## Supporting Information

One-Pot Primary Aminomethylation of Aryl and Heteroaryl Halides with Sodium Phthalimidomethyltrifluoroborate
Norio Murai, ${ }^{\dagger, \#}$ Masayuki Miyano, ${ }^{\dagger}$ Masahiro Yonaga, ${ }^{*}{ }^{\dagger, \dagger}$ and Keigo Tanaka*, ${ }^{\dagger}$
${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{\text {\# }}$ Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
k6-tanaka@hhc.eisai.co.jp; m-yonaga@hhc.eisai.co.jp
Table of Contents

1. General ..... page S1
2. Preparation of sodium phthalimidomethyltrifluoroborate 1 ..... page S1
3. General experimental procedure for Suzuki-Miyaura cross-coupling reactions with borate 1 ..... page S3
4. Experimental procedure for preparing compounds 6a-6f ..... page S4
5. Experimental procedure for one-pot direct aminomethylation of aryl and heteroaryl halides, triflates, mesylates, and tosylates 7a-71 ..... page S8
6. Experimental procedure for preparing compounds 9 and 11 ..... page S28
7. References ..... page S30
8. Spectra for compounds ..... page S30

## 1. General

Nuclear magnetic resonance ( ${ }^{1} \mathrm{H}$ NMR ( 400 MHz ), ${ }^{13} \mathrm{C}$ NMR ( 100 MHz )) spectra were determined on a Varian Mercury plus 400 MHz or JEOL-ECA500. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are reported in parts per million down fields from tetramethylsilane ( $\delta$ ) as the internal standard and coupling constants are in hertz ( Hz ). The following abbreviations are used for spin multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, br. s . = broad singlet. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR were reported in ppm relative to the center line of a triplet at 77.16 ppm for deuteriochloroform and a septet at 39.52 ppm for hexadeuterodimethyl sulfoxide. ${ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ spectra were determined on a Avance $400 \mathrm{MHz} .{ }^{19} \mathrm{~F}$ NMR chemical shifts were referenced to external trifluorotoluene ( -67.73 ppm ). ${ }^{11} \mathrm{~B}$ NMR chemical shifts were referenced to external $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.0 \mathrm{ppm})$.
Infrared (IR) spectra were recorded on a JASCO FT/IR-620 Spectrophotometer and were reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra (HRMS) were obtained on a Waters GCT Premier using electron ionization (EI) method or a ThermoFisherScientific Orbirtap using electro spray ionization (ESI) method. Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25 mm thick, silica gel 60 F254. Preparative TLC separations were performed on Merck analytical plates 0.50 mm thick precoated with silica gel 60 F254 or $\mathrm{NH}_{2} \mathrm{~F} 254 \mathrm{~s}$. Flash chromatography separations were performed on Merck silica gel 60 ( $0.040-0.063 \mathrm{~mm}, 230-400$ mesh ASTM).
$\operatorname{Pd}(\mathrm{OAc})_{2}, \mathrm{Pd}(\mathrm{dba})_{2}$, and S-phos were purchased from Sigma-Aldrich and were used without further purification. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was purchased from Kanto Chemicals Co., Inc., and were used without further purification. All Substrates of Table 2 and 3 were purchased from Sigma-Aldrich or Tokyo Chemical Industry Co., Ltd., or Kanto Chemicals Co., Inc., and were used without further purification. 1,4-Dioxane dehydrate and Distilled water were purchased from Kanto Chemicals Co., Inc., and were used without further purification.

## 2. Preparation of sodium phthalimidomethyltrifluoroborate 1 (Scheme 1)



Preparation of sodium phthalimidomethyltrifluoroborate 1

Phthalimide ( $6.59 \mathrm{~g}, 44.8 \mathrm{mmol}$ ) was added to a mixture of sodium hydride $(1.79 \mathrm{~g}$, $44.8 \mathrm{mmol}, 60 \%$ purity) and tetrahydrohuran $(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred at room temperature for 1 hour, 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ( $5.38 \mathrm{~g}, 22.4 \mathrm{mmol}, 92 \%$ purity) was added at $0^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 hours before cooling to room temperature. To the reaction mixture was added $\mathrm{NaHF}_{2}(6.25 \mathrm{~g}$, $101 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and then distilled water ( 300 mL ) was added dropwise to the stirring reaction mixture at the same temperature over 1 hour. The reaction mixture stirred at room temperature for 1 hour, concentrated under reduced pressure. The residue was azeotroped with toluene before drying in vacuo over 5 hours. The resulting solid was added acetone ( 300 mL ) and methanol ( 30.0 mL ), and then the reaction mixture was divided into white solid (a) and filtrate (b) by filtration. The white solid (a) was added methanol $(100 \mathrm{~mL})$ and acetone $(100 \mathrm{~mL})$, the mixture was filtered. The resulting filtrate was added ethyl acetate ( 50.0 mL ), and then added heptane (ca. 150 mL ) until the appearacce of the solid. The resulting solid was filtered and dried under reduced pressure to obtain the $1^{\text {st }}$ crop of sodium phthalimidomethyltrifluoroborate $\mathbf{1}$ as a white solid ( $1.19 \mathrm{~g}, 4.74 \mathrm{mmol}, 21.2 \%$ ). The filtrate (b) was added ethyl acetate ( 100 mL ), and then filtered. Ethyl acetate $(50.0 \mathrm{~mL})$ was added to the filtrate until the appearacce of the solid, the mixture was divided into solid (c) and filtrate (d) by filtration. The solid (c) was dried under reduced pressure to obtain the $2^{\text {nd }}$ crop of sodium phthalimidomethyltrifluoroborate $\mathbf{1}(826 \mathrm{mg}, 3.29 \mathrm{mmol}, 17.7 \%)$. Ethyl acetate ( 100 mL ) was added to the resulting filtrate (d) until the appearacce of the solid, the mixture was divided into solid (e) and filtrate (f) by filtration. The solid (e) was dried under reduced pressure to obtain the $3^{\text {rd }}$ crop of sodium phthalimidomethyltrifluoroborate 1 ( $588 \mathrm{mg}, 2.34 \mathrm{mmol}, 10.5 \%$ ). The analytical data was consistent with each other among $1^{\text {st }}$ crop, $2^{\text {nd }}$ crop, and $3^{\text {rd }}$ crop of sodium phthalimidomethyltrifluoroborate 1.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d_{6}$ ) $\delta 7.72(\mathrm{~s}, 4 \mathrm{H}), 2.56(\mathrm{q}, J=5.12 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta 168.3,133.5,132.4,122.1 ;{ }^{19}$ F NMR ( 376.5 MHz , DMSO- $d_{6}$ ) $\delta-147.0 ;{ }^{11}$ B NMR ( 128.4 MHz, DMSO- $d_{6}$ ) $\delta$ 3.1; IR (ATR, $\mathrm{cm}^{-1}$ ) 1772, 1706, 1465, 1435, 1401, 1319, 1278, 1188, 1086, 956, 769, 722; HRMS (ESI-) calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BF}_{3} \mathrm{NO}_{2}^{-}(\mathrm{M}-\mathrm{H})^{-} 228.0448$, found 228.0438 .


Preparation of 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ${ }^{1}$

To a mixture of triisopropyl borate ( $20.0 \mathrm{~g}, 110 \mathrm{mmol}$ ), dibromomethane ( 8.60 mL , $120 \mathrm{mmol})$ and tetrahydrofuran ( 150 mL ) was added $n$-butyllithium ( 2.6 M n -hexane solution, 39 mL 100 mmol ) at $-78^{\circ} \mathrm{C}$ (external temperature) over 1.5 hours. The reaction mixture was stirred at the same temperature for 1.5 hours, and then the reaction mixture was stirred at room temperature for 2 hours. After the mixture was cooled at $0^{\circ} \mathrm{C}$ (external temperature), to the reaction mixture was added methanesulfonic acid (6.50 $\mathrm{mL}, 100 \mathrm{mmol}$ ), and then the reaction mixture was stirred at room temperature for 1 hour. After the mixture was cooled at $0{ }^{\circ} \mathrm{C}$ (external temperature), to the reaction mixture was added pinacol ( $12.0 \mathrm{~g}, 100 \mathrm{mmol}$ ), and then the reaction mixture was stirred at room temperature for 1 hour. After the solvent was concentrated, the resulting residue was distilled under reduce pressure $\left(74-76^{\circ} \mathrm{C}, 8 \mathrm{mmHg}\right)$, to obtain the title compound ( $16.0 \mathrm{~g}, 72.4 \mathrm{mmol}, 72.4 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.57(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 84.6,24.7$; $\mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right) 2979,1415,1372,1336,1272,1214,1135,1055,967,886$, 845, 673; HRMS (EI+) calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{BBrO}_{2}(\mathrm{M})^{+} 220.0270$, found 220.0315 .

## 3. General experimental procedure for Suzuki-Miyaura cross-coupling reactions with borate 1 (Table1)

A Biotage microwave vial was charged with 2-bromo-4-methoxytoluene or 4-chloro-3-methylanisole, $\quad \operatorname{Pd}(\mathrm{OAc})_{2}$ or $\operatorname{Pd}(\mathrm{dba})_{2}$, S-phos, base, sodium phthalimidomethyltrifluoroborate 1, 1,4-dioxane/distilled water (2/1). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours. The reaction mixture was cooled to room temperature. The reaction mixture was added water and chloroform. Organic layer was concentrated under reduced pressure, then added dibenzyl ether ( $\delta 4.6(\mathrm{~s}, 4 \mathrm{H})$ in $\mathrm{CDCl}_{3}$ ) as the internal standard, and yields of compounds 2-4 were determined by ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$. Aqueous layer was added $1 \mathrm{~N}-\mathrm{HCl}$ aq. and chloroform, then extracted with chloroform (x 3). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was added dibenzyl ether ( $\delta 4.5(\mathrm{~s}, 4 \mathrm{H})$ in DMSO- $d_{6}$ ) or triphenyl methane ( $\delta 5.5(\mathrm{~s}, 1 \mathrm{H})$ in DMSO- $d_{6}$ ) as the internal standard, and yield of compound 5 was determined by ${ }^{1}$ HNMR (DMSO- $d_{6}$ ).

