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Supporting Methods 
All chemical were used as received, unless otherwise stated. Nanopure water was used for the 
preparation of all buffers.  

Liposome preparation and surface immobilization 

The liposomes were prepared as described earlier 1. A typical preparation contained a ratio of 
92.8/5/0.1 for 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) (Avanti), 1,2-Dioleoyl-sn-
Glycero-3-[Phospho-rac-(1-glycerol)] Sodium Salt (DOPG) (Avanti) and 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)-2000] (ammonium salt) 
(DSPE-PEG2000-biotin) (Avanti) respectively, 0.1 % of 1,1’-dioctadecyl-3,3,3’,3’-tetramethyl-
indodicarbocyanine perchlorate (DiD) (Invitrogen) and the desired amount of 1,2-dioleoyl - sn–
 glycerol – 3 – phosphoethanolamine – N - [ methoxy ( polyethylene glycol ) -2000] (ammonium 
salt) (DOPE-PEG2000) (Avanti). The liposomes were immobilized on glass surface passivated 
with BSA (Sigma) and Streptavidin (Sigma) according to a previously published protocol 1-3.  

Enzyme expression and purification.  

Variants of TLL and CALB were generated and purified as described previously 4,5. The TLL 
variant employed has the following point mutations, K24R K46R G61C K74R K98R K127R 
D137K K223R K237R and contains one free Cys and one free Lys (see Figure S1A). The CALB 
variant employed has the following point mutation S28C (Figure S1B). The presence of a single 
anchoring point enables the directional immobilization on liposomes. The purity of both TLL and 
CALB is shown in the SDS PAGE gels in Figure S2.  

 

 
Figure S1. Position of solvent accessible cyst mutations for A. TLL and B. CALB. The point mutations 
and the active site serine are shown in space filling model in both cases. The figures are made by 
ccp4mg software using the pdb files of 1DT3 and 1TCB for TLL and CALB respectively.  
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Figure S2. SDS electrophoresis chromatographs labeled with Comassie blue showing the purity of A. 
TLL and B. CALB constructs employed in this study.  

Lipase –Streptavidin conjugation  

Coupling of TLL and CALB with biotin was performed according to manufactures protocol after 
reduction of the solvent accessible cysteine by TCEP. In a typical experiment the reduction 
solution was prepared by mixing 10 µl of 872 mM TCEP with 14 µl of 2 mM NaOH. 0.5 µl of 
this reducing solution was added to 500 µl of 45 µM enzyme and allowed to react for ~ 10 min. 
Prior to thiol coupling the oxygen in the reaction mixture was removed by applying vacuum for 
10 min and followed by purging argon. To this end 43 µl of 19 mM  N-(3-maleimidylpropionyl) 
biocytin (Invitrogen) was added to the mixture and allowed to react for ~2h in room temperature. 
The biotinylated enzyme was purified from unreacted reagents using FPLC equipped with 
Superdex G200 or Superdex G75 size exclusion column. The purified enzyme was allowed to 
react with a 2.5 fold excess of 488 labeled Streptavidin (Invitrogen) to ensure that only one lipase 
would be coupled to the labeled Streptavidin. The resulting conjugate was isolated from 
unreacted SAV488 by fractionation using FPLC, see Figure S3. Careful selection of fractions 
permitted us also to discard the small impurities present in the CALB preparation (Figure S2) and 
isolation of the pure CALB-SAV488 construct as shown in Figure S3B. The final buffer was 
20 mM PBS buffer pH = 7.2.  

 

 
 

Figure S3. Purification of TLL-SAV488 and CALB-SAV488 conjugate using FPLC equipped with size 
exclusion column. A. Purification and isolation of the TLL-SAV488 was obtained by using a Superdex 
G200 size exclusion column. Careful selection of the fraction indicated by the arrow permitted isolation 
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of TLL-SAV488 from unreacted SAV. B. Purification and isolation of CALB-SAV488 was obtained by 
using a Superdex G75 size exclusion column and collection of the fraction indicated by the arrow. This 
methodology permitted isolation of the pure CALB-SAV488 construct from unreacted SAV and the 
small impurities present in the CALB preparation (also shown in the gel of Figure S2).  

