Supporting Information

One-Pot Primary Aminomethylation of Aryl and Heteroaryl Halides with Sodium Phthalimidomethyltrifluoroborate

Norio Murai,^{†,‡} Masayuki Miyano,[‡] Masahiro Yonaga,^{*,†,‡} and Keigo Tanaka^{*,‡}

[†] Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

[‡] Discovery Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan

k6-tanaka@hhc.eisai.co.jp; m-yonaga@hhc.eisai.co.jp

Table of Contents

1.	Generalpage S1
2.	Preparation of sodium phthalimidomethyltrifluoroborate 1page S1
3.	General experimental procedure for Suzuki-Miyaura cross-coupling reactions
	with borate 1page S3
4.	Experimental procedure for preparing compounds 6a–6fpage S4
5.	Experimental procedure for one-pot direct aminomethylation of aryl and
	heteroaryl halides, triflates, mesylates, and tosylates 7a–7lpage S8
6.	Experimental procedure for preparing compounds 9 and 11page S28
7.	Referencespage S30
8.	Spectra for compoundspage S30

1. General

Nuclear magnetic resonance (¹H NMR (400 MHz), ¹³C NMR (100MHz)) spectra were determined on a Varian Mercury plus 400 MHz or JEOL-ECA500. Chemical shifts for ¹H NMR are reported in parts per million down fields from tetramethylsilane (δ) as the internal standard and coupling constants are in hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet, br = broad, br. s. = broad singlet. Chemical shifts for ¹³C NMR were reported in ppm relative to the center line of a triplet at 77.16 ppm for deuteriochloroform and a septet at 39.52 ppm for hexadeuterodimethyl sulfoxide. ¹⁹F and ¹¹B spectra were determined on a Avance 400 MHz. ¹⁹F NMR chemical shifts were referenced to external trifluorotoluene (-67.73 ppm). ¹¹B NMR chemical shifts were referenced to external BF₃·OEt₂ (0.0 ppm).

Infrared (IR) spectra were recorded on a JASCO FT/IR-620 Spectrophotometer and were reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were obtained on a Waters GCT Premier using electron ionization (EI) method or a ThermoFisherScientific Orbirtap using electro spray ionization (ESI) method. Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25 mm thick, silica gel 60 F254. Preparative TLC separations were performed on Merck analytical plates 0.50 mm thick precoated with silica gel 60 F254 or NH₂ F254s. Flash chromatography separations were performed on Merck silica gel 60 (0.040-0.063 mm, 230-400 mesh ASTM).

Pd(OAc)₂, Pd(dba)₂, and S-phos were purchased from Sigma-Aldrich and were used without further purification. Na₂CO₃ was purchased from Kanto Chemicals Co., Inc., and were used without further purification. All Substrates of Table **2** and **3** were purchased from Sigma-Aldrich or Tokyo Chemical Industry Co., Ltd., or Kanto Chemicals Co., Inc., and were used without further purification. 1,4-Dioxane dehydrate and Distilled water were purchased from Kanto Chemicals Co., Inc., and were used without further purification.

2. Preparation of sodium phthalimidomethyltrifluoroborate 1 (Scheme 1)

`BF₃Na

Preparation of sodium phthalimidomethyltrifluoroborate 1

Phthalimide (6.59 g, 44.8 mmol) was added to a mixture of sodium hydride (1.79 g, 44.8 mmol, 60% purity) and tetrahydrohuran (300 mL) at 0 °C. After the reaction 1 mixture stirred at for was room temperature hour, 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5.38 g, 22.4 mmol, 92% purity) was added at 0 °C. Then, the reaction mixture was stirred at 60 °C for 4 hours before cooling to room temperature. To the reaction mixture was added NaHF₂ (6.25 g, 101 mmol) at 0 °C, and then distilled water (300 mL) was added dropwise to the stirring reaction mixture at the same temperature over 1 hour. The reaction mixture stirred at room temperature for 1 hour, concentrated under reduced pressure. The residue was azeotroped with toluene before drying in vacuo over 5 hours. The resulting solid was added acetone (300 mL) and methanol (30.0 mL), and then the reaction mixture was divided into white solid (a) and filtrate (b) by filtration. The white solid (a) was added methanol (100 mL) and acetone (100 mL), the mixture was filtered. The resulting filtrate was added ethyl acetate (50.0 mL), and then added heptane (ca. 150 mL) until the appearacce of the solid. The resulting solid was filtered and dried under reduced pressure to obtain the 1st crop of sodium phthalimidomethyltrifluoroborate **1** as a white solid (1.19 g, 4.74 mmol, 21.2%). The filtrate (b) was added ethyl acetate (100 mL), and then filtered. Ethyl acetate (50.0 mL) was added to the filtrate until the appearacce of the solid, the mixture was divided into solid (c) and filtrate (d) by filtration. The solid (c) was dried under reduced pressure to obtain the 2nd crop of sodium phthalimidomethyltrifluoroborate 1 (826 mg, 3.29 mmol, 17.7%). Ethyl acetate (100 mL) was added to the resulting filtrate (d) until the appearacce of the solid, the mixture was divided into solid (e) and filtrate (f) by filtration. The solid (e) was dried under reduced pressure to obtain the 3rd crop of sodium phthalimidomethyltrifluoroborate 1 (588 mg, 2.34 mmol, 10.5%). The analytical data was consistent with each other among 1st crop, 2nd crop, and 3rd crop of sodium phthalimidomethyltrifluoroborate **1**.

¹H NMR (400 MHz, DMSO- d_6) δ 7.72 (s, 4H), 2.56 (q, *J*=5.12 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 168.3, 133.5, 132.4, 122.1; ¹⁹F NMR (376.5 MHz, DMSO- d_6) δ -147.0; ¹¹B NMR (128.4 MHz, DMSO- d_6) δ 3.1; IR (ATR, cm⁻¹) 1772, 1706, 1465, 1435, 1401, 1319, 1278, 1188, 1086, 956, 769, 722; HRMS (ESI-) calcd for C₉H₆BF₃NO₂⁻ (M-H)⁻228.0448, found 228.0438.

Preparation of 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane¹

To a mixture of triisopropyl borate (20.0 g, 110 mmol), dibromomethane (8.60 mL, 120 mmol) and tetrahydrofuran (150 mL) was added *n*-butyllithium (2.6M n-hexane solution, 39 mL 100 mmol) at -78 °C (external temperature) over 1.5 hours. The reaction mixture was stirred at the same temperature for 1.5 hours, and then the reaction mixture was stirred at room temperature for 2 hours. After the mixture was cooled at 0 °C (external temperature), to the reaction mixture was stirred at room temperature for 1 hour. After the mixture was cooled at 0 °C (external temperature), and then the reaction mixture was stirred at room temperature for 1 hour. After the mixture was cooled at 0 °C (external temperature), to the reaction mixture was stirred at room temperature for 1 hour. After the mixture was cooled at 0 °C (external temperature), to the reaction mixture was stirred at room temperature for 1 hour. After the solvent was concentrated, the resulting residue was distilled under reduce pressure (74-76 °C, 8 mmHg), to obtain the title compound (16.0 g, 72.4 mmol, 72.4%).

¹H NMR (400 MHz, CDCl₃) δ 2.57 (s, 2H), 1.27 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 84.6, 24.7; IR (ATR, cm⁻¹) 2979, 1415, 1372, 1336, 1272, 1214, 1135, 1055, 967, 886, 845, 673; HRMS (EI+) calcd for $C_7H_{14}BBrO_2$ (M)⁺ 220.0270, found 220.0315.

3. General experimental procedure for Suzuki-Miyaura cross-coupling reactions with borate 1 (Table1)

A Biotage microwave vial was charged with 2-bromo-4-methoxytoluene or 4-chloro-3-methylanisole, $Pd(OAc)_2$ or $Pd(dba)_2$, S-phos. base. sodium phthalimidomethyltrifluoroborate $\mathbf{1}$, 1,4-dioxane/distilled water (2/1). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours. The reaction mixture was cooled to room temperature. The reaction mixture was added water and chloroform. Organic layer was concentrated under reduced pressure, then added dibenzyl ether (δ 4.6 (s, 4H) in CDCl₃) as the internal standard, and yields of compounds 2-4 were determined by ¹HNMR (CDCl₃). Aqueous layer was added 1N-HCl aq. and chloroform, then extracted with chloroform (x 3). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was added dibenzyl ether (δ 4.5 (s, 4H) in DMSO- d_6) or triphenyl methane (δ 5.5 (s, 1H) in DMSO- d_6) as the internal standard, and yield of compound 5 was determined by ¹HNMR (DMSO- d_6).

4. Experimental procedure for preparing compounds 6a–6e (Table 2)

Preparation of 2-{[(4-methoxy-2-methylphenyl)methyl]carbamoyl}benzoic acid (6a) from 4-chloro-3-methylanisole

A Biotage microwave vial was charged with 4-chloro-3-methylanisole (31.3 mg, 0.200 mmol), Pd(OAc)₂ (2.24 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. HCl (1 N) and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with diethyl ether/heptane solution to afford **6a** (51.0 mg, 85.1%).

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.93 (br. s., 1H), 8.63 (t, *J*=5.49 Hz, 1H), 7.74 (d, *J*=7.68 Hz, 1H), 7.36-7.62 (m, 3H), 7.25 (d, *J*=8.42 Hz, 1H), 6.61-6.79, (m, 2H), 4.31 (d, *J*=5.86 Hz, 2H), 3.70 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.3, 168.1, 158.2, 138.5, 137.2, 131.1, 131.0, 129.3, 129.1, 129.1, 129.0, 127.8, 115.4, 110.8, 55.0, 40.3, 19.0; IR (ATR, cm⁻¹) 3337, 1698, 1650, 1577, 1531, 1420, 1299, 1252; HRMS (ESI+) calcd for C₁₇H₁₈NO₄ (M+H)⁺ 300.1230, found 300.1228.

Preparation of 2-{[(4-methoxy-2-methylphenyl)methyl]carbamoyl}benzoic acid (6a) from 2-bromo-4-methoxyltoluene

A Biotage microwave vial was charged with 2-bromo-4-methoxytoluene (40.2 mg, 0.200 mmol), Pd(dba)₂ (5.75 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. HCl (1 N) and chloroform, and then extracted with chloroform (x 3). Organic layers

were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with diethyl ether/heptane solution to afford **6b** (54.1 mg, 90.3%).