## 4. Experimental procedure for preparing compounds 6a-6e (Table 2)



Preparation of 2-\{[(4-methoxy-2-methylphenyl)methyl]carbamoyl\}benzoic acid (6a) from 4-chloro-3-methylanisole
A Biotage microwave vial was charged with 4-chloro-3-methylanisole ( $31.3 \mathrm{mg}, 0.200$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.24 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(9.85 \mathrm{mg}, 0.024 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(95.4 \mathrm{mg}, 0.900 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(75.3 \mathrm{mg}, 0.300$ $\mathrm{mmol})$, 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water $(444 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{HCl}(1 \mathrm{~N})$ and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with diethyl ether/heptane solution to afford $\mathbf{6 a}(51.0 \mathrm{mg}, 85.1 \%)$.
${ }^{1}$ H NMR ( 400 MHz, DMSO-d 6 ) $\delta 12.93$ (br. s., 1 H ), 8.63 (t, $J=5.49 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.74 (d, $J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.79,(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~d}$, $J=5.86 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz, DMSO- $d_{6}$ ) $\delta 168.3$, 168.1, 158.2, 138.5, 137.2, 131.1, 131.0, 129.3, 129.1, 129.1, 129.0, 127.8, 115.4, 110.8, $55.0,40.3,19.0$; IR (ATR, $\mathrm{cm}^{-1}$ ) 3337, 1698, 1650, 1577, 1531, 1420, 1299, 1252;
HRMS (ESI + ) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+} 300.1230$, found 300.1228.

Preparation of 2-\{[(4-methoxy-2-methylphenyl)methyl]carbamoyl\}benzoic acid (6a) from 2-bromo-4-methoxyltoluene
A Biotage microwave vial was charged with 2-bromo-4-methoxytoluene ( 40.2 mg , $0.200 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(5.75 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(9.85 \mathrm{mg}, 0.024 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ( $95.4 \mathrm{mg}, 0.900 \mathrm{mmol}$ ), sodium phthalimidomethyltrifluoroborate $\mathbf{1}(75.3 \mathrm{mg}, 0.300$ $\mathrm{mmol})$, 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water $(444 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{HCl}(1 \mathrm{~N})$ and chloroform, and then extracted with chloroform (x 3). Organic layers
were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with diethyl ether/heptane solution to afford $\mathbf{6 b}$ ( $54.1 \mathrm{mg}, 90.3 \%$ ).


## Preparation of 2-\{[(3-cyanophenyl)methyl]carbamoyl\}benzoic acid (6b)

A Biotage microwave vial was charged with 3-chloro-benzonitrile ( $27.5 \mathrm{mg}, 0.200$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(9.85 \mathrm{mg}, 0.024 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(95.4 \mathrm{mg}, 0.900 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(75.3 \mathrm{mg}, 0.300$ $\mathrm{mmol})$, 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water $(444 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{HCl}(1 \mathrm{~N})$ and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with ethyl acetate and diethyl ether/heptane solution to afford $\mathbf{6 b}(47.1 \mathrm{mg}, 84.0 \%)$.
Commercially available compound: CAS [1156122-53-0]
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d6) $\delta 8.94$ (br. s., 1 H ), 7.66-7.89 (m, 4H), 7.39-7.62 (m, $4 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=5.85 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 168.9,168.0,141.2$, 138.2, 132.2, 131.3, 130.9, 130.7, 130.6, 129.4, 129.4, 129.3, 127.8, 119.0, 111.2, 41.9; HRMS (ESI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$281.0921, found 281.0914.


## Preparation of 2-\{[(3-formylphenyl)methyl]carbamoyl\}benzoic acid (6c)

A Biotage microwave vial was charged with 3-chloro-benzaldehyde ( $21.7 \mathrm{mg}, 0.150$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.68 \mathrm{mg}, 0.008 \mathrm{mmol})$, S-phos $(7.39 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225$ $\mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq.
$\mathrm{HCl}(1 \mathrm{~N})$ and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with ethyl acetate and diethyl ether/heptane solution to afford 6c ( $36.5 \mathrm{mg}, 85.9 \%$ ).
${ }^{1}$ H NMR ( 490 MHz , DMSO-d 6 ) $\delta 10.03$ (br. s., 1 H ), 8.99 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.93 (br, $1 \mathrm{H}), 7.74-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.61(\mathrm{~m}, 4 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( 123 MHz , DMSO- $d_{6}$ ) $\delta 193.2,168.8,168.1,140.8,138.2,136.3,133.5,131.2,131.0,129.3,129.3$, 129.1, 128.4, 127.8, 127.7, 42.2; IR (ATR, $\mathrm{cm}^{-1}$ ) 3318, 1698, 1650, 1579, 1534, 1419, 1304, 778, 701; HRMS (ESI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$284.0917, found 284.0915.


Preparation of 2-(\{[4-(methoxycarbonyl)phenyl]methyl\}carbamoyl)benzoic acid (6d)
A Biotage microwave vial was charged with methyl 4-chlorobenzoate ( $34.1 \mathrm{mg}, 0.200$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(9.85 \mathrm{mg}, 0.024 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(95.4 \mathrm{mg}, 0.900 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(75.3 \mathrm{mg}, 0.300$ $\mathrm{mmol})$, 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water $(444 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{HCl}(1 \mathrm{~N})$ and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with ethyl acetate and diethyl ether/heptane solution to afford $\mathbf{6 d}(54.5 \mathrm{mg}, 87.1 \%)$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d6) $\delta 8.96(\mathrm{t}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H})$, 7.73-7.79 (m, 1H), 7.43-7.62 (m, 5H), 4.50 (d, $J=5.86 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $d_{6}$ ) $\delta 168.8,168.1,166.2,145.3,138.1,131.2,131.1,129.3,129.2$, 129.1, 128.0, 127.7, 127.4, 52.1, 42.3; IR (ATR, $\mathrm{cm}^{-1}$ ) 3315, 1701, 1649, 1533, 1418, 1218, 1109, 750; HRMS (ESI+) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+} 314.1023$, found 314.1023 .


Preparation of 2-[(thiophen-2-ylmethyl)carbamoyl]benzoic acid (6e)
A Biotage microwave vial was charged with methyl 2-bromothiophene ( 16.3 mg , $0.100 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(2.88 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(4.92 \mathrm{mg}, 0.012 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(47.7 \mathrm{mg}, 0.450 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(37.6 \mathrm{mg}, 0.150$ $\mathrm{mmol})$, 1,4-dioxane ( $444 \mu \mathrm{~L}$ ), distilled water ( $222 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2 ). Resulting aqueous layer was added aq. $\mathrm{HCl}(1 \mathrm{~N})$ and chloroform, and then extracted with chloroform/tetrahydrofuran $=5 / 1$ ( x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (silica gel, ethyl acetate/methanol/acetic acid $=100 / 10 / 1$ ) to afford $\mathbf{6 e}$ ( $16.3 \mathrm{mg}, 62.3 \%$ ).
Commercially available compound: CAS [332361-08-7]
${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-d 6 ) $\delta 12.95$ (br. s., 1 H ), 8.94 (t, $J=5.86 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.75 (dd, $J=1.28,7.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=0.91,3.48 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95$ (dd, $J=3.29,5.12 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO- $d_{6}$ ) $\delta 168.3,168.0,142.4,138.1,131.2,131.0,129.4,129.2,127.7,126.7,125.3$, 124.9, 37.7; HRMS (ESI + ) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M})^{+}$262.0520, found 262.0519 .


Preparation of 2-\{[(6-methoxypyridin-3-yl)methyl]carbamoyl\}benzoic acid (6f)
A Biotage microwave vial was charged with methyl 5-chloro-2-methoxypyridine (28.8 $\mathrm{mg}, 0.200 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{mg}, 0.010 \mathrm{mmol})$, S-phos $(9.85 \mathrm{mg}, 0.024 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(95.4 \mathrm{mg}, 0.900 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(75.3 \mathrm{mg}$, $0.300 \mathrm{mmol})$, 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water $(444 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2 ). Resulting aqueous layer was added aq. $\mathrm{HCl}(1 \mathrm{~N})$ and chloroform, and then extracted with chloroform/tetrahydrofuran $=5 / 1(\mathrm{x}$
3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (silica gel, ethyl acetate/methanol/acetic acid $=100 / 10 / 1$ ) to afford $\mathbf{6 f}$ ( $24.2 \mathrm{mg}, 42.2 \%$ ).
Commercially available compound: CAS [1178036-30-0]
${ }^{1}$ H NMR ( 400 MHz, DMSO-d6) $\delta 12.96$ (br. s., 1 H ), 8.80 (t, $J=5.67 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.14 (s, $1 \mathrm{H}), 7.74$ (dd, $J=8.05,17.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (d, $J=8.42 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.6,168.0,162.7,145.6,138.9,138.4,131.3,130.8,129.2,129.2,128.0,127.7$, 110.1, 53.1, 39.6; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$267.1026, found 267.1026 .

## 5. Experimental procedure for one-pot aminomethylation of aryl and heteroaryl halides, triflates, mesylates, and tosylates (Table 4 and 5)

## One-pot primary aminomethylation of aryl and heteroaryl halides and triflates (Table 4)



Preparation of naphthalen-2-ylmethanamine (7a) from 2-chloronaphthalene ${ }^{2}$
A Biotage microwave vial was charged with 2-chloronaphthalene ( $24.4 \mathrm{mg}, 0.150$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.68 \mathrm{mg}, 0.008 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(7.39 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}$, 0.225 mmol ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050$ $\mathrm{mmol})$ and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform ( x 2 ). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathrm{a}(20.1 \mathrm{mg}$, 85.2 \%).

Commercially available compound: CAS [118-31-0]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.82(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 3 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.51(\mathrm{~m}, 3 \mathrm{H})$, 4.03 (s, 2H), $1.56(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.9,133.7,132.6,128.3$, $127.8,127.8,126.2,125.9,125.6,125.2,46.8$; HRMS (EI+) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}(M)^{+}$ 157.0886, found 157.0965 .

## Preparation of naphthalen-2-ylmethanamine (7a) from 2-bromonaphthalene

A Biotage microwave vial was charged with 2-bromonaphthalene ( $42.7 \mathrm{mg}, 0.150$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(4.31 \mathrm{mg}, 0.008 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(7.39 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(71.5$ $\mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}, 0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathrm{a}(18.7 \mathrm{mg}$, 79.3 \%).

## Preparation of naphthalen-2-ylmethanamine (7a) from 2-iodonaphthalene

A Biotage microwave vial was charged with 2-iodonaphthalene $(38.1 \mathrm{mg}, 0.150 \mathrm{mmol}$, $95 \%$ purity $), \mathrm{Pd}(\mathrm{dba})_{2}(4.31 \mathrm{mg}, 0.008 \mathrm{mmol})$, S -phos ( $7.39 \mathrm{mg}, 0.018 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ( $71.5 \mathrm{mg}, 0.675 \mathrm{mmol}$ ), sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}$, 0.225 mmol ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050$ $\mathrm{mmol})$ and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate,
filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $7 \mathrm{a}(12.4 \mathrm{mg}$, 52.6 \%).