Single enzyme immobilization on liposomes  

To limit non specific binding of enzymes on glass surface we incubated enzymes with liposomes 
in solution prior to immobilization on the surface. In a typical experiment we premixed 10 µl of 
30 nM labeled TLL and 60 µl of 2 g/l of 50 nm extruded liposomes and incubated overnight. 
20 µl of the mixture was added on the microscope surface and was incubated for ~ 10 min before 
washing. Using these concentration resulted in only ~ 5 % of liposomes having bound enzymes 
thus making it statistically unlikely for a liposome to contain a second enzyme (P < 0.12 %).  

To further prove that the majority of vesicles contained one enzyme we plotted the intensity 
distribution of the alexa fluor 488 labeled conjugates that are bound on vesicles. Please note that 
only the streptavidin molecules are coupled with Alexa fluor 488. As shown in Figure S4 a single 
population of species is observed justifying the presence of single enzymes on vesicles. The fact 
that each streptavidin has on average 4 fluorescent labels would be default introduce a large 
spread in the intensity histogram. Therefore in Figure S4 we compared the experimental intensity 
distribution of the data (green bars) to the calculated poisson distribution of intensities for 1, 2 
and 3 enzymes (black, red and blue line respectively) having on the average 4 alexa labels. As 
can be clearly seen in Figure S4 the majority of loaded vesicles contain one enzyme in agreement 
with the statistical analysis.  

 

 
Figure S4. Intensity Distribution of alexa-fluor488 labeled enzymes bound on vesicles. Green bars 
correspond to the experimental distribution of intensities collected from 1000 vesicles, 50 of which had 
enzymes bound, Data are normalized to 1. A single population of species is observed. The black red 
and blue lines correspond to the normalized simulated poissonian distributions of intensities for 1, 2, 
and 3 enzyme respectively having 4 alexa fluor 488 labels per enzyme. The data clearly illustrate that 
the majority of bound vesicles contain one enzyme 

 

Fluorescent Measurements  

Confocal Laser microscopy  

All samples were examined with a Leica TCS SP5 inverted confocal microscope using an oil 
immersion objective HCX PL APO CS × 100 (NA 1.46) and equipped with two Avalanche 
Photodiode Detectors (APDs). Substrate detection was obtained by a 20 MW 488 laser line and 
vesicle detection by a 633 laser line. Signal splitting was accomplished using a 560 nm beam 
splitter, detection of protein and enzymatic turnovers was measured through an ET 525/25 filter 
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and liposome detection through a HQ 670/55 filter. The temperature was monitored in the room 
and the microscope and remained constant at 22 ± 1°C. 

 

Threshold setting for enzymatic activity traces.  

The histogram in Figure 1d is composed of a background distribution and a signal distribution. 
To distinguish background from enzymatic activity traces a threshold level has to be set. Above 
the threshold value a fluorescent spike is considered as an enzymatic turnover and below that as 
background. To correctly identify the background distribution we obtained background trace by 
measuring fluorescent intensity on an empty vesicle located next to the active enzyme and fitted it 
with a Poisson. To insure that the background measured was identical with the background in the 
activity trace and not biased by the autohydrolysis of CFDA we acquired data directly after the 
activity trace acquisition. Next we fitted the histogram of the intensity time trace (Figure 1d and 
zoomed in region in Figure S5) with two Poisson distributions using the fits of the independent 
background trace as guesses for the background distribution. The intersection of the two yielded 
Poisson distributions yields the threshold above which a fluorescent burst is considered as an 
enzymatic turnover. Under our experimental conditions the false positives from bg contribution 
are 10-20% depending on the PEG concentration. As discussed in section “Intensity fluctuations” 
in page 17 these false positive events do not in any measurable way bias our findings”  

CFDA can be autohydrolyzed to FAM under our experimental conditions resulting in a 
continuous slow background signal increase. To avoid significant background built up that could 
limit the accuracy of our experiments each experiment is performed for a maximum of 30 min. 
After that a new sample with freshly prepared CFDA was used.  