Preparation of 2-{[(3-cyanophenyl)methyl]carbamoyl}benzoic acid (6b)

A Biotage microwave vial was charged with 3-chloro-benzonitrile (27.5 mg, 0.200 mmol), Pd(OAc)₂ (2.25 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. HCl (1 N) and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with ethyl acetate and diethyl ether/heptane solution to afford **6b** (47.1 mg, 84.0%).

Commercially available compound: CAS [1156122-53-0]

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.94 (br. s., 1H), 7.66-7.89 (m, 4H), 7.39-7.62 (m, 4H), 4.47 (d, *J*=5.85 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.9, 168.0, 141.2, 138.2, 132.2, 131.3, 130.9, 130.7, 130.6, 129.4, 129.4, 129.3, 127.8, 119.0, 111.2, 41.9; HRMS (ESI+) calcd for C₁₆H₁₇N₂O₃ (M+H)⁺ 281.0921, found 281.0914.

Preparation of 2-{[(3-formylphenyl)methyl]carbamoyl}benzoic acid (6c)

A Biotage microwave vial was charged with 3-chloro-benzaldehyde (21.7 mg, 0.150 mmol), Pd(OAc)₂ (1.68 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225 mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq.

HCl (1 N) and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with ethyl acetate and diethyl ether/heptane solution to afford **6c** (36.5 mg, 85.9%).

¹H NMR (490 MHz, DMSO-*d*₆) δ 10.03 (br. s., 1H), 8.99 (t, *J*=6.0 Hz, 1H), 7.93 (br, 1H), 7.74-7.81 (m, 3H), 7.49-7.61 (m, 4H), 4.54 (d, *J*=6.0 Hz, 2H); ¹³C NMR (123 MHz, DMSO-*d*₆) δ 193.2, 168.8, 168.1, 140.8, 138.2, 136.3, 133.5, 131.2, 131.0, 129.3, 129.3, 129.1, 128.4, 127.8, 127.7, 42.2; IR (ATR, cm⁻¹) 3318, 1698, 1650, 1579, 1534, 1419, 1304, 778, 701; HRMS (ESI+) calcd for C₁₆H₁₄NO₄ (M+H)⁺ 284.0917, found 284.0915.

Preparation of 2-({[4-(methoxycarbonyl)phenyl]methyl}carbamoyl)benzoic acid (6d)

A Biotage microwave vial was charged with methyl 4-chlorobenzoate (34.1 mg, 0.200 mmol), Pd(OAc)₂ (2.25 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. HCl (1 N) and chloroform, and then extracted with chloroform (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with ethyl acetate and diethyl ether/heptane solution to afford **6d** (54.5 mg, 87.1%).

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.96 (t, *J*=5.86 Hz, 1H), 7.91 (d, *J*=8.05 Hz, 2H), 7.73-7.79 (m, 1H), 7.43-7.62 (m, 5H), 4.50 (d, *J*=5.86 Hz, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 168.1, 166.2, 145.3, 138.1, 131.2, 131.1, 129.3, 129.2, 129.1, 128.0, 127.7, 127.4, 52.1, 42.3; IR (ATR, cm⁻¹) 3315, 1701, 1649, 1533, 1418, 1218, 1109, 750; HRMS (ESI+) calcd for C₁₇H₁₆NO₅ (M+H)⁺ 314.1023, found 314.1023.

Preparation of 2-[(thiophen-2-ylmethyl)carbamoyl]benzoic acid (6e)

A Biotage microwave vial was charged with methyl 2-bromothiophene (16.3 mg, 0.100 mmol), Pd(dba)₂ (2.88 mg, 0.010 mmol), S-phos (4.92 mg, 0.012 mmol), Na₂CO₃ (47.7 mg, 0.450 mmol), sodium phthalimidomethyltrifluoroborate **1** (37.6 mg, 0.150 mmol), 1,4-dioxane (444 μ L), distilled water (222 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. HCl (1 N) and chloroform, and then extracted with chloroform/tetrahydrofuran = 5/1 (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (silica gel, ethyl acetate/methanol/acetic acid = 100/10/1) to afford **6e** (16.3 mg, 62.3 %).

Commercially available compound: CAS [332361-08-7]

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.95 (br. s., 1H), 8.94 (t, *J*=5.86 Hz, 1H), 7.75 (dd, *J*=1.28, 7.50 Hz, 1H), 7.46-7.60 (m, 2H), 7.35-7.42 (m, 2H), 7.04 (dd, *J*=0.91, 3.48 Hz, 1H), 6.95 (dd, *J*=3.29, 5.12 Hz, 1H), 4.57 (d, *J*=5.86 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.3, 168.0, 142.4, 138.1, 131.2, 131.0, 129.4, 129.2, 127.7, 126.7, 125.3, 124.9, 37.7; HRMS (ESI+) calcd for C₁₃H₁₂NO₃S (M)⁺ 262.0520, found 262.0519.

Preparation of 2-{[(6-methoxypyridin-3-yl)methyl]carbamoyl}benzoic acid (6f)

A Biotage microwave vial was charged with methyl 5-chloro-2-methoxypyridine (28.8 mg, 0.200 mmol), Pd(OAc)₂ (2.25 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. HCl (1 N) and chloroform, and then extracted with chloroform/tetrahydrofuran = 5/1 (x

3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (silica gel, ethyl acetate/methanol/acetic acid = 100/10/1) to afford **6f** (24.2 mg, 42.2 %).

Commercially available compound: CAS [1178036-30-0]

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.96 (br. s., 1H), 8.80 (t, *J*=5.67 Hz, 1H), 8.14 (s, 1H), 7.74 (dd, *J*=8.05, 17.20 Hz, 2H), 7.47-7.60 (m, 2H), 7.42 (d, *J*=7.32 Hz, 1H), 6.76 (d, *J*=8.42 Hz, 1H), 4.36 (d, *J*=5.85 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 168.0, 162.7, 145.6, 138.9, 138.4, 131.3, 130.8, 129.2, 129.2, 128.0, 127.7, 110.1, 53.1, 39.6; HRMS (ESI+) calcd for $C_{15}H_{15}N_2O_4$ (M+H)⁺ 267.1026, found 267.1026.

5. Experimental procedure for one-pot aminomethylation of aryl and heteroaryl halides, triflates, mesylates, and tosylates (Table 4 and 5)

One-pot primary aminomethylation of aryl and heteroaryl halides and triflates (Table 4)

NH₂

Preparation of naphthalen-2-ylmethanamine (7a) from 2-chloronaphthalene²

A Biotage microwave vial was charged with 2-chloronaphthalene (24.4 mg, 0.150 mmol), $Pd(OAc)_2$ (1.68 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na_2CO_3 (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 µL), distilled water (333 µL). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 µL, 1.050 mmol) and 1-propanol (666 µL), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7a** (20.1 mg, 85.2 %).

Commercially available compound: CAS [118-31-0]

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J*=8.05 Hz, 3H), 7.75 (s, 1H), 7.39-7.51 (m, 3H), 4.03 (s, 2H), 1.56 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 133.7, 132.6, 128.3, 127.8, 126.2, 125.9, 125.6, 125.2, 46.8; HRMS (EI+) calcd for C₁₁H₁₁N (M)⁺ 157.0886, found 157.0965.

Preparation of naphthalen-2-ylmethanamine (7a) from 2-bromonaphthalene

A Biotage microwave vial was charged with 2-bromonaphthalene (42.7 mg, 0.150 mmol), Pd(dba)₂ (4.31 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7a** (18.7 mg, 79.3 %).

Preparation of naphthalen-2-ylmethanamine (7a) from 2-iodonaphthalene

A Biotage microwave vial was charged with 2-iodonaphthalene (38.1 mg, 0.150 mmol, 95% purity), Pd(dba)₂ (4.31 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate,

filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7a** (12.4 mg, 52.6 %).

Preparation of naphthalen-2-ylmethanamine (7a) from 2-naphthyl trifluoromethanesulfonate

A Biotage microwave vial was charged with 2-naphthyl trifluoromethanesulfonate (41.4 mg, 0.150 mmol), Pd(dba)₂ (4.31 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 15 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7a** (17.5 mg, 74.2 %).

Preparation of (4-methoxy-2-methylphenyl)methanamine (7b)³

A Biotage microwave vial was charged with 4-chloro-3-methylanisole (31.3 mg, 0.200 mmol), Pd(OAc)₂ (2.25 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (93.5 μ L, 1.400 mmol) and 1-propanol (888 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting

aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7b** (25.6 mg, 84.6 %).

Commercially available compound: CAS [21883-14-7] ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J*=9.15 Hz, 1H), 6.67-6.76 (m, 2H), 3.79 (s, 2H), 3.78 (s, 3H), 2.33 (s, 3H), 1.51 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 137.1, 133.7, 128.6, 116.2, 111.1, 55.3, 43.7, 19.2; HRMS (EI+) calcd for C₉H₁₃NO (M)⁺ 151.0992, found 151.1050.

Preparation of 2H-1,3-benzodioxol-5-ylmethanamine (7c)⁴

A Biotage microwave vial was charged with 5-chloro-1,3-benzodioxole (23.5 mg, 0.150 mmol), Pd(OAc)₂ (1.68 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7c** (20.2 mg, 89.1 %).

Commercially available compound: CAS [2620-50-0]

¹H NMR (400 MHz, CDCl₃) δ 6.79 (s, 1H), 6.70-6.76 (m, 2H), 5.91 (s, 2H), 3.74 (s, 2H), 1.52 (br. s., 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 146.4, 137.5, 120.1, 108.2, 107.8, 100.9, 46.4; HRMS (EI+) calcd for C₈H₉NO₂ (M)⁺ 151.0628, found 151.0704.

Preparation of (3,5-dimethoxyphenyl)methanamine (7d)⁵

A Biotage microwave vial was charged with 3,5-dimethoxychlorobenzene (25.9 mg, 0.150 mmol), Pd(OAc)₂ (1.68 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7d** (22.8 mg, 90.9 %).

Commercially available compound: CAS [34967-24-3]

¹H NMR (400 MHz, CDCl₃) δ 6.47 (d, *J*=2.56 Hz, 2H), 6.35 (t, *J*=2.38 Hz, 1H), 3.81 (s, 2H), 3.79 (s, 6H), 1.58 (br. s., 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 146.0, 104.9, 98.8, 55.4, 46.7; HRMS (EI+) calcd for C₉H₁₃NO₂ (M)⁺ 167.0941, found 167.1048.

Preparation of 3-(aminomethyl)benzonitrile (7e)⁶

A Biotage microwave vial was charged with 3,5-dimethoxychlorobenzene (21.0 mg, 0.150 mmol, 98% purity), Pd(OAc)₂ (1.68 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was

stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7e** (16.1 mg, 81.2 %).