## Preparation of naphthalen-2-ylmethanamine (7a) from 2-naphthyl trifluoromethanesulfonate

A Biotage microwave vial was charged with 2-naphthyl trifluoromethanesulfonate $(41.4 \mathrm{mg}, 0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(4.31 \mathrm{mg}, 0.008 \mathrm{mmol})$, S-phos ( $7.39 \mathrm{mg}, 0.018$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}$ $(56.5 \mathrm{mg}, 0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 15 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl $(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $7 \mathrm{a}(17.5 \mathrm{mg}$, 74.2 \%).


## Preparation of (4-methoxy-2-methylphenyl)methanamine (7b) ${ }^{3}$

A Biotage microwave vial was charged with 4-chloro-3-methylanisole (31.3 mg, 0.200 $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{mg}, 0.010 \mathrm{mmol})$, S-phos $(9.85 \mathrm{mg}, 0.024 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(95.4 \mathrm{mg}, 0.900 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(75.3 \mathrm{mg}, 0.300$ mmol ), 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water ( $444 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $93.5 \mu \mathrm{~L}, 1.400$ $\mathrm{mmol})$ and 1-propanol ( $888 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting
aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $\mathbf{7 b}(25.6 \mathrm{mg}$, 84.6 \%).

Commercially available compound: CAS [21883-14-7]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.19(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.5,137.1$, 133.7, 128.6, 116.2, 111.1, 55.3, 43.7, 19.2; HRMS (EI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}(M)^{+}$ 151.0992, found 151.1050.


Preparation of $\mathbf{2 H}$-1,3-benzodioxol-5-ylmethanamine (7c) ${ }^{4}$
A Biotage microwave vial was charged with 5 -chloro-1,3-benzodioxole $(23.5 \mathrm{mg}$, $0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.68 \mathrm{mg}, 0.008 \mathrm{mmol})$, S-phos ( $7.39 \mathrm{mg}, 0.018 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}$, $0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050$ $\mathrm{mmol})$ and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford 7c $(20.2 \mathrm{mg}$, 89.1 \%).

Commercially available compound: CAS [2620-50-0]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.70-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, 2 H ), 1.52 (br. s., 2 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 147.8,146.4,137.5,120.1,108.2$, 107.8, 100.9, 46.4; HRMS (EI+) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}(\mathrm{M})^{+}$151.0628, found 151.0704.


## Preparation of (3,5-dimethoxyphenyl)methanamine (7d) ${ }^{5}$

A Biotage microwave vial was charged with 3,5-dimethoxychlorobenzene ( 25.9 mg , $0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.68 \mathrm{mg}, 0.008 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(7.39 \mathrm{mg}, 0.018 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ( $71.5 \mathrm{mg}, 0.675 \mathrm{mmol}$ ), sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}$, 0.225 mmol ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050$ $\mathrm{mmol})$ and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathbf{~}(22.8 \mathrm{mg}$, 90.9 \%).

Commercially available compound: CAS [34967-24-3]
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.47(\mathrm{~d}, \mathrm{~J}=2.56 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, 2 H ), 3.79 (s, 6H), 1.58 (br. s., 2 H ); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 161.1, 146.0, 104.9, 98.8, 55.4, 46.7; HRMS (EI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2}(\mathrm{M})^{+}$167.0941, found 167.1048.


## Preparation of 3-(aminomethyl)benzonitrile (7e) ${ }^{6}$

A Biotage microwave vial was charged with 3,5-dimethoxychlorobenzene ( 21.0 mg , $0.150 \mathrm{mmol}, 98 \%$ purity $), \mathrm{Pd}(\mathrm{OAc})_{2}(1.68 \mathrm{mg}, 0.008 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(7.39 \mathrm{mg}, 0.018$ mmol), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate 1 ( $56.5 \mathrm{mg}, 0.225 \mathrm{mmol}$ ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol $(666 \mu \mathrm{~L})$, and then the reaction mixture was
stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl $(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $7 \mathbf{~ e}(16.1 \mathrm{mg}$, 81.2 \%).

Commercially available compound: CAS [10406-24-3]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.56$ (dd, $J=7.68,18.66 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.40-7.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 1.56$ (br. s., 2H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 144.5,131.7$, 130.7, 130.5, 129.3, 119.0, 112.4, 45.6.; HRMS (EI+) calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}(\mathrm{M})^{+}$132.0687, found 132.0758 .


Preparation of (3-nitrophenyl)methanamine (7f) ${ }^{7}$
A Biotage microwave vial was charged with 3-nitorochlorobenzene ( $23.6 \mathrm{mg}, 0.150$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.68 \mathrm{mg}, 0.008 \mathrm{mmol})$, $\mathrm{S}-\mathrm{phos}(7.39 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}$, 0.225 mmol ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050$ $\mathrm{mmol})$ and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $7 \mathrm{f}(18.9 \mathrm{mg}$, 82.8 \%).

Commercially available compound: CAS [7409-18-9]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=1.28,8.23 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}$, $J=7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.87 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 148.5,145.3,133.4,129.4,122.0,121.9$, 45.7.; HRMS (EI+) calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M})^{+} 152.0580$, found 152.0576 .


## Preparation of 1-[4-(aminomethyl)phenyl]ethan-1-one (7g)

A Biotage microwave vial was charged with $4^{\prime}$-chlorobenzene ( $31.9 \mathrm{mg}, 0.200 \mathrm{mmol}$, $>97 \%$ purity $), \mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(9.85 \mathrm{mg}, 0.024 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(95.4 \mathrm{mg}, 0.900 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(75.3 \mathrm{mg}$, 0.300 mmol ), 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water ( $444 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $93.5 \mu \mathrm{~L}, 1.400$ $\mathrm{mmol})$ and 1-propanol ( $888 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $7 \mathrm{~g}(22.4 \mathrm{mg}$, 75.1 \%).

Commercially available compound: CAS [87171-25-3]
${ }^{1} \mathrm{H}$ NMR $\left(490 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, 2H), 2.60 (s, 3H), 1.48 (br. s., 2H); ${ }^{13} \mathrm{C}$ NMR ( $123 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 197.9, 148.8, 135.9, 128.7, 127.2, 46.2, 26.7.; HRMS (ESI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NO}(M){ }^{+} 150.0913$, found 150.0913 .


Preparation of methyl 4-(aminomethyl)benzoate (7h) ${ }^{8}$
After isolation of 2-(\{[4-(methoxycarbonyl)phenyl]methyl\}carbamoyl)benzoic acid ( $\mathbf{6 d}$ ) from methyl 4-chlorobenzoate ( 0.2 mmol ) , a Biotage microwave vial was charged with 2-(\{[4-(methoxycarbonyl)phenyl]methyl\}carbamoyl)benzoic acid, ethylenediamine $(93.5 \mu \mathrm{~L}, 1.400 \mathrm{mmol})$ and $t$-butanol $(1.5 \mathrm{~mL})$. The test tube was
sealed with a cap, and the reaction mixture was stirred under reflux for 24 hours before cooling to room temperature. The reaction mixture was filtered, concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford 7h ( $23.0 \mathrm{mg}, 69.5 \%$ ).
Commercially available compound: CAS [18469-52-8]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.01(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (s, 2 H ), $3.91(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.1,148.5,130.0$, 128.8, 127.0, 52.2, 46.3; HRMS (EI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}(\mathrm{M})^{+}$165.0790, found 165.0791 .


Preparation of quinolin-6-ylmethanamine (7i) ${ }^{9}$ from 6-chloroquinoline
A Biotage microwave vial was charged with 6 -chloroquinoline ( $24.5 \mathrm{mg}, 0.150 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.68 \mathrm{mg}, 0.008 \mathrm{mmol})$, S-phos $(7.39 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}$, 0.675 mmol ), sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol $(666 \mu \mathrm{~L})$, and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford 7i ( $19.1 \mathrm{mg}, 80.5 \%$ ).

Commercially available compound: CAS [99071-54-2]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.87$ (dd, $J=1.65,4.21 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.02-8.14 (m, 2H), 7.71
( $\mathrm{s}, 1 \mathrm{H}$ ), 7.65 (dd, $J=2.01,8.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=4.21$,
$8.23 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.04 (s, 2H), 1.69 (br. s., 2H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 150.0$, 147.5, 141.4, 135.8, 129.5, 129.4, 128.2, 124.7, 121.2, 46.2; HRMS (EI+) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}(\mathrm{M})^{+} 158.0838$, found 158.0881 .

## Preparation of quinolin-6-ylmethanamine (7i) from 6-bromoquinoline

A Biotage microwave vial was charged with 6 -bromoquinoline ( $31.2 \mathrm{mg}, 0.150$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(4.31 \mathrm{mg}, 0.008 \mathrm{mmol})$, S-phos $(7.39 \mathrm{mg}, 0.018 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(71.5$
$\mathrm{mg}, 0.675 \mathrm{mmol}$ ), sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}, 0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol $(666 \mu \mathrm{~L})$, and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford 7i ( $18.6 \mathrm{mg}, 78.4$ \%).

## Preparation of quinolin-6-ylmethanamine (7i) from quinolin-6-yl trifluoromethanesulfonate

A Biotage microwave vial was charged with quinolin-6-yl trifluoromethanesulfonate ( $42.9 \mathrm{mg}, 0.150 \mathrm{mmol}, 97 \%$ purity), $\mathrm{Pd}(\mathrm{dba})_{2}(4.31 \mathrm{mg}, 0.008 \mathrm{mmol})$, S-phos $(7.39 \mathrm{mg}$, $0.018 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad(71.5 \quad \mathrm{mg}, \quad 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}(56.5 \mathrm{mg}, 0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water $(333 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford 7i ( 18.1 mg , 76.3 \%).