 
Figure S5. A. 10 sec zoomed in region of the time trace shown in Figure 1D. Red line corresponds to 
the intensity trace of an active enzyme located on vesicle. Black line corresponds to the background 
signal as collected on a vesicle without enzyme located close to the enzyme containing one. Dark blue 
line corresponds to the threshold value used B. intensity histogram of the enzymatic trajectory of A. 
Histogram was fitted with a double poisson distribution (red line), one corresponding to background 
(green line) and one to the enzymatic activity trace (blue line). The intersection of the two poissonian 
distributions was used to set the threshold (dashed dark blue line). 

 
Fluorescent spectrometer  

Fluorescent measurements in bulk were carried out on a Horiba Jobin Yvon FluoroMax-4 
spectrofluorometer at room temperature with quartz cuvettes of 1 or 0.3 cm path length and using 
excitation emission wavelengths of 488 and 525 respectively. 

Control Experiments  

Single molecule kinetics is measured at saturating conditions.  
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The two activity state model developed in this manuscript describes enzymatic behavior at 
saturating conditions where substrate diffusion in the active site is not rate limiting. To insure that 
all measurements were performed at saturating CFDA concentrations we quantified the 
Michaelis-Menten kinetics for both TLL and CALB on CFDA using ensemble measurements (see 
Figure S6). For TLL we found KM = 32.2 ± 4.0 µM and a Vmax = 7.8 ± 0.9 nM min-1. Data are 
obtained for 100 nM of TLL variant. For CALB we found KM = 11.2 ± 1.1 µM and a 
Vmax = 6.32 ± 0.2 nM min-1. The corresponding specific activity of 0.8 ± 0.05 nmole min-1 mg-1 is 
in good agreement with earlier studies6. Data are obtained for 200nM of CALB variant. To insure 
that single molecule kinetics were monitored at saturating substrate concentrations all 
experiments were performed at 100 µM CFDA. 

 
 

Figure S6. Quantification of Michaelis-Menten constants of TLL and CALB for CFDA hydrolysis A) 
For TLL a KM = 11.2 ± 1.1 µM and a Vmax = 6.32 ± 0.2 nM min-1 was measured. The corresponding 
specific activity of 0.8 ± 0.05 nmole min-1 mg-1 is in good agreement with earlier studies 6. Data are 
obtained for 200 nM of CALB variant. B) For CALB a KM = 32.2 ± 4.0µM and a Vmax = 7.8 ± 0.9 nM 
min-1 was measured. Data are obtained for 100 nM of TLL variant. Single molecule experiments were 
performed at 100 µM CFDA to insure  saturating conditions. Experiments were performed on a Horiba 
Jobin Yvon FluoroMax-4 spectrofluorometer using a 50 µl cuvette exciting at 488 nm (excitation slit 3) 
and detecting at 525 nm (emission slit 15). The error bars correspond to standard deviation of two 
independent experiments. C) Structure of prefluorescent substrate CFDA 