Commercially available compound: CAS [10406-24-3]

¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.56 (dd, *J*=7.68, 18.66 Hz, 2H), 7.40-7.48 (m, 1H), 3.93 (s, 2H), 1.56 (br. s., 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 131.7, 130.7, 130.5, 129.3, 119.0, 112.4, 45.6.; HRMS (EI+) calcd for C₈H₈N₂ (M)⁺ 132.0687, found 132.0758.

Preparation of (3-nitrophenyl)methanamine (7f)⁷

A Biotage microwave vial was charged with 3-nitorochlorobenzene (23.6 mg, 0.150 mmol), Pd(OAc)₂ (1.68 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7f** (18.9 mg, 82.8 %).

Commercially available compound: CAS [7409-18-9]

¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.10 (dd, *J*=1.28, 8.23 Hz, 1H), 7.68 (d, *J*=7.68 Hz, 1H), 7.51 (t, *J*=7.87 Hz, 1H), 4.01 (s, 2H), 1.59 (s, 2H); ¹³C NMR (100 MHz,

CDCl₃) δ 148.5, 145.3, 133.4, 129.4, 122.0, 121.9, 45.7.; HRMS (EI+) calcd for C₇H₈N₂O₂ (M)⁺ 152.0580, found 152.0576.

Preparation of 1-[4-(aminomethyl)phenyl]ethan-1-one (7g)

A Biotage microwave vial was charged with 4'-chlorobenzene (31.9 mg, 0.200 mmol, >97% purity), Pd(OAc)₂ (2.25 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (93.5 μ L, 1.400 mmol) and 1-propanol (888 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7g** (22.4 mg, 75.1 %).

Commercially available compound: CAS [87171-25-3]

¹H NMR (490 MHz, CDCl₃) δ 7.94 (d, *J*=7.8 Hz, 2H), 7.42 (d, *J*=8.3 Hz, 2H), 3.95 (s, 2H), 2.60 (s, 3H), 1.48 (br. s., 2H); ¹³C NMR (123 MHz, CDCl₃) δ 197.9, 148.8, 135.9, 128.7, 127.2, 46.2, 26.7.; HRMS (ESI+) calcd for C₉H₁₂NO (M)⁺ 150.0913, found 150.0913.

Preparation of methyl 4-(aminomethyl)benzoate (7h)⁸

After isolation of 2-($\{[4-(methoxycarbonyl)phenyl]methyl\}$ carbamoyl)benzoic acid (6d) from methyl 4-chlorobenzoate (0.2 mmol), a Biotage microwave vial was charged with 2-($\{[4-(methoxycarbonyl)phenyl]methyl\}$ carbamoyl)benzoic acid, ethylenediamine (93.5 µL, 1.400 mmol) and *t*-butanol (1.5 mL). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 24 hours before cooling to room temperature. The reaction mixture was filtered, concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7h** (23.0 mg, 69.5 %).

Commercially available compound: CAS [18469-52-8]

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J*=8.05 Hz, 2H), 7.39 (d, *J*=8.05 Hz, 2H), 3.94 (s, 2H), 3.91 (s, 3H), 1.54 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 148.5, 130.0, 128.8, 127.0, 52.2, 46.3; HRMS (EI+) calcd for C₉H₁₁NO₂ (M)⁺ 165.0790, found 165.0791.

Preparation of quinolin-6-ylmethanamine (7i)⁹ from 6-chloroquinoline

A Biotage microwave vial was charged with 6-chloroquinoline (24.5 mg, 0.150 mmol), Pd(OAc)₂ (1.68 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225 mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford **7i** (19.1 mg, 80.5 %).

Commercially available compound: CAS [99071-54-2]

¹H NMR (400 MHz, CDCl₃) δ 8.87 (dd, *J*=1.65, 4.21 Hz, 1H), 8.02-8.14 (m, 2H), 7.71

(s, 1H), 7.65 (dd, *J*=2.01, 8.60 Hz, 1H), 7.36 (dd, *J*=4.21,

8.23 Hz, 1H), 4.04 (s, 2H), 1.69 (br. s., 2H); 13 C NMR (100 MHz, CDCl₃) δ 150.0, 147.5, 141.4, 135.8, 129.5, 129.4, 128.2, 124.7, 121.2, 46.2; HRMS (EI+) calcd for C₁₀H₁₀N₂ (M)⁺ 158.0838, found 158.0881.

Preparation of quinolin-6-ylmethanamine (7i) from 6-bromoquinoline

A Biotage microwave vial was charged with 6-bromoquinoline (31.2 mg, 0.150 mmol), Pd(dba)₂ (4.31 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 mmol), Na₂CO₃ (71.5

mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225 mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford **7i** (18.6 mg, 78.4 %).

Preparation of quinolin-6-ylmethanamine (7i) from quinolin-6-yl trifluoromethanesulfonate

A Biotage microwave vial was charged with quinolin-6-yl trifluoromethanesulfonate (42.9 mg, 0.150 mmol, 97% purity), Pd(dba)₂ (4.31 mg, 0.008 mmol), S-phos (7.39 mg, 0.018 (71.5)0.675 mmol), Na₂CO₃ mg, mmol), sodium phthalimidomethyltrifluoroborate 1 (56.5 mg, 0.225 mmol), 1,4-dioxane (666 µL), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 µL, 1.050 mmol) and 1-propanol (666 µL), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford 7i (18.1 mg, 76.3 %).

Preparation of (2-methyl-1,3-benzothiazol-5-yl)methanamine (7j)

To a solution of 5-Chloro-2-methoxypyridine (86.1 mg, 0.600 mmol), $Pd(OAc)_2$ (13.5 mg, 0.060 mmol), S-phos (59.1 mg, 0.144 mmol), Na_2CO_3 (286 mg, 2.700 mmol), sodium phthalimidomethyltrifluoroborate **1** (226 mg, 0.900 mmol), 1,4-dioxane (4.0 mL), distilled water (2.0 mL) was stirred under reflux for 48 hours before cooling to

room temperature. The reaction mixture was added ethylenediamine (281 μ L, 4.20 mmol) and 1-propanol (4.0 mL), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 15/1) to afford **7i** (50.6 mg, 61.0 %).

Commercially available compound: CAS [262295-96-5]

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J*=2.20 Hz, 1H), 7.57 (dd, *J*=2.20, 8.42 Hz, 1H), 6.73 (d, *J*=8.78 Hz, 1H), 3.93 (s, 3H), 3.81 (s, 2H), 1.50 (br. s., 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 138.4, 131.3, 131.3, 110.9, 53.5, 43.5; HRMS (EI+) calcd for $C_7H_{10}N_2O$ (M)⁺ 138.0788, found 138.0796.

Preparation of (2-methyl-1,3-benzothiazol-5-yl)methanamine (7k)

A Biotage microwave vial was charged with 5-chloro-2-methyl-1,3-benzothiazole (18.4 mg, 0.100 mmol), Pd(OAc)₂ (1.12 mg, 0.005 mmol), S-phos (4.93 mg, 0.012 mmol), Na₂CO₃ (47.7 mg, 0.450 mmol), sodium phthalimidomethyltrifluoroborate **1** (37.6 mg, 0.150 mmol), 1,4-dioxane (444 μ L), distilled water (222 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (46.7 μ L, 0.700 mmol) and 1-propanol (444 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol/ = 20/1) to afford **7k** (14.8 mg, 83.0 %).

¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J*=0.73 Hz, 1H), 7.77 (d, *J*=8.05 Hz, 1H), 7.32 (dd, *J*=1.46, 8.05 Hz, 1H), 4.00 (s, 2H), 2.83 (s, 3H), 1.63

(br. s., 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 153.9, 141.8, 134.0, 124.4, 121.5, 120.6, 46.5, 20.3; IR (ATR, cm⁻¹) 3283, 2918, 1568, 1521, 1453, 1422, 1373, 1328, 1300, 1171, 890, 806; HRMS (EI+) calcd for C₉H₁₀N₂S (M)⁺ 178.0559, found 178.0625.

Preparation of [5-(thiophen-2-yl)thiophen-2-yl]methanamine (71)¹⁰

A Biotage microwave vial was charged with 2-bromo-5-(thiophen-2-yl)thiophene (49.0 mg, 0.200 mmol), Pd(dba)₂ (5.75 mg, 0.010 mmol), S-phos (9.85 mg, 0.024 mmol), Na₂CO₃ (95.4 mg, 0.900 mmol), sodium phthalimidomethyltrifluoroborate **1** (75.3 mg, 0.300 mmol), 1,4-dioxane (888 μ L), distilled water (444 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 36 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (93.5 μ L, 1.400 mmol) and 1-propanol (888 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **71** (22.4 mg, 57.3 %).

Commercially available compound: CAS [4380-96-5]

¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, *J*=0.73, 5.12 Hz, 1H), 7.10-7.15 (m, 1H), 6.95-7.03 (m, 2H), 6.80 (d, *J*=3.29 Hz, 1H), 4.02 (s, 2H), 1.63 (br. s., 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 137.8, 136.1, 127.9, 124.3, 124.2, 123.5, 123.5, 41.7.; HRMS (EI+) calcd for C₉H₉NS₂ (M)⁺ 180.0786, found 180.0822.

One-pot primary aminomethylation of aryl and heteroaryl mesylates and tosylates (Table 5)

Preparation of naphthalen-2-ylmethanamine (7a) from naphthalene-2-yl methanesulfonate

A Biotage microwave vial was charged with naphthalene-2-yl methanesulfonate (33.3 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine

(70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7a** (18.9 mg, 80.1 %).

Preparation of naphthalen-2-ylmethanamine (7a) from naphthalen-2-yl 4-methylbenzene-1-sulfonate

Α Biotage vial charged with naphthalen-2-yl microwave was 4-methylbenzene-1-sulfonate (44.8 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate 1 (56.5 mg, 0.225mmol), 1,4-dioxane (666 µL), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 µL, 1.050 mmol) and 1-propanol (666 µL), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7a** (20.1 mg, 85.2 %).

Preparation of naphthalene-2-yl methanesulfonate¹

To a solution of 2-naphtol (3.00 g, 20.8 mmol) and pyridine (10.0 mL) in dichloromethane (20.0 mL) was added methanesulfonyl chloride (2.10 mL, 27.0 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with saturated aqueous ammonium chloride, and the

resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate = 4/1 to 2/1) to afford naphthalene-2-yl methanesulfonate (4.10 g, 89.1%).

