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Expression for the heat flux between SWNT forest and di-

electric substrate

The heat flux between vertical forest of SWNTs and dielectric substrate is given by

q̇(ω) =
Nω3 Reσzz(ω) Im εsub(ω)

2π2c4 (Θ(ω, Tsub)−Θ(ω, Tnt))

×
∫

Snt

dRnt

∫
Vsub

dRsub ∑
α=x,y,z

|Gαz(Rsub,Rnt,ω)|2, (1)

where electric field Green dyadic, G(r, r′,ω), for an isolated SWNT placed above the

substrate is defined as

[(
∇r × I

)
·
(
∇r × I

)
− k2(r)I

]
· G(r, r′,ω) = 4π Iδ(r− r′), (2)

where

k(r) =


(ω/c)

√
εsub, z < 0

(ω/c), z > 0
(3)

is the wavenumber, I is the unit dyadic, δ(r− r′) is the Dirac delta-function. The Green

dyadic G must also satisfy boundary conditions imposed on the SWNT surface (see Eqs.

(7,8) in Ref.1). We look for the solution of Eq. (2) in the form

G(r, r′,ω) = G(hs)(r, r′,ω) + G(sc)(r, r′,ω), (4)

where G(hs) is the half-space Green dyadic, satisfying inhomogeneous Eq. (2). The scattered

Green dyadic G(sc), satisfying homogeneous Eq. (2) and the effective boundary conditions

on the SWNT surface, is given by1

G(sc)
αz (r, r′,ω) =

iω
c2

∫
Snt

dRnt G(hs)
αz (r,Rnt,ω)J

(
Rnt, r′,ω

)
, (5)
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where α = x,y,z, J (Rnt, r′,ω) = σzz(ω)Gzz(Rnt, r′,ω) is current density induced on the

SWNT surface by a delta-source situated in point r′ and polarized along z-axis of the

Cartesian coordinate system. Hereinafter, we use the coordinate system with the origin on

the substrate surface and z-axis oriented along the SWNT axis. Radius-vectors Rnt and Ra

of the points on the SWNT surface and SWNT axis are defined as

Rnt(z, ϕ) = R(cos ϕ ex + sin ϕ ey) + Ra(z), (6)

Ra(z) = (z− L/2− d)ez, (7)

where z ∈ [−L/2, L/2], ϕ ∈ [0,2π), and eα are the unit basis vectors.

Substituting Eqs. (4),(5) in Eq. (1) and using the identity

∑
α=x,y,z

∫
Vsub

dr
ω2

c2 G(hs)
iα (r1, r,ω)G∗(hs)

jα (r2, r,ω)Im εsub(ω) = 4π ImG(hs)
ij (r1, r2,ω), (8)

we obtain

q̇(ω) =
Nω3 Reσzz(ω)

2π2c4 (Θ(ω, Tsub)−Θ(ω, Tnt))(q1(ω) + q2(ω) + q3(ω)), (9)

where

q1(ω) =
4πc2

ω2

∫
Snt

dRnt ImG(hs)
zz (Rnt,Rnt,ω), (10)

q2(ω) = −8π

ω

∫
Snt

dRnt

∫
Snt

dR′nt ImJ
(
R′nt,Rnt,ω

)
ImG(hs)

zz (Rnt,R′nt,ω), (11)

q3(ω) =
4π

c2

∫
Snt

dRnt

∫
Snt

dR′nt

∫
Snt

dR′′ntJ (R′nt,Rnt,ω)J ∗(R′′nt,Rnt,ω) ImG(hs)
zz (R′nt,R

′′
nt,ω).

(12)
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Equations (10)-(12) can be simplified even further:

q1(ω) ≈ 8π2Rc2

ω2

L/2∫
−L/2

dz ImG(hs)
zz (Ra,R′a,ω), (13)

q2(ω) ≈ −16π2R2

ω

L/2∫
−L/2

dz
L/2∫
−L/2

dz′ ImG(hs)
zz (Ra,R′a,ω) ImJa

(
R′a,Ra,ω

)
, (14)

q3(ω) ≈ 8π2R3

c2

L/2∫
−L/2

dz′
L/2∫
−L/2

dz′′ ImG(hs)
zz (R′a,R′′a ,ω)

L/2∫
−L/2

dzJa
(
R′a,Ra,ω

)
J ∗a
(
R′′a ,Ra,ω

)
,

(15)

where we take into account that
∫

Snt
dRnt = R

∫ 2π
0 dϕ

∫ L/2
−L/2 dz, and ImG(hs)

zz (Rnt,R′nt,ω) ≈

ImG(hs)
zz (Ra,R′a,ω).

As a next step we introduce the half-space Green dyadic, using the method of images

(see Sec. 10.10 in Ref.2), as

G(hs)
zz (r, r′,ω) = G( f s)

zz (r, r′,ω) +
εsub(ω)− 1
εsub(ω) + 1

G( f s)
zz

(
r, r′(im),ω

)
, (16)

where points r,r′ lie above the substrate, r′(im) = (x′,y′,−z′) designates the image charge

position, and

G( f s)
zz (r, r′,ω) =

(
1 +

1
k2

0

∂2

∂z2

)
eik0|r−r′|

|r− r′| (17)

is the free-space Green dyadic, k0 = ω/c. Equation (16) is valid only when the gap width

and the SWNT length are much smaller than radiation wavelength.
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Finally, we need to calculate current density, Ja, given by

Ja(Ra,R′a,ω) = σzz(ω)

2π∫
0

dϕ′Gzz(Rnt,R′nt,ω)