Enzymatic product carboxyfluorescein (FAM) is not absorbed on liposomes 

To insure that product (FAM) is not absorbed on liposomes we performed two types of control 
experiments. During experimental acquisition we focused the laser beam on an empty liposome 
and recorded the time trace. As showed in Figure 1d we cannot detect any product being absorbed 
on liposomes at 100 µM CFDA concentrations. To insure that the absence of measurable signal is 
not due to diminished product concentration under the experimental conditions we chemically 
hydrolyzed substrate 5-(and-6)-carboxy-fluorescein diacetate (CFDA) to FAM and quantified its 
diffusion time by FCS. Using 1 nM FAM we compared the diffusion time of FAM in solution 
and in the presence of liposome. As shown in Figure S7 in both cases we obtained identical 
diffusion coefficient D = 423 ± 24 µm s-1 and a triplet state time 6.8×10-7 ± 2.12×10-7 in good 
agreement with earlier studies 7.  
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Figure S7. Fluorescent Correlation Spectroscopy (FCS) measurements showing that the single 
molecule measurements are not biased by product release from enzyme or product accumulation on 
vesicles. A. FCS trace of FAM in solution, away from any liposome or enzyme, at 1 nM concentration. 
A single diffusion particle was found with a diffusion time of 423 ± 24 µm2 s-1 and a triplet state time 
6.8×10-7 ± 2.12×10-7 in good agreement with earlier reported values 7. B. FCS trace obtained on a 
surface immobilized vesicle without lipase at 1 nM of FAM concentration. In full agreement with the 
data in solution a single diffusion particle was found with a diffusion coefficient of 423 ± 24 µm2 s-1 and 
a triplet state time of 6.8×10-7 ± 2.12×10-7 s-1. Thus no measureable product accumulation on vesicles is 
observed. C. FCS of product formation from an active TLL immobilized on a vesicle. The product 
FAM was found to spend 1.8 ± 0.3 ms in the enzyme before it diffuses away. D. FCS of product 
formation from a vesicle immobilized active CALB. The product FAM was found to spend 2.2 ± 0.5 ms 
in the enzyme before it diffuses away. Data in A, B are fitted for single diffusing particle. Data in C,D 
are fitted for particles with two different diffusing coefficients using the triplet state time and diffusion 
coefficients of the fast particle extracted from the fits in A and B 8.   

 

Product release is not rate limiting and is not the cause of dynamic disorder.  

To insure that product FAM release from enzyme is not the rate-limiting step in the enzymatic 
cycle we measured its diffusion from the enzyme active site by FCS spectroscopy. In a typical 
experiments the laser beam was parked on a vesicle immobilized enzyme at saturating CFDA 
concentrations. We fitted the FCS curve for two diffusing particles having a triplet state. The 
diffusion coefficient and triplet state time used was obtained from FCS measurements in solution 
(Figure S7A). We found that product molecules after being formed they spend on average 
1.8 ± 0.3 ms and 2.2 ± 0.5 ms for TLL and CALB respectively in the confocal volume before 
they diffuses away (See Figure S7C and Figure S7D respectively). Since one turnover cycle 
occurs every 40 ms and 30 ms on average for TLL and CALB respectively we can safely 
conclude that product release is not rate limiting.  

To examine if product release contributes to dynamic disorder we plotted the distribution of on 
times. As shown in Figure S8 we obtained monoexponential decay for both TLL and CALB 
illustrating the product after being formed it diffuses away from the active site following a single 
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rate. Therefore the dynamic disorder in the reaction rate is not an artifact originating from the 
time FAM spends in the enzyme.   

 

 
 

Figure S8. Distribution of the time the product remains in the enzymes active site before it is released 
in solution for A.TLL and B.CALB. In both cases a monoexponential distribution is observed. There is 
not dynamic disorder in product release form enzyme’s active site.  

 

Product FAM is not blinking in the time scale of single molecule kinetics  

We next examined if FAM blinking is biasing the measured kinetics measurements. To do this we 
immobilized single Biotin-Fluorescein (Piercenet) molecules on a Streptavidin surface and 
monitored their blinking behavior in experimental conditions otherwise identical to the ones used 
for measuring enzymatic activity. As shown in Figure S9 fluorescein’s rate of intersystem 
crossing to the triplet state rate is 50 ± 7s-1 in good agreement with earlier studies 9. Since the 
product is released from the enzyme 10 times faster (~2 ms) FAM blinking is not in any way 
biasing the measured kinetics.  

 
Figure S9. Blinking behavior of surface immobilized Fluorescein-biotin. Fluorescein blinking rate is 
50 ± 7s-1. Since product diffusion away from enzymes active site occurs in < 2 ms fluorescein blinking 
due to intersystem crossing is not biasing in any way the enzyme kinetics data.  