Commercially available compound: CAS [10290-91-2]

¹H NMR (400 MHz, CDCl₃) δ 7.82-7.92 (m, 3H), 7.76 (d, J=2.20 Hz, 1H), 7.49-7.58 (m, 2H), 7.41 (ddd, J=1.10, 2.38, 8.97 Hz, 1H), 3.18 (d, J=1.10 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 133.7, 132.2, 130.4, 128.0, 128.0, 127.3, 126.7, 120.9, 119.6, 37.5; HRMS (EI+) calcd for C₁₁H₁₀O₃S (M)⁺ 222.0351, found 222.0370.

Preparation of naphthalene-2-yl 4-methylbenzenesulfonate¹

To a solution of 2-naphtol (3.00 g, 20.8 mmol) and pyridine (10.0 mL) in CH₂Cl₂ (20.0 mL) was added p-toluenesulfonyl chloride (5.20 g, 27.3 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with saturated aqueous ammonium chloride, and the resulting mixture was extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate = 4/1 to 2/1) to afford naphthalene-2-yl 4-methylbenzenesulfonate (3.20 g, 51.6%). Commercially available compound: CAS [7385-85-5]

¹H NMR (400 MHz, CDCl₃) δ 7.77-7.84 (m, 1H), 7.70-7.77 (m, 4H), 7.44-7.51 (m, 3H), 7.29 (d, *J*=8.05 Hz, 2H), 7.09 (dd, *J*=2.38, 8.97 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 145.5, 133.6, 132.6, 132.0, 129.9, 129.9, 128.7, 128.0, 127.9, 127.0, 126.5, 121.3, 120.1, 21.9; HRMS (EI+) calcd for C₁₇H₁₄O₃S (M)⁺ 298.0664, found 298.0612.

Preparationof(3,5-dimethoxyphenyl)methanamine(7d)from3,5-dimethoxyphenyl methanesulfonate

A Biotage microwave vial was charged with 3,5-dimethoxyphenyl methanesulfonate (34.8 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours

before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7d** (17.5 mg, 70.0 %).

Preparationof(3,5-dimethoxyphenyl)methanamine(7d)from3,5-dimethoxyphenyl 4-methylbenzene-1-sulfonate

А microwave vial with 3,5-dimethoxyphenyl Biotage was charged 4-methylbenzene-1-sulfonate (46.3 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate 1 (56.5 mg, 0.225mmol), 1,4-dioxane (666 µL), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 µL, 1.050 mmol) and 1-propanol (666 µL), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7d** (20.1 mg, 80.1 %).

Preparation of 3,5-dimethoxyphenyl methanesulfonate

To a solution of 3,5-dimethoxyphenol (1.50 g, 9.54 mmol) and pyridine (3.00 mL) in dichloromethane (20.0 mL) was added methanesulfonyl chloride (964 mL, 12.4 mmol) at 0 $^{\circ}$ C. The reaction mixture was stirring at room temperature for 12 hours. The

reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate = 2/1 to 3/2) to afford 3,5-dimethoxyphenyl methanesulfonate (2.14 g, 96.8%).

¹H NMR (400 MHz, CDCl₃) δ 6.44 (d, *J*=2.20 Hz, 2H), 6.38-6.42 (m, 1H), 3.78 (s, 6H), 3.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 150.8, 100.6, 99.5, 55.7, 37.4; HRMS (EI+) calcd for C₉H₁₂O₅S (M)⁺ 232.0400, found 232.0484.

Preparation of 3,5-dimethoxyphenyl 4-methylbenzene-1-sulfonate¹¹

To a solution of 3,5-dimethoxyphenol (1.50 g, 9.54 mmol) and pyridine (3.00 mL) in dichloromethane (20.0 mL) was added p-toluenesulfonyl chloride (4.40 g, 22.9 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate = 4/1 to 2/1) to afford 3,5-dimethoxyphenyl 4-methylbenzene-1-sulfonate (2.65 g, 88.3%).

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J*=8.42 Hz, 2H), 7.31 (d, *J*=8.05 Hz, 2H), 6.32 (t, *J*=2.20 Hz, 1H), 6.14 (d, *J*=2.20 Hz, 2H), 3.68 (s, 7H),

2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 151.1, 145.5, 132.6, 129.8, 128.7, 100.9, 99.5, 55.6, 21.8; HRMS (ESI+) calcd for C₁₅H₁₇O₅S (M)⁺ 309.0791, found 309.0781.

Preparation of 3-(aminomethyl)benzonitrile (7e) from 3-cyanophenyl methanesulfonate

A Biotage microwave vial was charged with 3-cyanophenyl methanesulfonate (29.6 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050

mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7e** (6.94 mg, 35.0 %).

Preparation of 3-(aminomethyl)benzonitrile (7e) from 3-cyanophenyl 4-methylbenzene-1-sulfonate

А Biotage vial charged with 3-cyanophenyl microwave was 4-methylbenzene-1-sulfonate (41.0 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate 1 (56.5 mg, 0.225mmol), 1,4-dioxane (666 µL), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 µL, 1.050 mmol) and 1-propanol (666 µL), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added aq. HCl (2 N) and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added aq. NaOH (2 N) and chloroform, then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by NH silica gel column chromatography (ethyl acetate/methanol = 20/1) to afford **7e** (8.92 mg, 45.0 %).

Preparation of 3-cyanophenyl methanesulfonate¹²

To a solution of 3-hydroxybenzonitrile (1.20 g, 10.1 mmol) and pyridine (3.00 mL) in dichloromethane (20.0 mL) was added methanesulfonyl chloride (1.60 mL, 20.2 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with

ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate = 2/1) to afford 3-cyanophenyl methanesulfonate (1.92 g, 97.0%).

¹H NMR (400 MHz, CDCl₃) δ 7.62-7.68 (m, 1H), 7.53-7.61 (m, 3H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 131.2, 131.2, 127.2, 125.9, 117.4, 114.3, 38.1; HRMS (EI+) calcd for C₈H₇NO₃S (M)⁺ 197.0141, found 197.0194.

Preparation of 3-cyanophenyl 4-methylbenzene-1-sulfonate¹²

To a solution of 3-hydroxybenzonitrile (1.20 g, 10.1 mmol) and pyridine (3.00 mL) in dichloromethane (20.0 mL) was added p-toluenesulfonyl chloride (3.80 g, 20.2 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate = 4/1 to 3/1) to afford 3-cyanophenyl 4-methylbenzene-1-sulfonate (1.95 g, 70.8%).

Commercially available compound: CAS [49584-07-8]

¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J*=8.42 Hz, 2H), 7.53-7.61 (m, 1H), 7.45 (t, *J*=7.87 Hz, 1H), 7.36 (d, *J*=8.42 Hz, 2H), 7.28-7.33 (m, 1H), 7.24-7.27 (m, 1H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 146.3, 131.7, 130.9, 130.9, 130.2, 128.5, 127.5, 126.1, 117.4, 113.8, 21.9; HRMS (EI+) calcd for $C_{14}H_{11}NO_{3}S$ (M)⁺ 273.0454, found 273.0456.

Preparation of quinolin-6-ylmethanamine from 6-chloroquinoline (7i) from quinolin-6-yl methanesulfonate

A Biotage microwave vial was charged with quinolin-6-yl methanesulfonate (33.5 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux

for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol = 15/1) to afford **7i** (16.9 mg, 71.2 %).

Preparation of quinolin-6-ylmethanamine from 6-chloroquinoline (7g) from quinolin-6-yl 4-methylbenzene-1-sulfonate

А Biotage microwave vial charged with quinolin-6-yl was 4-methylbenzene-1-sulfonate (44.9 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate 1 (56.5 mg, 0.225mmol), 1,4-dioxane (666 µL), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol = 15/1) to afford 7i (17.2 mg, 72.5 %).

Preparation of quinolin-6-yl methanesulfonate¹³

To a solution of quinolin-6-ol (1.00 g, 6.89 mmol) and pyridine (2.00 mL) in dichloromethane (20.0 mL) was added methanesulfonyl chloride (1.10 mL, 13.8 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column chromatography (heptane/ethyl acetate = 2/3 to 1/2) to afford quinolin-6-yl methanesulfonate (1.20 g, 65.0%).

¹H NMR (400 MHz, CDCl₃) δ 8.96 (dd, *J*=1.65, 4.21 Hz, 1H), 8.14-8.21 (m, 2H), 7.78

(d, J=2.56 Hz, 1H), 7.63 (dd, J=2.56, 9.15 Hz, 1H), 7.47 (dd, J=4.21, 8.23 Hz, 1H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.2, 146.8, 146.8, 136.1, 132.1, 128.6, 124.4, 122.2, 119.5, 37.8; HRMS (EI+) calcd for C₁₀H₉NO₃S (M)⁺ 223.0298, found 223.0342.

Preparation of quinolin-6-yl 4-methylbenzene-1-sulfonate¹⁴

To a solution of quinolin-6-ol (1.00 g, 6.89 mmol) and pyridine (2.00 mL) in dichloromethane (20.0 mL) was added p-toluenesulfonyl chloride (2.60 g, 13.8 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate = 3/2 to 1/1) to afford quinolin-6-yl 4-methylbenzene-1-sulfonate (1.73 g, 84.0%).

Commercially available compound: CAS [426265-40-9]

¹H NMR (400 MHz, CDCl₃) δ 8.92 (dd, *J*=1.65, 4.21 Hz, 1H), 8.09 (dd, *J*=1.10, 8.42 Hz, 1H), 8.01 (d, *J*=9.15 Hz, 1H), 7.73 (d, *J*=8.42 Hz, 2H), 7.55 (d, *J*=2.56 Hz, 1H), 7.42 (dd, *J*=4.21, 8.23 Hz, 1H), 7.22-7.34 (m, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 147.3, 146.7, 145.8, 136.1, 132.2, 131.5, 130.0, 128.6, 128.4, 124.7, 122.0, 120.1, 21.8; HRMS (ESI+) calcd for C₁₆H₁₄NO₃S (M)⁺ 300.0689, found 300.0680.

Preparationof(2-methyl-1,3-benzothiazol-5-yl)methanamine(7k)from2-methyl-1,3-benzothiazol-5-yl methanesulfonate

A Biotage microwave vial was charged with 2-methyl-1,3-benzothiazol-5-yl methanesulfonate (36.5 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos mmol), (11.1)mg. 0.027 Na_2CO_3 (71.5)mg. 0.675 mmol). sodium phthalimidomethyltrifluoroborate 1 (56.5 mg, 0.225mmol), 1,4-dioxane (666 µL), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 µL, 1.050 mmol) and 1-propanol (666 µL), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol = 15/1) to afford **7k** (18.7 mg, 69.9 %).