Preparation of (2-methyl-1,3-benzothiazol-5-yl)methanamine (7j)
To a solution of 5-Chloro-2-methoxypyridine ( $86.1 \mathrm{mg}, 0.600 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $13.5 \mathrm{mg}, 0.060 \mathrm{mmol}$ ), S-phos ( $59.1 \mathrm{mg}, 0.144 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ( $286 \mathrm{mg}, 2.700 \mathrm{mmol}$ ), sodium phthalimidomethyltrifluoroborate $\mathbf{1}(226 \mathrm{mg}, 0.900 \mathrm{mmol})$, 1,4-dioxane ( 4.0 $\mathrm{mL})$, distilled water ( 2.0 mL ) was stirred under reflux for 48 hours before cooling to
room temperature. The reaction mixture was added ethylenediamine ( $281 \mu \mathrm{~L}, 4.20$ $\mathrm{mmol})$ and 1-propanol ( 4.0 mL ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford $\mathbf{7 i}$ ( $50.6 \mathrm{mg}, 61.0 \%$ ).
Commercially available compound: CAS [262295-96-5]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.08(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=2.20,8.42 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (d, J=8.78 Hz, 1H), 3.93 (s, 3H), 3.81 (s, 2H), 1.50 (br. s., 2H); ${ }^{13} \mathrm{C}$ NMR ( 100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 145.5,138.4,131.3,131.3,110.9,53.5,43.5$; HRMS (EI+) calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M})^{+}$138.0788, found 138.0796.


## Preparation of (2-methyl-1,3-benzothiazol-5-yl)methanamine (7k)

A Biotage microwave vial was charged with 5-chloro-2-methyl-1,3-benzothiazole $(18.4 \mathrm{mg}, 0.100 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 0.005 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(4.93 \mathrm{mg}, 0.012$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(47.7 \mathrm{mg}, 0.450 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}$ ( $37.6 \mathrm{mg}, 0.150 \mathrm{mmol}$ ), 1,4-dioxane ( $444 \mu \mathrm{~L}$ ), distilled water ( $222 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine $(46.7 \mu \mathrm{~L}, 0.700 \mathrm{mmol})$ and 1-propanol $(444 \mu \mathrm{~L})$, and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate $/$ methanol $/=20 / 1$ ) to afford $7 \mathbf{k}(14.8 \mathrm{mg}, 83.0 \%)$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87(\mathrm{~d}, J=0.73 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (dd, $J=1.46,8.05 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 2.83$ (s, 3H), 1.63
(br. s., 2H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.5,153.9,141.8,134.0,124.4,121.5$, 120.6, 46.5, 20.3; IR (ATR, $\mathrm{cm}^{-1}$ ) 3283, 2918, 1568, 1521, 1453, 1422, 1373, 1328, 1300, 1171, 890, 806; HRMS (EI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}(\mathrm{M})^{+}$178.0559, found 178.0625 .


Preparation of [5-(thiophen-2-yl)thiophen-2-yl]methanamine (7l) ${ }^{10}$
A Biotage microwave vial was charged with 2-bromo-5-(thiophen-2-yl)thiophene $(49.0 \mathrm{mg}, 0.200 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(5.75 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(9.85 \mathrm{mg}, 0.024$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(95.4 \mathrm{mg}, 0.900 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}$ ( $75.3 \mathrm{mg}, 0.300 \mathrm{mmol}$ ), 1,4-dioxane ( $888 \mu \mathrm{~L}$ ), distilled water ( $444 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $93.5 \mu \mathrm{~L}, 1.400 \mathrm{mmol}$ ) and 1-propanol ( $888 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl $(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $71(22.4 \mathrm{mg}$, 57.3 \%).

Commercially available compound: CAS [4380-96-5]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.18$ (dd, $\left.J=0.73,5.12 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.10-7.15(\mathrm{~m}, 1 \mathrm{H})$, 6.95-7.03 (m, 2H), $6.80(\mathrm{~d}, J=3.29 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 1.63$ (br. s., 2H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 146.8,137.8,136.1,127.9,124.3,124.2,123.5,123.5,41.7 . ;$ HRMS (EI + ) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NS}_{2}(\mathrm{M})^{+}$180.0786, found 180.0822.

## One-pot primary aminomethylation of aryl and heteroaryl mesylates and tosylates (Table 5)

## Preparation of naphthalen-2-ylmethanamine (7a) from naphthalene-2-yl methanesulfonate

A Biotage microwave vial was charged with naphthalene-2-yl methanesulfonate $(33.3 \mathrm{mg}, 0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(11.1 \mathrm{mg}, 0.027$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}$ ( $56.5 \mathrm{mg}, 0.225 \mathrm{mmol}$ ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine
( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl $(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathrm{a}(18.9 \mathrm{mg}$, 80.1 \%).

## Preparation of naphthalen-2-ylmethanamine (7a) from naphthalen-2-yl 4-methylbenzene-1-sulfonate

A Biotage microwave vial was charged with naphthalen-2-yl 4-methylbenzene-1-sulfonate ( $44.8 \mathrm{mg}, 0.150 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol})$, S-phos ( $11.1 \mathrm{mg}, 0.027 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225 \mathrm{mmol}$ ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water $(333 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N}$ ) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathbf{7 a}(20.1 \mathrm{mg}, 85.2 \%)$.


Preparation of naphthalene-2-yl methanesulfonate ${ }^{1}$
To a solution of 2-naphtol ( $3.00 \mathrm{~g}, 20.8 \mathrm{mmol}$ ) and pyridine ( 10.0 mL ) in dichloromethane ( 20.0 mL ) was added methanesulfonyl chloride ( $2.10 \mathrm{~mL}, 27.0 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with saturated aqueous ammonium chloride, and the
resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate $=4 / 1$ to $2 / 1$ ) to afford naphthalene-2-yl methanesulfonate ( 4.10 g , 89.1\%).

Commercially available compound: CAS [10290-91-2]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.82-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.58$
(m, 2H), 7.41 (ddd, $J=1.10,2.38,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=1.10 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.9,133.7,132.2,130.4,128.0,128.0,127.3,126.7,120.9,119.6$, 37.5; HRMS (EI+) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M})^{+}$222.0351, found 222.0370 .


## Preparation of naphthalene-2-yl 4-methylbenzenesulfonate ${ }^{1}$

To a solution of 2-naphtol ( $3.00 \mathrm{~g}, 20.8 \mathrm{mmol}$ ) and pyridine ( 10.0 mL ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0$ mL ) was added p-toluenesulfonyl chloride $(5.20 \mathrm{~g}, 27.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with saturated aqueous ammonium chloride, and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate $=$ $4 / 1$ to $2 / 1$ ) to afford naphthalene-2-yl 4-methylbenzenesulfonate ( $3.20 \mathrm{~g}, 51.6 \%$ ). Commercially available compound: CAS [7385-85-5]
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.51(\mathrm{~m}, 3 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=2.38,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 147.3,145.5,133.6,132.6,132.0,129.9,129.9,128.7,128.0,127.9$, 127.0, 126.5, 121.3, 120.1, 21.9; HRMS (EI+) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M})^{+}$298.0664, found 298.0612.

Preparation of (3,5-dimethoxyphenyl)methanamine (7d) from 3,5-dimethoxyphenyl methanesulfonate
A Biotage microwave vial was charged with 3,5-dimethoxyphenyl methanesulfonate $(34.8 \mathrm{mg}, 0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}(11.1 \mathrm{mg}, 0.027$ $\mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $\mathbf{1}$ $(56.5 \mathrm{mg}, 0.225 \mathrm{mmol}), 1,4$-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours
before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl $(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathbf{~ d ~}(17.5 \mathrm{mg}$, 70.0 \%).

Preparation of (3,5-dimethoxyphenyl)methanamine (7d) from 3,5-dimethoxyphenyl 4-methylbenzene-1-sulfonate
A Biotage microwave vial was charged with 3,5-dimethoxyphenyl 4-methylbenzene-1-sulfonate ( $46.3 \mathrm{mg}, 0.150 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol})$, S-phos ( $11.1 \mathrm{mg}, 0.027 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225 \mathrm{mmol}$ ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water $(333 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N}$ ) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathbf{~}(20.1 \mathrm{mg}, 80.1 \%)$.


## Preparation of 3,5-dimethoxyphenyl methanesulfonate

To a solution of 3,5-dimethoxyphenol ( $1.50 \mathrm{~g}, 9.54 \mathrm{mmol}$ ) and pyridine ( 3.00 mL ) in dichloromethane ( 20.0 mL ) was added methanesulfonyl chloride ( $964 \mathrm{~mL}, 12.4 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The
reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate $=2 / 1$ to $3 / 2$ ) to afford 3,5-dimethoxyphenyl methanesulfonate ( $2.14 \mathrm{~g}, 96.8 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.44(\mathrm{~d}, \mathrm{~J}=2.20 \mathrm{~Hz}, 2 \mathrm{H}), 6.38-6.42(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$, 3.13 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.5,150.8,100.6,99.5,55.7,37.4$; HRMS (EI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M})^{+}$232.0400, found 232.0484.


## Preparation of 3,5-dimethoxyphenyl 4-methylbenzene-1-sulfonate ${ }^{11}$

To a solution of 3,5-dimethoxyphenol ( $1.50 \mathrm{~g}, 9.54 \mathrm{mmol}$ ) and pyridine ( 3.00 mL ) in dichloromethane ( 20.0 mL ) was added p-toluenesulfonyl chloride ( $4.40 \mathrm{~g}, 22.9 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate $=4 / 1$ to $2 / 1$ ) to afford 3,5-dimethoxyphenyl 4-methylbenzene-1-sulfonate ( $2.65 \mathrm{~g}, 88.3 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.74(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 2 \mathrm{H}), 6.32(\mathrm{t}$, $J=2.20 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 7 \mathrm{H})$,
$2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 161.1,151.1,145.5,132.6,129.8,128.7$, 100.9, 99.5, 55.6, 21.8; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M})^{+} 309.0791$, found 309.0781 .

## Preparation of 3-(aminomethyl)benzonitrile (7e) from 3-cyanophenyl methanesulfonate

A Biotage microwave vial was charged with 3-cyanophenyl methanesulfonate (29.6 $\mathrm{mg}, 0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol})$, $\mathrm{S}-\mathrm{phos}(11.1 \mathrm{mg}, 0.027 \mathrm{mmol})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}$, 0.225 mmol ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050$
$\mathrm{mmol})$ and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol $=20 / 1$ ) to afford $7 \mathbf{~ e ~}(6.94 \mathrm{mg}$, $35.0 \%$ ).

## Preparation of 3-(aminomethyl)benzonitrile (7e) from 3-cyanophenyl 4-methylbenzene-1-sulfonate

A Biotage microwave vial was charged with 3-cyanophenyl 4-methylbenzene-1-sulfonate ( $41.0 \mathrm{mg}, 0.150 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol})$, S-phos ( $11.1 \mathrm{mg}, 0.027 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225 \mathrm{mmol}$ ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water $(333 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. $\mathrm{HCl}(2 \mathrm{~N})$ and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. $\mathrm{NaOH}(2 \mathrm{~N})$ and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate $/$ methanol $=20 / 1$ ) to afford $7 \mathbf{e}(8.92 \mathrm{mg}, 45.0 \%)$.