 

Effect of liposomes on enzymatic activity of TLL and CALB.  

Liposomes constitute a biocompatible 3D scaffold that spatially confines enzymes and in addition 
and significantly restricts non-specific interactions with the underlying solid surface and thus 
minimize surface introduced heterogeneities in the enzyme activity. Nevertheless the enzyme 
could statistically collide with the surface while sampling the surface of the liposome. To 
minimize this probability surface was passivated with streptavidin and BSA (pI = 6.5 and pI = 4.7 
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respectively)10,11 that are both negatively charged at pH = 7.4. Since TLL is also negatively 
charged at this pH (pI = 5.1) it is repelled from the surface thus interactions with the surface is 
diminished.  
To test the regulatory effect of liposomes on TLL activity we performed experiments in bulk. In a 
typical experiment we titrated 300 nM TLL with unlabeled liposomes extruded at 100 nm and 
measured its activity on 100 µM CFDA as a function of lipid concentration. We found that indeed 
activity of TLL is regulated in the presence of liposomes under our experimental conditions (see 
Figure S10A). Enzymes were found to have some residual activity in solution, which increase ~ 4 
fold when titrating with liposomes in excellent agreement with the single molecule data of Figure 
3. Fitting of the binding curve with Langmuir isotherms allowed us to calculate the enzyme-
liposome dissociation constant. We found kd = 0.15 ± 0.01mM in agreement with earlier reported 
values measured on different lipid systems 12.  

To insure that CALB activity is not affected by the presence of liposomes we measured the 
enzymatic activity in bulk at increasing liposome concentration. Titration of 100 nM of CALB 
with liposomes did not confer any measurable difference in the enzymatic activity towards CFDA 
as shown in as shown in Figure S10B. Liposomes therefore can be employed to confine single 
enzyme and monitor their catalytic behavior.  

 

 
 

Figure S10. Effect of liposomes on the activity of the enzyme mutants. A. TLL as expected shows a 
strong increase in activity upon liposome addition. Increasing the liposome concentration resulted in 4 
fold increase of TLL activity in good agreement with single molecule experiments in Figure 3. Fitting 
of the binding curve with Langmuir isotherm permitted us to calculate the dissociation constant kd. The 
obtained value kd = 0.15 ± 0.01 mM is in good agreement with earlier reported values 13. B. CALB 
shows no measurable activity variation in the presence of liposomes. The experiment was performed for 
100 nM CALB. Error bars represent the standard deviation of 2 independent experiments.  

 

Effect of PEG and PEGylated liposome on TLL activity 

To insure that the results of Figure 3 are not an artifact of interactions of TLL with PEG we 
measured the enzymatic activity in bulk at increasing PEG concentrations. In a typical 
experiment we measured the activity of 400 nM TLL prior and after the addition of 10 mg / ml 
PEG-2000. As shown in Figure S11 no measurable variation of TLL activity is observed when 
compared to the enzyme in solution.  

Incubation with 0.1 mg / ml liposomes containing the highest PEG concentration employed in the 
experiments (2.1 % molar) does not influence enzymatic activity on CFDA in any measurable 
way. The reduced activity therefore in the presence of PEGylated liposomes in Figure 3 is not an 
artifact of PEG interactions and originates from restricting enzyme’s access to the bilayer.  
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To insure that measurements of identical activity in Figure S11 are not due to non enzymatic 
hydrolysis of CFDA we measured its autohydrolysis rate in otherwise identical conditions but in 
the absence of enzyme. We found autohydrolysis of CFDA to be negligible under these 
experimental conditions. The activity therefore of the lipase in solution is identical to the activity 
in the presence of PEGylated liposomes and the reduced activity in the presence of PEG on 
Figure 3 is due to sterically hindering the enzyme from accessing the bilayer.  