Preparation of (2-methyl-1,3-benzothiazol-5-yl)methanamine (7h) from 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate

A Biotage microwave vial was charged with 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate (47.9 mg, 0.150 mmol), Pd(OAc)₂ (2.47 mg, 0.011 mmol), S-phos (11.1 mg, 0.027 mmol), Na₂CO₃ (71.5 mg, 0.675 mmol), sodium phthalimidomethyltrifluoroborate **1** (56.5 mg, 0.225mmol), 1,4-dioxane (666 μ L), distilled water (333 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added ethylenediamine (70.1 μ L, 1.050 mmol) and 1-propanol (666 μ L), and then the reaction mixture was stirred under reflux for 24 hours. The reaction mixture was cooled to room temperature, and then filtered, concentrated under reduced pressure. The residue was added chloroform and water, and then extracted with chloroform (x 2). Organic layers were combined and dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl acetate/methanol = 15/1) to afford **7k** (20.0 mg, 74.9 %).

Preparation of 2-methyl-1,3-benzothiazol-5-yl methanesulfonate¹³

To a solution of 2-methyl-1,3-benzothiazol-5-ol (1.50 g, 10.0 mmol) and pyridine (3.00 mL) in dichloromethane (20.0 mL) was added methanesulfonyl chloride (1.60 mL, 20.0 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate = 2/1 to 1/1) to afford 2-methyl-1,3-benzothiazol-5-yl methanesulfonate (2.14 g, 88.1%).

¹H NMR (400 MHz, CDCl₃) δ 7.74-7.94 (m, 2H), 7.33 (dd, *J*=2.20, 8.78 Hz, 1H), 3.19

(s, 3H), 2.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 154.1, 147.7, 134.7, 122.4, 119.3, 115.8, 37.4, 20.4; HRMS (EI+) calcd for C₉H₉NO₃S₂ (M)⁺ 243.0018, found 243.0034

Preparation of 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate¹⁵

To a solution of 2-methyl-1,3-benzothiazol-5-ol (1.20 g, 8.00 mmol) and pyridine (3.00 mL) in dichloromethane (20.0 mL) was added p-toluenesulfonyl chloride (3.10 g, 16.0 mmol) at 0 °C. The reaction mixture was stirring at room temperature for 12 hours. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by NH silica gel column chromatography (heptane/ethyl acetate = 4/1 to 2/1) to afford 2-methyl-1,3-benzothiazol-5-yl 4-methylbenzene-1-sulfonate (1.64 g, 64.3%). ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.80 (m, 3H), 7.45 (d, *J*=2.56 Hz, 1H), 7.30 (d, *J*=8.42 Hz, 2H), 7.11 (dd, *J*=2.38, 8.60 Hz, 1H), 2.81 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 153.8, 148.2, 145.6, 134.4, 132.2, 130.0, 128.6, 122.0, 119.9, 116.1, 21.9, 20.4; HRMS (ESI+) calcd for C₁₅H₁₄NO₃S₂ (M)⁺ 320.0410, found 320.0400.

6.Experimental procedure for preparing compounds 9 and 11

Preparation of 2-(4-chlorophenyl)benzene-1-sulfonamide (9)¹⁶

To a solution of 2-bromobenzene-1-sulfonamide (94.4 mg, 0.40 mmol), $Pd(Pt-Bu_3)_2$ (10.2 mg, 0.02 mmol), 4-chlorobenzene boronic acid (187.6 mg, 1.20 mmol), Cs_2CO_3 (260.8 mg, 0.80 mmol), 1,4-dioxane (4.00 mL), and distilled water (2.0 mL) was stirred under reflux for 15 h before cooling to room temperature. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate. The organic extracts were washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residual oil was purified by silica gel column

chromatography (heptane/ethyl acetate = 2/1 to 1/1) to afford 2-(4-chlorophenyl)benzene-1-sulfonamide (212 mg). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.02 (dd, *J*=1.46, 7.68 Hz, 1H), 7.54-7.64 (m, 2H), 7.40-7.47 (m, 2H), 7.35-7.40 (m, 2H), 7.28-7.33 (m, 3H); ¹³C NMR (100 MHz,

DMSO-*d*₆) δ 142.3, 138.8, 138.6, 132.3, 131.6, 131.1, 131.1, 128.0, 127.6, 127.3;

HRMS (EI+) calcd for $C_{12}H_{10}CINO_2S$ (M+NH₄)⁺ 267.0115, found 267.0112.

Preparation

of

1-N-{[4-(2-sulfamoylphenyl]methyl}-2-N-{[5-(thiophen-2-yl]methyl}benzene-1,2-dicarboxamide (11)¹⁰

A Biotage microwave vial charged with was 2-(4-chlorophenyl)benzene-1-sulfonamide (20.6 mg, 0.077 mmol), Pd(OAc)₂ (0.86 mg, 0.004 mmol), S-phos (3.78 mg, 0.009 mmol), Na₂CO₃ (36.7 mg, 0.347 mmol), sodium phthalimidomethyltrifluoroborate 1 (29.0 mg, 0.116 mmol), 1,4-dioxane (444 μ L), distilled water (222 μ L). The test tube was sealed with a cap, and the reaction mixture was stirred under reflux for 48 hours before cooling to room temperature. The reaction mixture was added water and chloroform, and then aqueous layer was washed with chloroform (x 2). Resulting aqueous layer was added 1N-HCl aq. and chloroform, and then extracted with chloroform/tetrahydrofuran = 5/1 (x 3). Organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude mixture was used in the next step without further purification.

The crude mixture was added **7j** (18.0 mg, 0.092 mmol), EDC•HCl (22.2 mg, 0.116 mmol), HOBt•H₂O (17.5 mg, 0.116 mmol), *i*-Pr₂NEt (26.8 μ L, 0.154 mmol), and tetrahydrofuran (2.0 mL). The reaction mixture was stirred at room temperature for 10 h. The reaction mixture was quenched with water, and the resulting mixture was extracted with ethyl acetate/tetrahydrofuran (x 2). The organic layers were combined and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative TLC (NH silica gel, ethyl

acetate/methanol = 10/1) to afford **11** (24.0 mg, 53.1 %).

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.97 (t, *J*=5.86 Hz, 1H), 8.86 (t, *J*=5.86 Hz, 1H), 7.99-8.05 (m, 1H), 7.48-7.60 (m, 6H), 7.45 (d, *J*=5.12 Hz, 1H), 7.33-7.39 (m, 4H), 7.25-7.30 (m, 1H), 7.21 (d, *J*=3.66 Hz, 1H), 7.16 (br. s., 2H), 7.11 (d, *J*=3.66 Hz, 1H), 7.04 (dd, *J*=3.84, 4.94 Hz, 1H), 7.00 (d, *J*=3.66 Hz, 1H), 4.53 (d, *J*=5.49 Hz, 2H), 4.47 (d, *J*=6.22 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.1, 168.1, 142.2, 141.9, 139.8, 138.5, 138.4, 136.7, 136.4, 135.9, 135.4, 132.5, 131.4, 129.6, 129.4, 129.1, 129.1, 128.3, 127.7, 127.5, 127.3, 126.4, 126.4, 125.1, 123.6, 123.4, 42.2, 37.9; HRMS (ESI+) calcd for C₃₀H26N3O₄S (M+NH₄)⁺ 605.1340, found 605.1345.

References

- (1) Murai, N.; Yonaga, M.; Tanaka, K. Org. Lett. 2012, 14, 1278.
- (2) Martínez-Asencio, A.; Ramón, D. J.; Yus, M. Tetrahedron. 2011, 67, 3140.
- (3) Leonard, N. J.; Swaringn, Jr. R. A. J. Org. Chem. 1969, 34, 3814.
- (4) Lamb, G. W.; Watson, A. J. A.; Jolley, K. E.; Maxwell, A. C. Williams, J. M. J. *Tetrahedron Lett.* 2009, 50, 3374.
- (5) Jeffs, P. W. Hansen, J. F. Brine, G. A. J. Org. Chem. 1975, 40, 2883.
- (6) Bookser, B. C.; Bruice, T. C. J. Am. Chem. Soc. 1991, 113, 4208.
- (7) Bartoli, G.; Antonio, G. D.; Giovannini, R.; Giuli, S.; Lanari, S.; Paoletti, M.; Marcantoni, E. J. Org. Chem. 2008, 73, 1919.
- (8) Goodyer, C. L. M.; Chinje, E. C.; Jaffar, M.; Stratford, I. J.; Threadgill, M. D. *Bioorg. Med. Chem.* 2003, 11, 4189.
- (9) Zhao, Q.; Liu, S.; Li, Y.; Wang, Q. J. Agric. Food, Chem. 2009, 57, 2849.
- (10) Shao, P. P.; Ok, D.; Fisher, M. H.; Garcia, M. L.; Kaczorowski, G. J.; Li, C.; Lyons, K. A.; Martin, W. J.; Meinke, P. T.; Priest, B. T.; Smith, M. M.; Wyvratt, M. J.; Ye, F.; Parsons, W. H. *Bioorg. Med. Chem. Lett.* 2005, *15*, 1901.
- (11) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201.
- (12) Chow, W. K.; So, C. M. Lau, C. P. Kwong, F. Y. Chem. Eur. J. 2011, 17, 6913.
- (13) Molander, G. A.; Shin, I. Org. Lett. 2011, 13, 3956.
- (14) Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 13848.
- (15) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818.
- (16) Iwama, S.; Tanaka, T.; Gotoh, N. PCT Int. WO 2011145669 A1, 2011.