Preparation of 3-cyanophenyl methanesulfonate ${ }^{12}$
To a solution of 3-hydroxybenzonitrile ( $1.20 \mathrm{~g}, 10.1 \mathrm{mmol}$ ) and pyridine ( 3.00 mL ) in dichloromethane ( 20.0 mL ) was added methanesulfonyl chloride ( $1.60 \mathrm{~mL}, 20.2 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with
ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate $=2 / 1$ ) to afford 3-cyanophenyl methanesulfonate ( $1.92 \mathrm{~g}, 97.0 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.62-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.61(\mathrm{~m}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 149.0,131.2,131.2,127.2,125.9,117.4,114.3,38.1$; HRMS (EI+) calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M})^{+}$197.0141, found 197.0194.


## Preparation of 3-cyanophenyl 4-methylbenzene-1-sulfonate ${ }^{12}$

To a solution of 3-hydroxybenzonitrile ( $1.20 \mathrm{~g}, 10.1 \mathrm{mmol}$ ) and pyridine $(3.00 \mathrm{~mL})$ in dichloromethane ( 20.0 mL ) was added p-toluenesulfonyl chloride ( $3.80 \mathrm{~g}, 20.2 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate $=4 / 1$ to $3 / 1$ ) to afford 3-cyanophenyl 4-methylbenzene-1-sulfonate ( $1.95 \mathrm{~g}, 70.8 \%$ ).
Commercially available compound: CAS [49584-07-8]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.71$ (d, $\left.J=8.42 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.53-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}$, $J=7.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.27 (m, 1H), $2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 149.7, 146.3, 131.7, 130.9, 130.9, 130.2, 128.5, 127.5, 126.1, 117.4, 113.8, 21.9; HRMS (EI+) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M})^{+}$273.0454, found 273.0456.

## Preparation of quinolin-6-ylmethanamine from 6-chloroquinoline (7i) from quinolin-6-yl methanesulfonate

A Biotage microwave vial was charged with quinolin-6-yl methanesulfonate ( 33.5 mg , $0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol})$, S-phos ( $11.1 \mathrm{mg}, 0.027 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}$, $0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water ( $333 \mu \mathrm{~L}$ ). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050$ $\mathrm{mmol})$ and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux
for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol $=15 / 1$ ) to afford $\mathbf{7 i}$ ( $16.9 \mathrm{mg}, 71.2 \%$ ).

## Preparation of quinolin-6-ylmethanamine from 6-chloroquinoline (7g) from quinolin-6-yl 4-methylbenzene-1-sulfonate

A Biotage microwave vial was charged with quinolin-6-yl 4-methylbenzene-1-sulfonate ( $44.9 \mathrm{mg}, 0.150 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol})$, S-phos ( $11.1 \mathrm{mg}, 0.027 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225 \mathrm{mmol}$ ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water $(333 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol = 15/1) to afford 7i ( 17.2 mg , 72.5 \%).


## Preparation of quinolin-6-yl methanesulfonate ${ }^{13}$

To a solution of quinolin-6-ol ( $1.00 \mathrm{~g}, 6.89 \mathrm{mmol}$ ) and pyridine ( 2.00 mL ) in dichloromethane ( 20.0 mL ) was added methanesulfonyl chloride ( $1.10 \mathrm{~mL}, 13.8 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate $=2 / 3$ to $1 / 2$ ) to afford quinolin-6-yl methanesulfonate ( $1.20 \mathrm{~g}, 65.0 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.96$ (dd, $\left.J=1.65,4.21 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.14-8.21$ (m, 2H), 7.78
(d, $J=2.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=2.56,9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=4.21,8.23 \mathrm{~Hz}, 1 \mathrm{H})$, $3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 151.2,146.8,146.8,136.1,132.1,128.6$, 124.4, 122.2, 119.5, 37.8; HRMS (EI+) calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M})^{+} 223.0298$, found 223.0342 .


Preparation of quinolin-6-yl 4-methylbenzene-1-sulfonate ${ }^{14}$
To a solution of quinolin- $6-\mathrm{ol}(1.00 \mathrm{~g}, 6.89 \mathrm{mmol})$ and pyridine $(2.00 \mathrm{~mL})$ in dichloromethane ( 20.0 mL ) was added p-toluenesulfonyl chloride ( $2.60 \mathrm{~g}, 13.8 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate $=3 / 2$ to $1 / 1$ ) to afford quinolin-6-yl 4-methylbenzene-1-sulfonate ( $1.73 \mathrm{~g}, 84.0 \%$ ).
Commercially available compound: CAS [426265-40-9]
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.92(\mathrm{dd}, J=1.65,4.21 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=1.10,8.42$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=9.15 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=2.56 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42 (dd, $J=4.21,8.23 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.0,147.3,146.7,145.8,136.1,132.2,131.5,130.0,128.6,128.4,124.7$, 122.0, 120.1, 21.8; HRMS (ESI + ) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M})^{+} 300.0689$, found 300.0680 .

## Preparation of (2-methyl-1,3-benzothiazol-5-yl)methanamine (7k) from 2-methyl-1,3-benzothiazol-5-yl methanesulfonate

A Biotage microwave vial was charged with 2-methyl-1,3-benzothiazol-5-yl methanesulfonate $(36.5 \mathrm{mg}, 0.150 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol}), \mathrm{S}-\mathrm{phos}$ (11.1 mg, 0.027 mmol$), \quad \mathrm{Na}_{2} \mathrm{CO}_{3} \quad(71.5 \mathrm{mg}, \quad 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225 \mathrm{mmol}$ ), 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water $(333 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced
pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol $=15 / 1$ ) to afford $7 \mathbf{k}(18.7 \mathrm{mg}$, 69.9 \%).

## Preparation of (2-methyl-1,3-benzothiazol-5-yl)methanamine (7h) from 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate

A Biotage microwave vial was charged with 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate ( $47.9 \mathrm{mg}, 0.150 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.47 \mathrm{mg}, 0.011 \mathrm{mmol})$, S-phos ( $11.1 \mathrm{mg}, 0.027 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(71.5 \mathrm{mg}, \quad 0.675 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(56.5 \mathrm{mg}, 0.225 \mathrm{mmol})$, 1,4-dioxane ( $666 \mu \mathrm{~L}$ ), distilled water $(333 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine ( $70.1 \mu \mathrm{~L}, 1.050 \mathrm{mmol}$ ) and 1-propanol ( $666 \mu \mathrm{~L}$ ), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol $=15 / 1)$ to afford $7 \mathbf{k}(20.0 \mathrm{mg}$, 74.9 \%).


## Preparation of 2-methyl-1,3-benzothiazol-5-yl methanesulfonate ${ }^{13}$

To a solution of 2-methyl-1,3-benzothiazol-5-ol ( $1.50 \mathrm{~g}, 10.0 \mathrm{mmol}$ ) and pyridine $(3.00 \mathrm{~mL})$ in dichloromethane $(20.0 \mathrm{~mL})$ was added methanesulfonyl chloride $(1.60 \mathrm{~mL}$, 20.0 mmol ) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate $=2 / 1$ to $1 / 1$ ) to afford 2-methyl-1,3-benzothiazol-5-yl methanesulfonate ( $2.14 \mathrm{~g}, 88.1 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.74-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, \mathrm{J}=2.20,8.78 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$
$(\mathrm{s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 170.0,154.1,147.7,134.7,122.4$, 119.3, 115.8, 37.4, 20.4; HRMS (EI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}_{2}(\mathrm{M})^{+}$243.0018, found 243.0034


Preparation of 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate ${ }^{15}$
To a solution of 2-methyl-1,3-benzothiazol-5-ol ( $1.20 \mathrm{~g}, 8.00 \mathrm{mmol}$ ) and pyridine $(3.00 \mathrm{~mL})$ in dichloromethane $(20.0 \mathrm{~mL})$ was added p-toluenesulfonyl chloride ( 3.10 g , 16.0 mmol ) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate $=4 / 1$ to $2 / 1$ ) to afford 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate ( $1.64 \mathrm{~g}, 64.3 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.66-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=2.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}$, $J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=2.38,8.60 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.6,153.8,148.2,145.6,134.4,132.2,130.0,128.6,122.0$, 119.9, 116.1, 21.9, 20.4; HRMS (ESI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}_{2}(\mathrm{M})^{+} 320.0410$, found 320.0400 .

## 6.Experimental procedure for preparing compounds 9 and 11



Preparation of 2-(4-chlorophenyl)benzene-1-sulfonamide (9) ${ }^{16}$
To a solution of 2-bromobenzene-1-sulfonamide ( $94.4 \mathrm{mg}, 0.40 \mathrm{mmol}$ ), $\mathrm{Pd}\left(\mathrm{Pt}_{\mathrm{t}}-\mathrm{Bu}_{3}\right)_{2}$ ( $10.2 \mathrm{mg}, 0.02 \mathrm{mmol}$ ), 4-chlorobenzene boronic acid ( $187.6 \mathrm{mg}, 1.20 \mathrm{mmol}$ ), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(260.8 \mathrm{mg}, 0.80 \mathrm{mmol}), 1,4$-dioxane $(4.00 \mathrm{~mL})$, and distilled water ( 2.0 mL ) was stirred under reflux for 15 h before cooling to room temperature. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column
chromatography (heptane/ethyl acetate $=2 / 1$ to $1 / 1$ ) to afford 2-(4-chlorophenyl)benzene-1-sulfonamide ( 212 mg ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $d 6$ ) $\delta 8.02(\mathrm{dd}, J=1.46,7.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.64(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.47 (m, 2H), 7.35-7.40 (m, 2H), 7.28-7.33 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO-d6) $\delta 142.3,138.8,138.6,132.3,131.6,131.1,131.1,128.0,127.6,127.3 ;$ HRMS (EI+) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClNO}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$267.0115, found 267.0112.