 

 
Figure S11. Influence of PEG and PEG-liposomes on TLL activity. Addition of 10 mg / ml PEG-2000 
does not influence TLL activity in any measurable manner illustrating that the decreased activity in 
figure 3 is due to restricted TLL accessibility to the bilayer. The fact that the addition of 0.1 mg / ml 
liposomes containing 2.1 % PEG does not influence TLL activity illustrates that under these PEG 
concentrations TLL cannot access the bilayer. The rate of CFDA authydrolysis is shown for 
comparison. All measurements were performed on a sample containing 0.4 µM TLL.  

 

 

 
 
 



Supporting text

Description of model with two activity states

Consider the model shown in the figure. A system can switch between two
states, A1 and A2. In each of these states a reaction can take place, switching
the system to one of the two states B1 and B2. We shall further assume, that the
system will very quickly (i.e.. faster than any other time scale in the problem)
return to either state A1 or A2, depending on which B state it reacted to.

A1 A2

B1 B2

kact,1 kact,2

k12

k21
Γ Γ

Figure S12. Two states with different activities.

In order to analyze the model, we shall introduce a number of useful propo-
sitions:

Ai t : The system is in state Ai at time t

Bi t : The system is in state Bi at time t

Ri t : A reaction in state Ai takes place at time t

From this we can generate compound propositions like (using the notation:
A + B is “A or B” and A B is “A and B”)

Rt =R1t +R2t : A reaction takes place at time t

At = A1t +A2t : The system is in either state A1 or state A2 at time t

Ri t∆t = Bi t+∆t Ai t : A reaction takes place in state Ai in the time in-
terval between t and t +∆t

Rt∆t =R1t∆t +R2t∆t : A reaction takes place in the time interval be-
tween t and t +∆t
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A1t+∆t A2t : The system moves from state A2 to state A1 in the time
interval between t and t +∆t

The reaction rates shown in the figure are defined by the following probabilities:

P(A2t+∆t |A1t I ) = k12∆t

P(A1t+∆t |A2t I ) = k21∆t

P(B1t+∆t |A1t I ) = ka c t ,1∆t

P(B2t+∆t |A2t I ) = ka c t ,2∆t .

Here ∆t is an infinitesimal time interval. I denotes background information,
and P(A |B ) is the conditional probability of A given B .

We will be interested in the waiting time between two consecutive reactions.
The probability density, pw (t ), for this time is given by

pw (t )∆t = P(Rt∆t |R0∆t I ).

It is implicitly understood in this probability, that no reaction is taking place in
the time interval between 0 and t . By using the above relations and the basic
rules of probability theory we can rewrite this quantity:

P(Rt∆t |R0∆t I ) =
∑

i

P(Bi t+∆t Ai t |R0∆t I )

=
∑

i

P(Bi t+∆t |Ai t R0∆t I )P(Ai t |R0∆t I )

= ∆t
∑

i

ka c t ,i P(Ai t |R0∆t I ) (1)

Similarly, the last factor can be rewritten by two applications of Bayes’ rule

P(Ai t |R0∆t I ) =
P(R0∆t |Ai t I )P(Ai t |I )

P(R0∆t |I )
=
∑

j

P(Rj 0∆t |Ai t I )P(Ai t |I )
P(R0∆t |I

=
∑

j

ka c t ,j P(A j 0|Ai t I )P(Ai t |I )∑
l ka c t ,l P(Al 0|I )

=
∑

j

P(Ai t |A j 0I )w j , (2)
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where the weight factor, w j is given by

w j =
ka c t ,j P(A j 0|I )∑
l ka c t ,l P(Al 0|I )

. (3)

The probabilities pi j = P(Ai t |A j 0I ) satisfy the equations

d p1j

d t
= −(ka c t ,1+k12)p1+k21p2

d p2j

d t
= k12p1− (ka c t ,2+k21)p2. (4)

Note, that the return processes with rates Γ are not contributing the equations.
This is to make sure that no reactions takes place in the interval between 0 and
t . Setting Γ equal to zero will have the consequence, that ’histories’ where a so-
journ of the system to one of the B-states will not contribute to the probabilities
in question.