7. Spectra for Compounds

Acquisition Time (sec) 2.7320	2.7320	Comment	STANDARD 1	STANDARD 1H OBSERVE		Date	Feb 26 2012		
Date Stamp	Feb 26 2012			File Name	C:¥USR¥NMR¥FI	(¥FID		Frequency (MHz)	399.93
Nucleus	1H	Number of Transients	32	Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul
Receiver Gain	20.00	Solvent	DMSO-d6	DMSO-d6 Spectrum Offset (Hz)	set (Hz) 2247.6611	1 Spectrum Type	STANDARD	STANDARD Sweep Width (Hz)	5995.20
Temperature (degree C) AMBIENT TEMPERATURE	AMBIENT TE	EMPERATURE		•					

¹H NMR (400 MHz, DMSO-d₆) δ 7.72 (s, 4H), 2.56 (q, J=5.12 Hz, 2H)

S32

220.8999

Formula C₇H₁₄BBrO₂ FW

-0.5 0 `m-Ò Oct 23 2011 0.5 Ы 32 .0. M02(s) 1.27 □2(s) 12.34 □ Number of Transients . 10. Oct 23 2011 Date Stamp
 Date
 Oct 23 2011
 Date Stamp

 Nucleus
 1H
 Number of

 Solvent
 CHLOROFORM-d

 Temperature (degree C)
 AMBIENT TEMPERATURE
 2.0 M01 (3) 2.5 **2**.00 3.0 3.5 Chemical Shift (ppm) 4.0 s2pul 5995.20 399.92 45 5.0
 Frequency (MHz)

 16384
 Pulse Sequence

 STANDARD
 Sweep Width (Hz)
 ¹H NMR (400 MHz, CHLOROFORM-d) δ 2.57 (s, 2H), 1.27 (s, 12H) STANDARD 1H OBSERVE 5.5 6.0 6.5 VerticalScaleFactor = 1 Points Count Spectrum Type 7.0 Comment 7.5 C:¥USR¥NMR¥FID 16379 2247.6414 8.0 2.7320 08606-33.esp 8.5 Acquisition Time (sec) Original Points Count Spectrum Offset (Hz) File Name 1.0 _____ 4.0 1111 п 0.0 0.8 0.11 0.0 0.5 0.2 1111111 mm Т 0.3 0 0.7 0 Vormalized Intensity S35

Pulse Sequence: s2pul

Mercury-400BB "6Fback" Ambient temperature File: 08606-33 Solvent: CDC13

0

34.710

`ϫ

Ы

768 repetitions OBSERVE C13, 100.5606087 MHZ DECOUPLE H1, 399.9245689 MHZ POWEr 34 dB Relax. delay 1.801 sec Pulse 37.5 degrees Acq. time 1.199 sec Width 25000.0 Hz continuously on

20

40

60

	M04(m) M05(d) M06(m) M05(d) M06(m)	ور 10 10 10 10 10 10 10 10 10 10 10 10 10
--	--	--

Chemical Shift (ppm) 6

19:3
14:
11
64
012
ŝ

Acquisition Time (sec) 2.7320	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Feb 26 2012		
Date Stamp	Feb 26 2012			File Name	C:¥USR¥NMR¥FI	'¥FID		Frequency (MHz)	399.93
Nucleus .	1H	Number of Transients	16	Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul
Receiver Gain	20.00	Solvent	DMSO-d6	DMSO-d6 Spectrum Offset (Hz)	et (Hz) 2247.6611	Spectrum Type	STANDARD	STANDARD Sweep Width (Hz)	5995.20
Temperature (degree C) AMBIENT TEMPERATURE	AMBIENT TE	MPERATURE		•		;		-	

¹H NMR (400 MHz, DMSO-d₆) δ 8.94 (br. s., 1H), 7.66-7.89 (m, 4H), 7.39-7.62 (m, 4H), 4.47 (d, J=5.85 Hz, 2H)

- 0.5

C

0.5

.0.

<u>ر</u>

5.0

2.5

3.0

3.5

4.0

5.0 4.5 4.0 Chemical Shift (ppm)

5.5

6.0

6.5

2.0

7.5

8.5

0.6

ю 2

2⊡

8<u>.</u>⊐ 8.0

Ò

6

2.00

ω
-
ö
e
<u>.</u>
0
—
_
_
4
Ò
\leq
مì
ò
2
~ ~

Formula C₁₃H₁₁NO₃S FW 261.2963

Acauisition Time (sec)	2.7320	Comment	STANDARD 1	STANDARD 1H OBSERVE		Date	Feb 26 2012		
Date Stamp	Feb 26 2012			File Name	C:¥USR¥NMR¥FII	\\ #FID		Frequency (MHz)	399.93
Nucleus	1H	Number of Transients	32	Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul
Receiver Gain	16.00	Solvent	DMSO-d6	DMSO-d6 Spectrum Offset (Hz)	ffset (Hz) 2247.6611	1 Spectrum Type	STANDARD	STANDARD Sweep Width (Hz)	5995.20
Temperature (degree C) AMBIENT TEMPERATUR	AMBIENT TE	EMPERATURE		•		;		•	

¹H NMR (400 MHz, DMSO-d₆) δ 12.95 (br. s., 1H), 8.94 (t, J=5.86 Hz, 1H), 7.75 (dd, J=1.28, 7.50 Hz, 1H), 7.46-7.60 (m, 2H), 7.35-7.42 (m, 2H), 7.04 (dd, J=0.91, 3.48 Hz, 1H), 6.95 (dd, J=3.29, 5.12 Hz, 1H), 4.57 (d, J=5.86 Hz, 2H)

2012/04/11 12:58:54

Acquisition Time (sec) 2.7320	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Mar 20 2012		
Date Stamp	Mar 20 2012			File Name	C:¥USR¥NMR¥FII	'¥FID		Frequency (MHz)	399.93
Nucleus	1H	Number of Transients	32	Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul
Receiver Gain	12.00	Solvent	DMSO-d6	DMSO-d6 Spectrum Offset (Hz)	iet (Hz) 2247.6611	Spectrum Type	STANDARD	STANDARD Sweep Width (Hz)	5995.20
Temperature (degree C) AMBIENT TEMPERATURE	AMBIENT TE	MPERATURE	1					•	

¹H NMR (400 MHz, DMSO-d₆) δ 12.96 (br. s., 1H), 8.80 (t, J=5.67 Hz, 1H), 8.14 (s, 1H), 7.74 (dd, J=8.05, 17.20 Hz, 2H), 7.47-7.60 (m, 2H), 7.42 (d, J=7.32) Hz, 1H), 6.76 (d, J=8.42 Hz, 1H), 4.36 (d, J=5.85 Hz, 2H), 3.82 (s, 3H)

Mercury-400BB "6Fback" Ambient temperature Solvent: DMSO

4 sec 272 repetitions OBSERVE C13, 100.5611429 MHz DECOUPLE H1, 399.9264685 MHz Total time 7 hr, 26 min, Relaw. delay 1.801 sec Line broadening 1.0 Hz Acq. time 1.199 sec Pulse 37.5 degrees WALTZ-16 modulated Width 25000.0 Hz continuously on DATA PROCESSING FT size 65536 Power 34 dB

189.591

666°49T

69°89T

Multille

ALMANASAS ALL

80

100

160

180

a lu al si historia da da catalizar.

6 0 6f ŻΤ

Ŕ

\sim
à
2
Ξ.
2
-
-
-
\geq
Z
2
م)
÷-
0
Š

ť 25 2012 Date L ĉ . ć 157.2117 ΡV Formula C₁₁H₁₁N Ë i ti ci i

Acauisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Feb 25 2012 Date Stamp		Feb 25 2012
File Name	C:¥USR¥NMI	IMR¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	16
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	16.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz) 2244.4961	2244.4961	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C)	AMBIENT TEMPER	PERATURE	
				•					

¹H NMR (400 MHz, CHLOROFORM-d) & 7.82 (d, J=8.05 Hz, 3H), 7.75 (s, 1H), 7.39-7.51 (m, 3H), 4.03 (s, 2H), 1.56 (s, 2H)

2012/04/11 10:50:11

CHLOROFORM-d Feb 25 2012 ¹H NMR (400 MHz, CHLOROFORM-d) & 7.19 (d, J=9.15 Hz, 1H), 6.67-6.76 (m, 2H), 3.79 (s, 2H), 3.78 (s, 3H), 2.33 (s, 3H), 1.51 (s, 2H) 32
 Feb 25 2012
 Date Stamp

 1H
 Number of Transients

 Receiver Gain
 10.00
 Solvent

 Temperature (degree C)
 AMBIENT TEMPERATURE
 Date Nucleus s2pul 5995.20 399.92 16384 Pulse Sequence STANDARD Sweep Width (Hz) Frequency (MHz) STANDARD 1H OBSERVE Points Count Spectrum Type Comment C:¥USR¥NMR¥FID 151.2056 16379 2248.5215 2.7320 ΡV Acquisition Time (sec) Original Points Count Spectrum Offset (Hz) Formula C₉H₁₃NO File Name

Pulse Sequence: s2pul

 $^{\rm NH}_{\rm 2}$

7b

Solvent: CDC13 Ambient temperature Mercury-400BB "6Fback" Relax. delay 1.801 sec Pulse 37.5 degrees Acq. time 1.199 sec Width 25000.0 Hz 224 repetitions OBSERVE C13, 100.5606110 MHz DECOUPLE H1, 399.9245689 MHz DECOUPLE H1, 399.9245689 MHz Power 34 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 65536 Total time 1 hr, 47 min, 35 sec

2012/04/11 10:46:48

Formula C ₈ H ₉ NO ₂ FW 151.1626	W 151.162	56							
Acquisition Time (sec) 2.7320	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Feb 25 2012	Date Stamp	Feb 25 2012
File Name	C:¥USR¥NMR¥FID	3¥FID		Frequency (MHz)	399.92	Nucleus	Η	Number of Transients	16
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Solvent	CHLOROFORM	þ	
Spectrum Offset (Hz) 2247.6414 Spectrum Type	2247.6414	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C) AMBIENT TEMPERAT	AMBIENT TEMF	PERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) & 6.79 (s, 1H), 6.70-6.76 (m, 2H), 5.91 (s, 2H), 3.74 (s, 2H), 1.52 (br. s., 2H)

2012/04/11 10:55:30

Formula C₉H₁₃NO₂ FW 167.2050

]							
Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	1 OBSERVE		Date	Feb 25 2012	Date Stamp	Feb 25 2012
File Name	C:¥USR¥NMR¥FII	R¥FID		Frequency (MHz)	399.92	Nucleus	Η	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Solvent	CHLOROFORM	h-d	
Spectrum Offset (Hz) 2252.5469 Spectrum Type	2252.5469	Spectrum Type	STANDARD Sweep Widtl	Sweep Width (Hz)	5995.20	Temperature (degree C)	AMBIENT TEMPER	PERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) δ 6.47 (d, J=2.56 Hz, 2H), 6.35 (t, J=2.38 Hz, 1H), 3.81 (s, 2H), 3.79 (s, 6H), 1.58 (br. s., 2H)