Preparation

## 1-N-\{[4-(2-sulfamoylphenyl)phenyl]methyl\}-2-N-\{[5-(thiophen-2-yl)thiophen-2-yl] methyl\}benzene-1,2-dicarboxamide (11) ${ }^{10}$

A Biotage microwave vial was charged with 2-(4-chlorophenyl)benzene-1-sulfonamide ( $20.6 \mathrm{mg}, 0.077 \mathrm{mmol}$ ), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.86 \mathrm{mg}$, 0.004 mmol ), S-phos ( $3.78 \mathrm{mg}, 0.009 \mathrm{mmol}$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}(36.7 \mathrm{mg}, 0.347 \mathrm{mmol})$, sodium phthalimidomethyltrifluoroborate $1(29.0 \mathrm{mg}, 0.116 \mathrm{mmol})$, 1,4-dioxane ( $444 \mu \mathrm{~L}$ ), distilled water $(222 \mu \mathrm{~L})$. The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added $1 \mathrm{~N}-\mathrm{HCl}$ aq. and chloroform, and then extracted with chloroform/tetrahydrofuran $=5 / 1$ (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude mixture was used in the next step without further purification.

The crude mixture was added $7 \mathbf{j}$ ( $18.0 \mathrm{mg}, 0.092 \mathrm{mmol}$ ), $\mathrm{EDC} \cdot \mathrm{HCl}(22.2 \mathrm{mg}, 0.116$ mmol ), $\mathrm{HOB} \cdot \mathrm{H}_{2} \mathrm{O}(17.5 \mathrm{mg}, 0.116 \mathrm{mmol})$, $i-\operatorname{Pr} \mathrm{N}_{2} \mathrm{NEt}(26.8 \mu \mathrm{~L}, 0.154 \mathrm{mmol})$, and tetrahydrofuran $(2.0 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 10 h . The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate/tetrahydrofuran (x 2). The organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl
acetate $/$ methanol $=10 / 1$ ) to afford $\mathbf{1 1}(24.0 \mathrm{mg}, 53.1 \%)$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d 6 ) $\delta 8.97(\mathrm{t}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{t}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{~d}, J=5.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.39$
( $\mathrm{m}, 4 \mathrm{H}$ ), $7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21$ (d, $J=3.66 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (br. s., 2H), 7.11 (d, $J=3.66$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=3.84,4.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=3.66 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, $J=5.49 \mathrm{~Hz}$, 2H), 4.47 (d, J=6.22 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO-d6) $\delta$ 168.1, 168.1, 142.2, $141.9,139.8,138.5,138.4,136.7,136.4,135.9,135.4,132.5,131.4,129.6,129.4,129.1$, 129.1, 128.3, 127.7, 127.5, 127.3, 126.4, 126.4, 125.1, 123.6, 123.4, 42.2, 37.9; HRMS (ESI+) calcd for $\mathrm{C}_{30} \mathrm{H} 26 \mathrm{~N} 3 \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 605.1340$, found 605.1345 .

## References

(1) Murai, N.; Yonaga, M.; Tanaka, K. Org. Lett. 2012, 14, 1278.
(2) Martínez-Asencio, A.; Ramón, D. J.; Yus, M. Tetrahedron. 2011, 67, 3140.
(3) Leonard, N. J.; Swaringn, Jr. R. A. J. Org. Chem. 1969, 34, 3814.
(4) Lamb, G. W.; Watson, A. J. A.; Jolley, K. E.; Maxwell, A. C. Williams, J. M. J. Tetrahedron Lett. 2009, 50, 3374.
(5) Jeffs, P. W. Hansen, J. F. Brine, G. A. J. Org. Chem. 1975, 40, 2883.
(6) Bookser, B. C.; Bruice, T. C. J. Am. Chem. Soc. 1991, 113, 4208.
(7) Bartoli, G.; Antonio, G. D.; Giovannini, R.; Giuli, S.; Lanari, S.; Paoletti, M.; Marcantoni, E. J. Org. Chem. 2008, 73, 1919.
(8) Goodyer, C. L. M.; Chinje, E. C.; Jaffar, M.; Stratford, I. J.; Threadgill, M. D. Bioorg. Med. Chem. 2003, 11, 4189.
(9) Zhao, Q.; Liu, S.; Li, Y.; Wang, Q. J. Agric. Food, Chem. 2009, 57, 2849.
(10) Shao, P. P.; Ok, D.; Fisher, M. H.; Garcia, M. L.; Kaczorowski, G. J.; Li, C.; Lyons, K. A.; Martin, W. J.; Meinke, P. T.; Priest, B. T.; Smith, M. M.; Wyvratt, M. J.; Ye, F.; Parsons, W. H. Bioorg. Med. Chem. Lett. 2005, 15, 1901.
(11) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201.
(12) Chow, W. K.; So, C. M. Lau, C. P. Kwong, F. Y. Chem. Eur. J. 2011, 17, 6913.
(13) Molander, G. A.; Shin, I. Org. Lett. 2011, 13, 3956.
(14) Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 13848.
(15) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818.
(16) Iwama, S.; Tanaka, T.; Gotoh, N. PCT Int. WO 2011145669 A1, 2011.

## 7. Spectra for Compounds

2012/04/11 12.51 .14
Frequency (MHz) $\quad 399.93$
Feb 262012
16384
STANDARD Sweep Width (Hz)
STANDARD Sweep Width (Hz)


${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 7.72(\mathrm{~s}, 4 \mathrm{H}), 2.56(\mathrm{q}, J=5.12 \mathrm{~Hz}, 2 \mathrm{H})$
VerticalScaleFactor $=1$

O
0
$\vdots$
N
N
O
0
0
0
0
0
4.04
$\begin{array}{cc}4.5 & 4.0 \\ \text { Chemical } & \\ \text { Shift (ppm) }\end{array}$
VerticalscaleFactor

Date Stamp
Nucleus
$\begin{array}{ll}\text { Receiver Gain } & 20.00\end{array}$
Temperature (degree C) AMBIENT TEMPERATUR


13 C observe
Solvent: DMSO
Ambient tempe
Pulse Sequence: s2pul
Ambient temperature
Mercury-400BE "6Fback"
Relax. delay 1.801 sec
Pulse 37.5 degrees
Acq. time 1.199 sec
Width 25000.0 Hz
 Deconn 34 ds
continuoubly on WALTZ-16 modulate
DATA PROCRSSING
Line broadening 1.0 Hz Line broadening 1.0 Hz
FT size 65536
Total time rotal time $1 \mathrm{hr}, 51 \mathrm{~min}, 37 \mathrm{sec}$



| Formula $\quad \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{BBrO}_{2}$ | FW | 220.8999 |
| :--- | :--- | :--- |


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Oct 232011 | Date Stamp | Oct 232011 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR $¥$ NMR 7 FID |  |  | Frequency ( MHz ) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Solvent | CHLOROFOR | M-d |  |
| Spectrum Offset (Hz) | 2247.6414 | Spectrum Type | STANDARD | S weep Width (Hz) | 5995.20 | Tempera | AMBIENT TE | MPERATURE |  |

M02(s)

13C OBSIARVE Fulse Sequence: azpul
Solvent: CDC13
Ambient tenmerature
File: 08606-33 File: 08606-33
Mercury-400EB "6Fback"
Relax. delay 1.801 sec
Pulse 37.5 degrees
Ncc. time 1.199 sec
Width 25000.0 Hz
768 repetitions
OBsinve C13, 100.5606087 Mate

Power 34 as
continuously o
WNIIZ-16 modulated DATA PROCLSSMMG
rotal time 3 hr , 34 min, 58 sec

## T*8*9L

$6 \angle 0^{\circ} \angle L$

Formula $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \quad$ FW

${ }^{1}$ H NMR ( 400 MHz, DMSO-d $_{6}$ ) $\delta 12.93$ (br. s., 1 H ), 8.63 (t, $J=5.49 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.74 (d, $\left.J=7.68 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.62$ (m, 3H), 7.25 (d, $J=8.42 \mathrm{~Hz}$, 1H), 6.61-6.79 (m, 2H), 4.31 (d, J=5.86 Hz, 2H), 3.70 (s, 3H), 2.28 ( $\mathrm{s}, 3 \mathrm{H}$ )
VerticalScaleFactor = 1

M04(m)
${ }_{\sum_{2}^{\infty}}^{\infty}[0 L \cdot \varepsilon-$
08606-02-01.esp



2012/04/11 14:19:31

| Acquisition Time (sec) | 2.7320 | Comment | STANDAR | H OBSERVE |  |  | Feb 262012 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date Stamp | Feb 262012 |  |  | File Name | C:¥uSR¥NMR¥FID |  |  | Frequency (MHz) | 399.93 |
| Nucleus | 1 H | Number of Transients | 16 | Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul |
| Receiver Gain | 20.00 | Solvent | DMSO-d6 | Spectrum Offset (Hz) | 2247.6611 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 |

Recenperature (degree C) AMBIENT TEMPERATURE
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $_{6}$ ) $\delta 8.94$ (br. s., 1 H ), 7.66-7.89 (m, 4H), 7.39-7.62 (m, 4H), $4.47(\mathrm{~d}, J=5.85 \mathrm{~Hz}, 2 \mathrm{H})$
VerticalScaleFactor $=1$
88606-02-02.esp

$\stackrel{2.00}{\ominus}$
$\begin{array}{lll}6.0 & 5.5 & 5.0 \\ & & \text { Chemical Shift (ppm) }\end{array}$

| $8.0-7.5$ |  |
| :--- | :--- |

$\sum_{0}^{0}$

$$
\begin{aligned}
& \text { M04(d) } \\
& \stackrel{\infty}{\dot{\circ}}
\end{aligned}
$$

0

Ningle puls
201
14

| e pulse. ex2 |
| ---: |
| 490.15 MHz |
| 9.16 KHz |
| 7.60 Hz |
| 16384 |
| 9191.18 Hz |
| 8 |
| 1.7826 sec |
| 3.0000 sec |
| 8.55 usec |

$0 \varepsilon$
$z_{H} \quad 2 T$
udd $0 S^{\circ}$
$05^{\circ}$
singl
$\begin{array}{ll} & 0 \\ \text { 出 } \\ \text { 忽 }\end{array}$



[^0]


## 

$62 T .89 I \longrightarrow$
$\angle 08.89 I \longrightarrow$



## $9 \nabla 8 \cdot L \tau \tau$



$6 e$
08606-02-03.esp
VerticalScaleFactor $=1$
VerticalScaleFactor = 1
$\stackrel{m}{i}$
$0 \mathrm{~L} L$

M03(dd) $\begin{gathered}\text { M07(dd) } \\ \text { M06(dd) }\end{gathered}$
$96^{\circ}$
$96^{\circ} 9$
70
$8 \varepsilon^{\circ}$