The situation is different for the probabilities P(Ai 0|I ) entering the weight
factors. They can be evaluated by solving the equations satisfied by P(Ai t |I ),
namely

d P(A1t |I )
d t

= −k12P(A1t |I )+k21P(A2t |I )
d P(A2t |I )

d t
= −k21P(A2t |I )+k12P(A1t |I ). (5)

Here even the reactions has been ignored altogether. This is because the return-
rates, Γ, are assumed to be so large, that immediately after a reaction (with rate
ka c t ,j ) taking place in state A j , the system will return to A j , and we may as well
ignore the reaction, when it comes to finding the probability of finding the sys-
tem in state A j . The background information I , does not include any informa-
tion of what has happened in the system prior to time zero, hence P(A j 0|I ) is
independent of this particular moment in time (t = 0). Therefore we conclude,
that P(A j 0|I ) is obtained by setting the left hand sides of equal to zero and arrive
at

P(A10|I ) =
k21

k12+k21
, P(A20|I ) =

k12

k12+k21
. (6)

With this we can find the weights

w1 =
ka c t ,1k21

ka c t ,1k21+ka c t ,2k12
, w2 =

ka c t ,2k12

ka c t ,1k21+ka c t ,2k12
. (7)
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Returning to the probabilities pi j (t ). They satisfy the equations (4), and the
initial conditions pi j (0) =δi j . If we organize pi j (t ) in a 2×2 matrix, the solution
which is found by standard methods can be written

pi j (t ) = p+e−λ+t +p−e−λ−t , (8)

where

p+ =




1
2

&
1+ δ

γ

'
− η

2ργ

−ηρ
2γ

1
2

&
1− δ

γ

'

 , p− =




1
2

&
1− δ

γ

'
η

2ργ
ηρ
2γ

1
2

&
1+ δ

γ

'

 . (9)

Here we have introduced the following notation

λ± = α±γ, γ=
+
δ2+η2,

α =
ka c t ,1+k12+ka c t ,2+k21

2
, δ=

ka c t ,1+k12−ka c t ,2−k21

2
, (10)

ρ =

,
k12

k21
, η=
+

k12k21.

We now have all ingredients, and can give the final expression for the waiting
time distribution

pw (t ) = (ka c t ,1, ka c t ,2) ·p+ ·
-

w1

w2

.
e−λ+t +(ka c t ,1, ka c t ,2) ·p− ·

-
w1

w2

.
e−λ−t . (11)

It is easy to verify, that the distribution is in fact normalized

∫ ∞

0

pw (t )d t = 1, (12)

and that it has the mean value

〈t 〉= k12+k21

ka c t ,1k21+ka c t ,2k12
. (13)

This results in an average reaction rate

K ≡ 1
〈t 〉 =

k21

k12+k21
ka c t ,1+

k12

k12+k21
ka c t ,2, (14)
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as a weighted average of the rates in the individual states, with the probabilities
of being in these states as weights.

When comparing to experimental data, it is useful to write the waiting time
distribution in terms of three parameters, λ± and ν :

pw (t ) =
1+ν

2
λ+e−λ+t +

1−ν
2
λ−e−λ−t . (15)

Since the theoretical model has four parameters, a comparison to an experi-
mental waiting time distribution cannot resolve all four parameters.

As an example, let us take the data from TLL, discussed in the main paper. It
consist of a series of 7194 consecutive reaction times. In the following figure is
shown a (normalized) histogram of the data, including the best fit to theoretical
waiting time distribution.

20 40 60 80 100
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0.010

0.020

0.050

0.100

p(t)

ms

Figure S13. Log-lin-plot of waiting time distribution

The best parameter values are λ+ = 0.3337 ms−1, λ− = 0.0280 ms−1 and ν =
−0.448. The theoretical relation between ν and K is

1
K
=

1+ν
2λ+

+
1−ν
2λ−

. (16)

With the fitting parameters we get K = 0.0375 ms−1, consistent with a straight-
forward calculation of the average value of the experimental waiting times gives
K = 〈t 〉−1 ms−1 = 0.03765 ms−1.