= σzz(ω)

(
k2

0 +
∂2

∂z2

)Φ(z,z′,ω) +
iωR
c2

L/2∫
−L/2

Φ(z,z′′,ω)Ja(R′′a ,R′a,ω)dz′′

 , (18)

where

Φ(z,z′,ω) =
1
k2

0

2π∫
0

eik0r(z,z′,φ′)

r(z,z′,φ′)
dϕ′ +

2π

k2
0

εsub(ω)− 1
εsub(ω) + 1

eik0rim(z,z′)

rim(z,z′)
, (19)

r(z,z′, ϕ′) =
√
(z− z′)2 + 4R2 sin2(ϕ′/2), rim(z,z′) = L + 2d− z− z′. Integro-differential

equation (18) is transformed to the Hallen integral equation fo current density

L/2∫
−L/2

K(z,z′′)Ja(Ra(z′′),Ra(z′),ω)dz′′ + C1e−ik1z + C2eik1z = 2ik0Φ(z,z′,ω) (20)

with the kernel

K(z,z′′) =
eik1|z−z′′|

σzz(ω)
+

2ω2R
c3 Φ(z,z′′,ω). (21)

Integral equation (20) is supplemented by the edge condition Ja(Ra(±L/2),Ra(z′),ω) = 0.

The integral equation is solved by reducing it to the system of linear equations. For

this purpose we divide the SWNT axis on Np small pieces and assume that current

Ja(Ra(z′′),Ra(z′),ω) is constant along each of these pieces. Formal solution of this system

is given by

J(Ra(z′)) =M−1Φ(z′), (22)
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where

Jl(Ra(z′)) =


Ja(Ra(zl),Ra(z′),ω), l 6= 1, Neq + 1,

C1, l = 1,

C2, l = Neq + 1,

(23)

Mnl =



zl+h/2∫
−zl−h/2

K(zn,z′′)dz′′, l 6= 1, Neq + 1,

e−ik1zn , l = 1,

eik1zn , l = Neq + 1,

(24)

Φl(z′) = 2ik0Φ(zl,z′), h = L/Np, zl = −L/2 + (l − 1)h. It should be noted that Φ(z,z′)

has log-singularity when z = z′. However, this singularity is integrable and there are

no singular terms in matrix M. Moreover, singularity in Φ(z′) is also eliminated by

substituting formal solution (22) into Eqs. (14),(15) and integrating over z′.
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Figure 1: Spectral Kapitza conductance, g(ω), between quartz substrate and vertical forest
of identical metallic (15,0) SWNTs of length L = 500 nm as a function of frequency. d = 10
nm, Tsub = 300 K, N = 1016 m−2. Calculations are made using exact expression1,2 for the
half-space Green dyadic (dash red line) and method of images approximation (solid blue
line).

In order to justify our choice of Green dyadic (16), we calculate spectral thermal
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conductance across a gap between forest of identical (15,0) SWNTs and quartz substrate,

using both the exact expression1,2 for the half-space Green dyadic (red dashed line in

Fig. 1) and Eq. (16), obtained by method of images (solid blue line in Fig. 1). As one can

see from Fig. 1, the method of images provides good approximation for the half-space

Green tensor in the low-frequency region, when both the SWNT length and the gap width

are much smaller than the radiation wavelength.

Dependence of the thermal Kapitza conductance on the ra-

dius of metallic SWNTs in the forest
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Figure 2: Spectral Kapitza conductance, g(ω), between quartz substrate and vertical forest
of identical metallic SWNTs as a function of frequency. Chiralities of SWNTs in the forest
are indicated in the figure. d = 0.34 nm, TS = 300 K, N = 1016 m−2, L = 500 nm.

Thermal Kapitza conductance between a forest of metallic SWNTs and substrate de-

pends insignificantly on the radius R of SWNTs in the forest (see Fig. 2). Particularly,

interface thermal conductance is equal to 47.4 MW K−1 m−2 for a forest of (12,0) SWNTs,

51.6 MW K−1 m−2 for a forest of (15,0) SWNTs, and 57.4 MW K−1 m−2 for a forest of
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(18,0) SWNTs. We explain this behaviour by the fact that the SWNT surface area increases

proportionally to the SWNT radius, while the electric surface conductivity of metallic

SWNTs decreases inversely proportional to the SWNT radius.3 Thus increase in the SWNT

absorption area is compensated by the decrease of the absorption strength per unit area,

defined by the electric conductivity.

Interface thermal conductance of the forest of undoped semi-

conducting SWNTs
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Figure 3: Spectral thermal conductance, g(ω), between quartz substrate and vertical forest
of identical SWNTs as a function of frequency. Chiralities of SWNTs in the forest are
indicated in the figure. d = 0.34 nm, TS = 300 K, N = 1016 m−2, L = 500 nm.

Conductivity of an undoped semiconducting SWNT can not be described by the

Drude model. Using the full quantum-mechanical expression for the conductivity1 of

semiconducting SWNTs, we calculate the interface thermal conductance between vertical

forest of (14,0) SWNTs and quartz substrate (see Fig. 3). As one can see, the spectral

thermal conductance contains pronounced polariton resonances, only. Plasmon resonances
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are absent in the spectrum, because of the strong attenuation of the surface plasmons in

semiconducting SWNTs. Moreover, the thermal conductance across the gap between (14,0)

SWNT forest and quartz is equal to 5.5 KW K−1 m−2. This is more than three orders of

magnitude lower than the interface thermal conductance values, obtained for metallic

SWNT forest.
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