2.00

2012/04/11 12:58:54
$J=7.32$


$$
\begin{aligned}
& \frac{\widehat{n}}{\stackrel{\sigma}{0}} \\
& \frac{0}{\Sigma} \\
& \hline
\end{aligned} \tau 8 \cdot \varepsilon
$$

[^1]
## VerticalScaleFactor $=1$ <br> 8606-02-24.esp


(p) $\stackrel{\sim}{\circ} \mathrm{W}$ (p)9̆0W
Nucleus
$\begin{array}{lll}\text { Receiver Gain } & 12.00 & \text { Solvent } \\ \text { Temperature (degree C) AMBIENT TEMPERATUR }\end{array}$
$\qquad$ ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-d $\mathrm{d}_{6}$ ) 12.96
HNMR ( 400 MHz, DMSO-d ${ }_{6} \delta 12.96$ (br. s., 1 H$), 8.80(\mathrm{t}, J=5.67 \mathrm{~Hz}$,
!
 M03(s) M05(m)

 - Chemical Shit (ppm)


| Formula $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}$ | FW 157.2117 |
| :--- | :--- | :--- |


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C:¥USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 16 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 16.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2244.4961 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | MPERATURE |  |

${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CHLOROFORM-d) $\delta 7.82(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 3 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.51(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 2 \mathrm{H})$



VerticalScaleFactor $=1$
13C OBSERVE

Pulse Sequence: s2pul Solvent: CDC13 Ambient temperature Mercury-400BB n6Fbackn

Relax. delay 1.801 sec
Pulse 37.5 degrees
Acq. time 1.199 sec
wiath 25000.0 Hz
384 repetitions
$\begin{array}{ll}\text { OBSERVE } & \text { C13, } 100.5606110 \mathrm{MHz} \\ \text { DECOUPLE } & \text { H1, } 399.9245689 \mathrm{MHz}\end{array}$
Power 34 ds
continuously on
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time $1 \mathrm{hr}, 47 \mathrm{~min}, 29 \mathrm{sec}$

-
$\tau \% 8^{\circ} 9 \angle$
$097^{\circ} \angle L$
$6 \angle \nabla^{\circ} \angle L$

| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 10.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2248.5215 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | MPERATURE |  |











$\qquad$

VerticalScaleFactor $=1$


1I:OG:O1 LI/ちO/ZLOZ



| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1 H | Number of Transients | 16 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Solvent CHLOROFORM-d <br> Temperature (degree C) AMBIENT TEMPERATURE |  |  |  |
| Spectrum Offset (Hz) | 2247.6414 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 |  |  |  |  |

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , CHLOROFORM-d) $\delta 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.70-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 1.52$ (br. s., 2 H )

2.0
2.5
3.0
3.5
Chemical Shift (ppm)
M03(s)
$\dot{\square}$
$\dot{\sigma}$
$\dot{\Gamma}$
$\stackrel{1.98}{\square}$
6.0
VerticalScaleFactor = 1

E 0

08606-02-07.esp


| Formula $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{2}$ | FW | 167.2050 |
| :--- | :--- | :--- |


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1 H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Solvent | CHLOROFOR |  |  |
| Spectrum Offset (Hz) | 2252.5469 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Tempera | AMBIENT TE | PERATURE |  |

H NMR ( 400 MHz, CHLOROFORM-d) $\delta 6.47$ (d, $J=2.56 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 1.58$ (br. s., 2H)

$-0.5$


Width 25000.0 Hz
128 repetitions
OBSERVE c13, 100
DECOUPLE H1, 399
POwer 34 dB
Continuously on
WALTz-16 modulat
DATA PROCESSING
Acq. time 1.199 sec
Width 25000.0 Hz
128 repetitions
OBSERVE C13, 100.560
DECOUPLE H1, 399.92
Power 34 dB
COntinuously on
WNLTZ-16 modulated
DATA PROCESSING
dith processing 1.0 Hz
FT size 65536
Total time 1 hr
0SO* $29 \tau$
496.585

13C OBSERVE
Pulse Sequence: s2pul
Solvent: CDC13
Mercury-400BB "6Fback"
Relax. delay 1.801 sec
Pulse 37.5 degrees
Acq. time 1.199 sec
Width 25000.0 Hz
OBSERVE C13, 100.5606141 OBSERVE C13, 100.5606141 MHz
rotal time $1 \mathrm{hr}, 47 \mathrm{~min}, 35 \mathrm{sec}$
T\%8.9L
LL
$6 \angle \nabla^{\circ} L L$

864•86

9ع6**OT

| Formula $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}$ | FW | 132.1625 |
| :--- | :--- | :--- |


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 6.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2263.8911 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | MPERATURE |  |



M04(s)


$678^{\circ} 9 \mathrm{~L}$
097．LL
$6 \angle *^{\circ} \angle L$
13C OBSERVE 256 repetitions
OBSERVE C13， 100.5606126 MHz
DECOUPLE H1， 399.9245689 MHz
Power 34 dB
Continuously on
WALTZ－16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time $7 \mathrm{hr}, 26 \mathrm{~min}, 4 \mathrm{sec}$ Relax．delay 1.801 sec
Pulse 37.5 degrees Puls

Width 25000.0 Hz




Mercury－400BB
Pulse Sequence：s2pul
Solvent：CDCl3
Ambient temperature
Mercury－400BE＂6Fback＂
Relax．delay 1.801 sec
Pulse 37.5 degrees
Acq．time 1.199 sec
Width 25000.0 Hz
256 repetitions
OBSERVE Cl3， 100.5606126 MHz
DECOUPLE H1， 399.9245689 MHz
Power 34 dB
continuously on
WALTz－16 modulated
DATA PROCESSING
Line broadening 1.0 Hz
FT size 65536
Total time 7 hr， 26 ming，A sec

Formula $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2} \quad$ FW

| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 10.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2255.1084 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | MPERATURE |  |


$\begin{array}{lll}0.5 & 0 & -0.5\end{array}$
$\begin{array}{ll}23 \\ 1.5 & 1.0\end{array}$

| M04(s) |
| :---: |
| M03(s) |
| $\stackrel{\Pi}{\square}$ |

$\downarrow 6{ }^{\circ} \varepsilon$
08606-02-10.esp
VerticalScaleFactor $=1$

| G.9 |
| ---: |
| 1 |

$5.5 \quad 5.0$

$\qquad$
G・レー
$\qquad$




Pulse Secuence: s2pul
Solvent: CDC13

Relarc. delay 1.801 sec
Pulse 37.5 degrees
Acq. time 1.199 sec
Width 25000.0 Bz
256 repetitions
256 repetitions
OBSERVE C13, 100.5606110 MHz 2HN 689S* 6 *66E 'LH 표 power 34 di
continuously on
wairz-16 modulated
WALTZ-16 modulated
Line broadening 1.0 Hz
FT 日ize 65536
rotal time $1 \mathrm{hr} 47 \mathrm{~min}, 35 \mathrm{gec}$


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR $¥$ NMR $¥ F I D$ |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Solvent CHLOROFORM-d |  |  |  |
| Spectrum Offset (Hz) | 2274.1375 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature (degree C) AMBIENT TEMPERATURE |  |  |  |



08606-02-11.esp
$\bigcirc \quad 0$
VerticalScaleFactor $=1$

$\begin{array}{lllll}0.2 & 0.8 & \text { G.8 } & 0.6\end{array}$


192 repetitions $\quad$ C13， 100.5606225 MHz
DECOUPLE H1；
Power 34 dB
continuously on
WALTZ－16 modulated
DATA PROCESSING
Line broadening
FT size 65536
Total time 52 min， 44 sec

ES番「早し

8ES＊LVT
8S6 ${ }^{\circ} 67 T$
58＊9L
6L\％＇LL

をとん・カとた
『で日ど
しE•6とT
6TS•6てT

VerticalScaleFactor $=1$ (br. s., 2H)
08606-02-27.esp
M04(s)
$M \underset{\square}{\text { M05 }}(\mathrm{s})$
$\varepsilon 6^{\circ} \varepsilon-$


886.0IT
6LZ'TET
$\angle S \varepsilon^{\circ} 8 \varepsilon \tau$
OZS'S量T
6Lも'LL
โ\%sㅌs
TS"E\% $\qquad$
$\qquad$

| Formula $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~S}$ | FW | 178.2541 |
| :--- | :--- | :--- |


| Acquisition Time（sec） | 2.7320 | Comment | STANDAR | OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C：$\ddagger$ USR¥NMR¥FID |  |  | Frequency（MHz） | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 12.00 | Solvent | CHLOROFORM－d |
| Spectrum Offset（Hz） | 2254.3765 | Spectrum Type | STANDARD | S weep Width（Hz） | 5995.20 | Temperature（degree C）AMBIENT TEMPERATURE |  |  |  |
| ${ }^{1} \mathrm{H}$ NMR（ $\left.400 \mathrm{MHz}, \mathrm{CHLOROFORM}-\mathrm{d}\right) \delta 7.87(\mathrm{~d}, J=0.73 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=1.46,8.05 \mathrm{~Hz}, 1 \mathrm{H})$ （br．s．，2H） |  |  |  |  |  |  |  |  |  |

$\sum_{2}^{\infty}[\varepsilon 8 \cdot z-$

$-0.5$ $0 . Z$ $\because \quad 0 \cdot \varepsilon$ $\begin{array}{ccc}4.5 & 4.0 & 3.5 \\ \text { Chemical } & \\ \text { Shift（ppm）} & & \end{array}$
VerticalScaleFactor＝ 1 M02（d） （p）亡ロW $9 \angle L$
$8 L^{\circ} \angle$
$80^{\circ} \angle$

ウলల ল゙
ざMN N゙

$\varepsilon 9$ $\qquad$

$\frac{1+1}{00 \mathrm{Z}}$
$2.0 \quad 1.5$

OG G．G
6.0
$6.5 \quad 6.0$
08606－02－12．esp
（br．s．，2H）


VerticalScaleFactor $=1$
08606-02-28.esp
(br. s., 2H)
M01 (dd)
M02(m)M04(d)


## 13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDCI3
Ambient termperature
Mercury- 100 BB "6Fback"
Relax. delay 1.801 sec Pulse 37.5 degrees Acq. time 1.199 sec
Wiath 25000.0 Hz
464 repetitions

LSB: LZT

LBL・ムをT
$0<8 \cdot 9 \% \tau$
T\% $8 \cdot 9 L$
$097 \cdot L L$
$6 L \% \cdot L L$
Line broadening 1.0 Hz
Formula $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S} \quad$ FW 222.2603

| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Oct 232011 | Date Stamp | Oct 232011 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 14.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2246.3259 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | MPERATURE |  |