2012/04/11 10:58:33

132.1625

ΡV

Formula C₈H₈N₂

-0.5 $\rm NH_2$ 0 CHLOROFORM-d 7e 0.5 Feb 25 2012 ¹H NMR (400 MHz, CHLOROFORM-d) δ 7.65 (s, 1H), 7.56 (dd, J=7.68, 18.66 Hz, 2H), 7.40-7.48 (m, 1H), 3.93 (s, 2H), 1.56 (br. s., 2H) 32 0.1 // Z
 Feb 25 2012
 Date Stamp

 1H
 Number of Transients
 M05(br. s.) -1-2-2.12 99
 Nucleus
 1H
 Number of 1

 Receiver Gain
 6.00
 Solvent

 Temperature (degree C)
 AMBIENT TEMPERATURE
 2.0 2.5 3.0 3.5 Date Nucleus M04(s) Chemical Shift (ppm) 2.00 8.93 4.0 s2pul 5995.20 399.92 45 5.0 16384 Pulse Sequence STANDARD Sweep Width (Hz) Frequency (MHz) STANDARD 1H OBSERVE 5.5 6.0 VerticalScaleFactor = 1 6.5 Points Count Spectrum Type 7.0 Comment M03(m) M02(dd) 24.7 7.5 C:¥USR¥NMR¥FID M01(s) φ 28.7 **G**9 0.89 16379 2263.8911 8.0 2.7320 08606-02-09.esp 8.5 Acquisition Time (sec) Original Points Count Spectrum Offset (Hz) File Name .0 110 0.1 0.8 0.0 Т 0.5 .4 0.2 -0.7 0.3 Vormalized Intensity S57

Acquisition Time (sec) 2.7320 Comment STANDARD H OBSERVE Date Mar 20 2012 Date Stamp Mar 20 2012 Date Stamp Mar 20 2012 File Name C:¥USR¥NMR¥FID Frequency (MHz) 399.92 Nucleus 1H Number of Transients 32 Original Points Count 16379 Points Count 16334 Pulse Sequence s2pul Receiver Gain 10.00 Solvent CHLOROFORM-d Spectrum Offset (Hz) 2559.4998 Spectrum Type STANDARD Sweep Width (Hz) 5995.20 Temperature (degree C) AMBIENT TEMPERATURE ¹ H NMR (400 MHz, CHLOROFORM-d) & 8.22 (s, 1H), 8.10 (dd, J=1.28, 8.23 Hz, 1H), 7.68 (d, J=7.68 Hz, 1H), 7.51 (t, J=7.87 Hz, 1H), 4.01 (s, 2H), 1.59 (s, 2H)	O NH2	JT	(a) (a) (a) (a) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		2.24
STANDARD 1H OBSERVE 16384 Frequency (MH2) 16384 Pulse Sequence STANDARD Sweep Width (H2) 8.22 (s, 11H), 8.10 (dd, J=1.2)					
Acquisition Time (sec) 2.7320 Comment File Name C:¥USR¥NMR¥FID Original Points Count 16379 Points Count Spectrum Offset (Hz) 2259.4998 Spectrum Type ¹ H NMR (400 MHz, CHLOROFORM-d) δ { (s, 2H)	VerticalScaleFactor = 1	08606-02-25.esp		$\begin{array}{c} M_{02}^{02} M_{01}^{02} M_{02}^{01} M_{02}^{02} M_{03}^{01} M_{03}^{01}$	0.860.89 0.920.95

ω
ŝ
ë
Ö.
-
_
-
5
4
õ
\geq
2
5
\sim

Formula C₉H₁₁NO₂ FW 165.1891

Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Feb 25 2012 Date Stamp	Date Stamp	Feb 25 2012
File Name	C:¥USR¥NMF	₹¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	10.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	2255.1084	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C)	AMBIENT TEMPERA	IPERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) δ 8.01 (d, J=8.05 Hz, 2H), 7.39 (d, J=8.05 Hz, 2H), 3.94 (s, 2H), 3.91 (s, 3H), 1.54 (s, 2H)

Pulse Sequence: s2pul

Solvent: CDC13 Ambient temperature Mercury-400BB "6Fback"

7h

2012/04/11 11:07:46

Formula C₁₀H₁₀N₂ FW 158.1998

Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	1 OBSERVE		Date	Feb 25 2012 D	Date Stamp	Feb 25 2012
File Name	C:¥USR¥NMR¥FII	R¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Solvent	CHLOROFORM	M-d	
Spectrum Offset (Hz) 2274.1375	2274.1375	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C)	AMBIENT TEM	IPERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) § 8.87 (dd, J=1.65, 4.21 Hz, 1H), 8.02-8.14 (m, 2H), 7.71 (s, 1H), 7.65 (dd, J=2.01, 8.60 Hz, 1H), 7.36 (dd, J=4.21, 8.23 Hz, 1H), 4.04 (s, 2H), 1.69 (br. s., 2H)

Pulse Sequence: s2pul

Ambient temperature Mercury-400BB "6Fback" Solvent: CDC13

896.941

OBSERVE C13, 100.5606225 MHz DECOUPLE H1, 399.9245689 MHz POWET 34 dB Total time 52 min, 44 sec Relax. delay 1.801 sec Line broadening 1.0 Hz Acq. time 1.199 sec Width 25000.0 Hz Pulse 37.5 degrees WALTZ-16 modulated 192 repetitions continuously on DATA PROCESSING FT size 65536

\$LT.97

825.721

198.97 09T.LL

Ŷ

udd

20

40

60

80

100

120

140

160

180

たいままであるとうないとうない

MHz, CHLOROFORM-d) & 8.08 (d, J=2.20 Hz, 1H), 7.57 (dd, J=2.20, 8.42 Hz, 1H), 6.73 caleFactor = 1 7.55 Mog(s) Mo	File Name Original Points Count Snectrum Offset (Hz)	C: VUSR¥NMR¥FID C: VUSR¥NMR¥FID 16379 Points Count 2551 4490 Snertrim Tune	STANDARD 1H OBSERVE Frequency (MHz) 16384 Pulse Sequence STANDARD Summen Withth (H-)	Date 399.92 Nucleus s2pul Receiver Gain 509.50 Temmerature (domes C)	Mar 20 2012 Date Stamp 1H Number of Transients 20.00 Solvent AMRIENT TEMPERATI IDE	mar 20 2012 32 CHLOROFORM-d
VerticalScaleFractor = 1	¹ H NMR (400 N (br. s., 2H)	1Hz, CHLOROFORM-d)	δ 8.08 (d, J=2.20 Hz, 1H), 7.57 ((dd, J=2.20, 8.42 Hz, 1H), 6	73 (d, J=8.78 Hz, 1H), 3.93 (s, 3	iH), 3.81 (s, 2H), 1.50
	VerticalSo	caleFactor = 1				$\langle _$
0.0 0.1 0.2 0.3 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	08606-02-27	dsə.		M04(s) M05(s) —3.93 _15(s)	Ģ	
0.80 0.00	 oi O					
0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0 0 0					
				18.6—		
	4. 0. 0. 					
	0.2	M02(dd)	103 [03] [03] [03] [03] [03] [03] [03] [0		MOG(br. s.)	
0.97 0.95 3.032.00 L L L	0 7.	29`2- 89`2- 69`2-			09.1<	
		0.97		3.03 2.00 1 1	2.46	

2012/04/11 11:13:28

Formula C₉H₁₀N₂S FW 178.2541

Acquisition Time (sec) 2.7320 Comment STANDARD 1H OBSERVE Date Feb 25 2012 Date Stamp File Name C:¥USR¥NMR¥FID Number of Tri 399.92 Nucleus 1H Number of Tri Original Points Count 16379 Points Count 16384 Pulse Sequence s2pul Receiver Gain 12.00 Solvent Spectrum Offset (Hz) 2254.376 Spectrum Type STANDARD Sweep Width (Hz) 5995.20 Temperature (degree C) AMBIENT TEMPERATURE]							
C:#USR¥NMR¥FID Frequency (MHz) 399.92 Nucleus 1H N 16379 Points Count 16384 Pulse Sequence s2pul Receiver Gain 12.00 5 2254.3765 Spectrum Type StanDARD Sweep Width (Hz) 5995.20 Temperature (degree C) AMBIENT TEMP	Acquisition Time (sec)	2.7320	Comment	STANDARD 1	1 OBSERVE		Date	Feb 25 2012		Feb 25 2012
16379 Points Count 16384 Pulse Sequence s2pul R 2254.3765 Spectrum Type StanDARD Sweep Width (Hz) 5995.20 T	File Name	C:¥USR¥NMI	₹¥FID		5	399.92	Nucleus	1H	Number of Transients	32
STANDARD Sweep Width (Hz) 5995.20 T			Points Count	16384	~~	s2pul	Receiver Gain	12.00	Solvent	CHLOROFORM-d
	Spectrum Offset (Hz)	2254.3765	Spectrum Type	STANDARD	idth	5995.20	Temperature (degree C)	AMBIENT TEM	IPERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) δ 7.87 (d, =0.73 Hz, 1H), 7.77 (d, =8.05 Hz, 1H), 7.32 (dd, =1.46, 8.05 Hz, 1H), 4.00 (s, 2H), 2.83 (s, 3H), 1.63 (br. s., 2H)

Pulse Sequence: s2pul

 $\rm NH_2$

 \geq

Дk

S

Ambient temperature Mercury-400BB "6Fback" Solvent: CDC13

Total time 1 hr, 47 min, 35 sec OBSERVE C13, 100.5606110 MHz DECOUPLE E1, 399.9245689 MHz Power 34 db Relax. delay 1.801 sec Line broadening 1.0 Hz Pulse 37.5 degrees Acq. time 1.199 sec WALTZ-16 modulated Width 25000.0 Hz 384 repetitions continuously on DATA PROCESSING FT 8ize 65536

130.642 121.461

124.359

148.97 09T * LL

840.451

153.881

167.500

141.802

80

100

120

140

160

180

the interfactor in the second second

LINANS

2012/04/11 13:15:01

Pulse Sequence: s2pul

Solvent: CDC13 Ambient temperature Mercury-400BB "6Fback" Relax. delay 1.801 sec Pulse 37.5 degrees Acq. time 1.199 sec Width 25000.0 Kz 464 repetitions OBSERVE C13, 100.5606118 MHz OBSERVE C13, 100.5606118 MHz DECOUPLE H1, 399.9245689 MHz Poser 34 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 65336 Total time 7 hr, 26 min, 4 sec

