.

(5) Liu, F.; Park, J.-E.; Lee, K. S.; Burke, T. R. *Tetrahedron* **2009**, *65*, 9673-9679.

(6) Smith, S. M.; Takacs, J. M. *J. Am. Chem. Soc.* **2010**, *132*, 1740-1741.

(7) Yun, S.-M.; Moulaei, T.; Lim, D.; Bang Jeong, K.; Park, J.-E.; Shenoy

Shilpa, R.; Liu, F.; Kang Young, H.; Liao, C.; Soung, N.-K.; Lee, S.; Yoon, D.-Y.; Lim, Y.; Lee, D.-H.; Otaka, A.; Appella, E.; McMahon James, B.; Nicklaus Marc, C.; Burke T., R., Jr.; Yaffe M., B.; Wlodawer, A.; Lee K., S. *Nat. Struct. Mol. Biol.* **2009**, *16*, 876-882.

(8) Minor, W.; Cymborowski, M.; Otwinowski, Z.; Chruszcz, M. *Acta Crystallogr. D Biol. Crystallogr.* **2006**, *62*, 859-866.

(9) Acta Crystallogr. D Biol. Crystallogr. **1994**, 50, 760-763.

(10) Navaza, J. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 1367-1372.

(11) Adams, P. D.; Afonine, P. V.; Bunkoczi, G.; Chen, V. B.; Davis, I. W.;

Echols, N.; Headd, J. J.; Hung, L. W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.;

Terwilliger, T. C.; Zwart, P. H. *Acta Crystallogr. D Biol. Crystallogr.***2010**, *66*, 213-221.

(12) McRee, D. E. J. Struct. Biol. **1999**, 125, 156-165.