${ }^{1} \mathrm{H}$ NMR ( 400 MHz , CHLOROFORM-d) $\delta 7.82-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{ddd}, J=1.10,2.38,8.97 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}$,
$J=1.10 \mathrm{~Hz}, 3 \mathrm{H})$
08606-31.esp
VerticalScaleFactor $=1$
M03 (m)
M01 (m) M04 (ddd)
MO2(d) $\qquad$

VerticalScaleFactor = 1

2011/11/05 12:25:17


$\mathbf{s E g}^{\circ} L \varepsilon$ Relax. delay 1.801 sec Pulse 37.5 degrees Acq. time 1.199 sec
Width 25000.0 Hz
448 repetitions OBSERVE C13, 100.5606103 MHz DECOUPLE H1, 399.9245689 MHz Power 34 dB continuously on WMLIZ-16 modulated
DATA PROCESSING
Line broadening 1.0 Hz FT size 65536
Total time $3 \mathrm{hr}, 34 \mathrm{~min}, 58 \mathrm{sec}$


Pulse Secuence: e2pul

Solvent: CDC13 Nmbient temperature
File: $08606-31$ Mercury-400BB "6Fback"
Formula $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S} \quad$ FW 298.3563

| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Oct 232011 | Date Stamp | Oct 232011 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR $¥$ NMR $¥$ FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Temperature (degree C) AMBIENT TEMPERATURE |  |  |  |
| Spectrum Offset (Hz) | 2246.6919 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 |  |  |  |  |


$-0.5$

2012/04/11 11:17:39
H NMR ( 400 MHz, CHLOROFORM-d) $\delta 6.44(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 2 \mathrm{H}), 6.38-6.42(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H})$ VerticalScaleFactor $=1$



## 13C OBSERVE

Pulse Sequence: s2pul
Solvent: CDC13 Ambient temperature
Mercury- 400 BB "6Fback"

| Formula $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~S}$ | FW | 308.3495 |
| :--- | :--- | :--- |


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 6.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2247.6414 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | PERATURE |  |

${ }^{1}$ H NMR ( 400 MHz , CHLOROFORM-d) $\delta 7.74$ (d, $J=8.42 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.31 (d, $J=8.05 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.32(\mathrm{t}, J=2.20 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 7 \mathrm{H})$, 2.44 (s, 3H)
M05(s)
$\infty$
$\infty$
$\infty$


#### Abstract

VerticalScaleFactor = 1


M04(d)
サナ
$\stackrel{\circ}{\circ}$
2012/05/11 14:45:25

$-0.5$ $\begin{array}{llllll}\text { (1!ा" } & & & \\ 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0\end{array}$ ' $\quad$ 3.0 3.5
08606-02-14.esp
$\stackrel{9}{0}$
$0 \quad \infty$
$\infty$
$\infty$
0.7
MO3(t) $\qquad$

2012/04/11 11:27:44
Feb 252012 Date Stamp Feb 252012

| H | Number of Transients | 32 |
| :--- | :--- | :--- |
| 6.00 | Solvent |  | 6.00 Solvent



${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CHLOROFORM-d) $\delta 7.62-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.61(\mathrm{~m}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H})$ VerticalScaleFactor = 1
$\qquad$
13C OESERVE

## Pulse Sequence：s2pul

Relax．delay 1.801 sec Pulse 37.5 degrees Acq．time 1.199 sec
Width 25000.0 Hz
192 repetitions $\begin{array}{lll}\text { OBSERVE } & C 13,100.5606110 \mathrm{MHz} \\ \text { DECOUPLE } & \text { H1，} 399.9245689 \mathrm{MHz}\end{array}$ Power 34 ds continuously on DATA PROCESSING Line broadening 1.0 Hz
FT aize 65536 Total time $1 \mathrm{hr}, 47 \mathrm{~min}, 35 \mathrm{sec}$
モ£T•8

$\qquad$
9GE＊LTT $\qquad$ $=$
698．s
6ST＊LET
08T「TEL


| Formula $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ | FW 273.3070 |
| :--- | :--- | :--- |


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $¥ \mathrm{¥}$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 6.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2254.3765 | Spectrum Type | STANDARD | Sweep Width ( Hz ) | 5995.20 | Temperature (degree C) AMBIENT TEMPERATURE |  |  |  |

${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CHLOROFORM-d) $\delta 7.71$ (d, $J=8.42 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.53-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.27 (m, 1H), 2.48 (s, 3H)
08606-02-16.esp
VerticalScaleFactor $=1$

$\begin{array}{lllllll}2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0 & -0.5\end{array}$
$0 \cdot \varepsilon \quad \mathrm{~S}^{\circ} \varepsilon$
$\begin{array}{ll}\stackrel{3.00}{+114} \\ 2.5 & 2.0\end{array}$

$\stackrel{N}{\circ}$




M06(m)

Stا
$\angle G^{\circ} \angle$
$\stackrel{\mathrm{N}}{\mathrm{N}}$

(s) LOW
VericalScaleFactor
$\stackrel{N}{N}$
13C OBSERVE


$\qquad$


Ther

598•тと

$\qquad$
$\qquad$

TOE'9pt
5s9.6pt

$$
\begin{aligned}
& \text { FT size } 65536 \\
& \text { Total time } 1 \mathrm{hr}, 47 \mathrm{~min}, 35 \mathrm{gec}
\end{aligned}
$$

(dd, $J=4.21,8.23 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.23 (s, 3 H )



## 13C OBSERVE

Pulse Sequence：s2pul<br>Solvent：CDC13 Ambient tempera<br>Ambient temperature Mercury－400BB ${ }^{6}$ Fback＂

Relax．delay 1.801 sec
Pulse 37.5 degrees
Acq．time 1.199 sec
Width 25000.0 Hz
192 repetitions $\begin{array}{lll}\text { OBSERVE } & \text { C13，} & 100.5606133 \mathrm{MHz} \\ \text { DECOUPLE } & \text { H1，} & 399.9245689 \mathrm{MHz}\end{array}$ Power 34 dB continuously on WRLTE－16 modulated
DATA PROCESSING Line broadening 1.0 Hz Total time $52 \mathrm{~min}, 44 \mathrm{sec}$

## ロEG6TI

LP8．9L
$097 \cdot L L$
2012／04／11 11：37：46

| Feb 25 2012 | Date Stamp | Feb 252012 |
| :--- | :--- | :--- |
| $1 H$ | Number of Transients | 32 |

## 1 H 6.00

6.00 Solvent
Temperature（degree C）
 7.55 （d，$J=2.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$（dd，$J=4.21,8.23 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.34(\mathrm{~m}, 3 \mathrm{H}), 2.44$（s， 3 H ）
VerticalScaleFactor $=1$
（s）80W
ガて—
3.00
$2.5 \quad 2.0$
M04（d）

08606－02－18．esp

$0.85 \quad 0.910 .871 .700 .850 .922 .69$
$\begin{array}{lllll}9.0 & 8.5 & 8.0 & 7.5 & 7.0\end{array}$
$\stackrel{9}{0}$
0.8
0.7


Formula $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}_{2} \quad$ FW 243.3027

| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $\ddagger$ USR¥NMR¥FID |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 10.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2255.8403 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | PERATURE |  |

H NMR ( 400 MHz, CHLOROFORM-d) $\delta 7.74-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=2.20,8.78 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$
VerticalScaleFactor $=1$
08606-02-19.esp
$\stackrel{\circ}{\circ}$
$\stackrel{\infty}{\circ}$
0.7
$\stackrel{0}{\circ}$
Kılsuәłul pəzu|emıN


| Formula $\quad \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}_{2}$ | FW | 319.3986 |
| :--- | :--- | :--- |


| Acquisition Time (sec) | 2.7320 | Comment | STANDARD | H OBSERVE |  | Date | Feb 252012 | Date Stamp | Feb 252012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Name | C: $¥$ USR 7 NMR $¥ F I D$ |  |  | Frequency (MHz) | 399.92 | Nucleus | 1H | Number of Transients | 32 |
| Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul | Receiver Gain | 12.00 | Solvent | CHLOROFORM-d |
| Spectrum Offset (Hz) | 2252.9128 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 | Temperature ( | AMBIENT TE | MPERATURE |  |

${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CHLOROFORM-d) $\delta 7.66-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=2.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=2.38,8.60 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H})$,
Coss)


$3.0 \quad 2.5$


Formula $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{CINO}_{2} \mathrm{~S} \quad$ FW 267.7313


DMSO
08606-02-29.esp



| Acquisition Time (sec) | 2.7320 | Comment | STANDAR | H OBSERVE |  | Date | Mar 202012 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date Stamp | Mar 202012 |  |  | File Name | C:¥USR¥NMR¥FID |  |  | Frequency (MHz) | 399.93 |
| Nucleus | 1H | Number of Transients | 32 | Original Points Count | 16379 | Points Count | 16384 | Pulse Sequence | s2pul |
| Receiver Gain | 20.00 | Solvent | DMSO-d6 | Spectrum Offset (Hz) | 2247.6611 | Spectrum Type | STANDARD | Sweep Width (Hz) | 5995.20 |
| Temperature (degree C) AMBIENT TEMPERATURE | AMBIENT TEMPERATURE |  |  |  |  |  |  |  |  |

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$ ) $\delta 8.97(\mathrm{t}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{t}, J=5.86 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.60(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{~d}, J=5.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.39$ $(\mathrm{m}, 4 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=3.66 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (br. s., 2 H ), 7.11 (d, $J=3.66 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=3.84,4.94 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=3.66 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, $J=5.49 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.47 (d, $J=6.22 \mathrm{~Hz}, 2 \mathrm{H})$
VerticalScaleFactor $=1$
08606-02-30-2.esp

Vertal

 Pulse 37.5 degres

Width 25000.0 Hz
2512 repetitions
OBSERVE C13, 100.5611452 MHz DECOUPLE
Power 34
HB continuously

WALTZ-16 modulateg
Line broadening Total time 7 hr 26


[^0]:    dec ecoupl NOM123246（C）．
    

    $$
    \begin{array}{r}
    \text { OSWa } \\
    \mathrm{Ht}
    \end{array}
    $$

    $$
    \begin{aligned}
    & \begin{array}{r}
    2 \mathrm{H} \\
    \text { udd }
    \end{array} \\
    & \text { - NNO } \\
    & \text { mio }
    \end{aligned}
    $$

[^1]:    Hz, 1H), 6.76 (d, $J=8.42 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ (d, $J=5.85 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.82 (s, 3H)