048.9**%**1

20 ppm

40

60

80

160

180

904.14

09T'*LL*

6L7.LL

2011/11/05 12:25:17

Formula C₁₁H₁₀O₃S FW 222.2603

]							
Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVI	H OBSERVE		Date	Oct 23 2011 Date Stamp	Date Stamp	Oct 23 2011
File Name	C:¥USR¥NMF	R¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	14.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz) 2246.3259	2246.3259	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C)	AMBIENT TEMPER	IPERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) & 7.82-7.92 (m, 3H), 7.76 (d, J=2.20 Hz, 1H), 7.49-7.58 (m, 2H), 7.41 (ddd, J=1.10, 2.38, 8.97 Hz, 1H), 3.18 (d, J=1.10 Hz, 3H)

2011/11/05 12:22:40

Formula C₁₇H₁₄O₃S FW 298.3563

Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	1 OBSERVE		Date	Oct 23 2011 Date Stamp		Oct 23 2011
File Name	C:¥USR¥NMR¥FID	R¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	14.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz) 2246.6919	2246.6919	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C)	AMBIENT TEMPERA	APERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) δ 7.77-7.84 (m, 1H), 7.70-7.77 (m, 4H), 7.44-7.51 (m, 3H), 7.29 (d, J=8.05 Hz, 2H), 7.09 (dd, J=2.38, 8.97 Hz, 1H), 2.44 (s, 3H)

6
ŝ
~
÷
Ξ
•
-
-
Z
2
- NÌ
0
2

6 6 38-6.42 (m, 1H), 3.78 (s, 6H), 3.13 (s, 3H) 0.38-6.42 (m, 1H), 3.78 (s, 6H), 3.13 (s, 3H) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Mccount ISSN Instant Autom ISSN Instant Autom InstantAutom InstantAutom Ins	2.7	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	25 2012	imp T	Feb 25 2012	
, 6.38-6.42 (m, IH), 3.78 (s, 6H), 3.13 (s, 3H)	, 6.38-6.42 (m, 1H), 3.78 (s, 6H), 3.13 (s, 3H) Mole	C:#USK*NMK*FIU 16379 Poi 2247.6414 Sp	Y	Points Count Spectrum Type	16384 STANDARD	Frequency (wHz) Pulse Sequence Sweep Width (Hz)	399.92 s2pul 5995.20	Nucleus Receiver Gain Temperature (degree	IN 10.00 AMBIENT TEMI	or transients RE	32 CHLOROFORM-d	
		Iz, CHLO V		ROFORM-d) ð í erticalScaleFacto	6.44 (d, J=2.2 r = 1	•	-6.42 (m, 11	H), 3.78 (s, 6H), 3.	.13 (s, 3H)	-0		0,
-3.18 -3		08606-02-13.esp						M03(s)				/
0ť95								87.6——			-0	
0ť95												
0ť95												
0ť95	70 65 60 55 50 45 20 15 10 05 0 05 0 05 0 05 0 05 0 05 0							M04 <u>(</u>	(s			
0ť95												
04.92	70 65 60 25 20 15 10 05 0 05 20 15 10 05 0 0											
0+'95					M02(m) M01/d)							
0†'95	64 64 66 69 69 69 69 60 89 60 89 80 80 7.0 62 55 5.0 45 60 85 80 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.				£ 2 44.9			L				
07-9					,7-6.44							
2.99	1.610.88 5.99 3.00 1.610.88 5.99 3.00 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0				07.9- 							
	7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0		1		1.61 0.88			2.99				

Formula C₁₅H₁₆O₅S FW 308.3495

Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	1 OBSERVE		Date	Feb 25 2012 Date Stam	a	Feb 25 2012
File Name	C:¥USR¥NMR¥FI	3¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	6.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz) 2247.6414 Spectrum Type	2247.6414	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C)	AMBIENT TEMPERA	APERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) δ 7.74 (d, J=8.42 Hz, 2H), 7.31 (d, J=8.05 Hz, 2H), 6.32 (t, J=2.20 Hz, 1H), 6.14 (d, J=2.20 Hz, 2H), 3.68 (s, 7H), 2.44 (s, 3H)

4
4
Ņ
-
-
-
-
~
4
Ó
\sim
-
0
2

P-WE	o`	-0.5	
Eeb 25 2012 32 CHLOROFORM-d	o, s, o	1.0	
Feb 25 2012 Date Stamp 1H Number of Transients 16.00 Solvent AMBIENT TEMPERATURE		2.0	
		3.0	
Date Nucleus Receiver Gain Temperature (degree C)	(s, 3H) 3.23 .3.23 .3.23	35	
399.92 s2pul 5995.20	(m, 3H), 3.23	4.5	cal Shif
1 OBSERVE Frequency (MHz) Pulse Sequence Sweep Width (Hz)	1H), 7.53-7.61	5.5 5.5	
STANDARD 1H OBSERVE Frequency (16384 Pulse Sequency (STANDARD Sweep Widt	7.62-7.68 (m, r = 1	6.5 6.5	
Comment FEID Points Count Spectrum Type	JROFORM-d) δ 7.62 VerticalScaleFactor = 1	(E) 29.7 (E) 70.7 (E)	
2.7320 Cor C:¥USR¥NMR¥FID 16379 Poi	IHz, CHLOR Ve esp		
Acquisition Time (sec) File Name Original Points Count Spectrum Offset (Hz)	¹ H NMR (400 MHz, CHLOROFORM-d) & 7.62-7.68 (m, 1H), 7.53-7.61 (m, 3H), 3.23 (s, 3H) VerticalScaleFactor = 1 ^{08606-02-15.esp}	Vormelized Internsity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
		S81	

Pulse Sequence: s2pul

Solvent: CDC13 Ambient temperature Mercury-400BB "6Fback" Relax. delay 1.801 sec Pulse 37.5 degrees Acq. time 1.199 sec Width 25000.0 Hz 192 repetitions OBSERVE C13, 100.5606110 MHz OBSERVE C13, 100.5666110 MHz DECOUPLE H1, 399.9245689 MHz Power 34 dB Continuously on Walr72-16 modulated DATA PROCESSING Line broadening 1.0 Hz Fr size 65536 Fr size 65536 Total time 1 hr, 47 min, 35 sec

77**4.3**76

96'8VT

261.85

udd

20

4

60

80

100

120

140

160

180

2012/05/11 14:37:59

Formula C₁₄H₁₁NO₃S FW 273.3070

Acquisition Time (sec) 2.7320	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Feb 25 2012 Date :	Date Stamp	Feb 25 2012
File Name	C:¥USR¥NMR¥FID	3¥FID		Frequency (MHz)	399.92	Nucleus	Η	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	6.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz) 2254.3765	2254.3765	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree (C) AMBIENT TEN	T TEMPERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) δ 7.71 (d, J=8.42 Hz, 2H), 7.53-7.61 (m, 1H), 7.45 (t, J=7.87 Hz, 1H), 7.36 (d, J=8.42 Hz, 2H), 7.28-7.33 (m, 1H), 7.24-7.27 (m, 1H), 2.48 (s, 3H)

2012/04/11 11:33:51

Pulse Sequence: s2pul

Mercury-400BB "6Fback" Ambient temperature Solvent: CDC13

192 repetitions OBSERVE C13, 100.5606133 MHZ DECOUPLE E1, 399.9245689 MHZ Power 34 dB Total time 52 min, 44 sec Relax. delay 1.801 sec Pulse 37.5 degrees Acq. time 1.199 sec Line broadening 1.0 Hz WALTZ-16 modulated Width 25000.0 Hz continuously on DATA PROCESSING **FT size 65536**

746.825 451.151

 208.	97T -

PES'6TT	
L91 . 221	
066.421	 -
128.555	
	 _
70T'9ET	

Edd

20

40

09

80

100

120

140

160

180

And the second of the second se

and the state of the state of the second state of the state of the second state of the

T\$8.97 09T.LL TLP.LL

894.75

14:29:46	
5/11	
2012/0	

Formula C₉H₉NO₃S₂ FW 243.3027

Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Feb 25 2012 Date Stamp	Date Stamp	Feb 25 2012
File Name	C:¥USR¥NMF	R¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	10.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	2255.8403	Spectrum Type	STANDARD	Sweep Width (Hz)	5995.20	Temperature (degree C)	(degree C) AMBIENT TEMPERAT	APERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) & 7.74-7.94 (m, 2H), 7.33 (dd, J=2.20, 8.78 Hz, 1H), 3.19 (s, 3H), 2.85 (s, 3H)

13C OBSERVE

2012/05/11 14:14:31

Formula C₁₅H₁₃NO₃S₂ FW 319.3986

200000000000									
Acquisition Time (sec)	2.7320	Comment	STANDARD 1H OBSERVE	1 OBSERVE		Date	Feb 25 2012 Date Stamp	Date Stamp	Feb 25 2012
File Name	C:¥USR¥NMR¥FID	\¥FID		Frequency (MHz)	399.92	Nucleus	1H	Number of Transients	32
Original Points Count	16379	Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	12.00	Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	2252.9128	Spectrum Type	STANDARD Sweep Width	Sweep Width (Hz)	5995.20	Temperature (degree C) AMBIENT TEMPERA	AMBIENT TEN	IPERATURE	

¹H NMR (400 MHz, CHLOROFORM-d) & 7.66-7.80 (m, 3H), 7.45 (d, J=2.56 Hz, 1H), 7.30 (d, J=8.42 Hz, 2H), 7.11 (dd, J=2.38, 8.60 Hz, 1H), 2.81 (s, 3H), 2.44 (s, 3H)

2012/04/11 13:44:03

Formula C ₁₂ H ₁₀ CINO ₂ S		FW 267.7313	.7313						
Acquisition Time (sec) 2.7320	2.7320	Comment	STANDARD 1H OBSERVE	H OBSERVE		Date	Mar 20 2012		
Date Stamp	Mar 20 2012		_	File Name	C:¥USR¥NMR¥FID	(¥FID		Frequency (MHz)	399.93
Nucleus	ΗI	Number of Transients	32	Original Points Count 16379 Points Count	16379	Points Count	16384	16384 Pulse Sequence	s2pul
Receiver Gain	20.00	Solvent	DMSO-d6	DMSO-d6 Spectrum Offset (Hz) 2247.6611 Spectrum Type	2247.6611	Spectrum Type	STANDARD	STANDARD Sweep Width (Hz)	5995.20
Temperature (degree C) AMBIENT TEMPERATURE	AMBIENT TEI	MPERATURE				;		•	

¹H NMR (400 MHz, DMSO-d₆) δ 8.02 (dd, J=1.46, 7.68 Hz, 1H), 7.54-7.64 (m, 2H), 7.40-7.47 (m, 2H), 7.35-7.40 (m, 2H), 7.28-7.33 (m, 3H)

2012/04/11 13:53:51