The individual waiting times measured for TLL is accurately described by a
double exponential distribution.
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A. Waiting time autocorrelations

The model have four parameters, while only three are extracted from the wait-
ing time distribution. The data, however, contain important information in the
correlations of subsequent waiting times. In this section we shall discuss such
correlations in the model, and extract the missing information to determine all
four parameters of the model.

Consecutive waiting times are not necessarily independent. The joint prob-
ability density of having n consecutive waiting times (τ1, . . . ,τn ) is given by

p (τ1, . . . ,τn )∆t1 · · ·∆tn = P(Rtn∆tn · · ·Rt1∆t1 |R0∆t I ), (17)

where τi = ti − ti−1. Using the rules of probability theory we can rewrite this
p (τ1, . . . ,τn ) as follows:

p (τ1, . . . ,τn ) =
∑

i 0,...,i n

ki n pi n i n−1(τn ) · · ·ki 1 pi 1i 0(τ1)wi 0 . (18)

The correlation function we are interested in is

Cn =
〈τnτ1〉− 〈τ1〉2
〈τ2

1〉− 〈τ1〉2
. (19)

This takes values between −1 and 1. If the waiting times τn and τ1 are totally
correlated, e.g. if they are proportional, then Cn = ±1. If the two times are
totally uncorrelated, then Cn is 0. The important ingredient in Cn is

〈τnτ1〉=
∫ ∞

0

dτ1 · · ·
∫ ∞

0

dτn p (τ1, . . . ,τn )τnτ1 (20)

can be rewritten using (8) and the definitions

k=
-

ka c t ,1 0
0 ka c t ,2

.
, pI = p+/λ+ +p−/λ−, pM = p+/λ2

+ +p−/λ2
− (21)

as

〈τnτ1〉= (ka c t ,1, ka c t ,2) ·pM ·k ·pI · · ·k ·pI︸ ︷︷ ︸ ·k ·pM ·
-

w1

w2

.
. (22)

In this formula there are n − 1 factors k ·pI . The eigenvalues of k ·pI are 1 and
(1+k12/ka c t ,1+k21/ka c t ,2)−1. The contribution to 〈τnτ1〉 from the eigenvalue 1
will be subtracted in (19), and the correlation function will decay as

Cn =
C2&

1+ k12

ka c t ,1
+ k21

ka c t ,2

'n−2 . (23)
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The value of C2 is a rather complicated function of the model parameters, but
can be easily calculated numerically from the general formulas (19) and (22). If
one of the states is totally inactive (e.g. ka c t ,2 = 0), then Cn will be zero, i.e. there
are no correlations between consecutive waiting times. This makes sense, be-
cause the system in this case always will be in state A1 immediately after a re-
action has taken place, no matter what has happened earlier.

The denominator of (19) is the variance of the waiting time distribution. It
can be calculated from

〈τ2
1〉= 2(ka c t ,1,ka c t ,2) ·

4
p+/λ3

+ +p−/λ3
−
5
·
-

w1

w2

.
. (24)

We shall use these formulas to analyze the TLL data. As mentioned, the
waiting time distribution itself can determine three out of the model’s four pa-
rameters. We shall use the parameter η =

+
k12k21 as the fourth parameter,

since it measures the strength of the coupling between the two states A1 and A2.
We expect a large correlation if η is small, since if there are only rare switches
between the two states, then a number of consecutive reactions will take place
in the same state, hence these reactions will be correlated. In the following fig-
ure we have plotted the experimental Cn in a log-lin plot. If the model is correct,
this should be a straight line. In red, we show the best fit, which will supply us
with a value for the missing parameter, η.
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Figure S14. Log-lin plot of the waiting time correlation function Cn .
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The best value of η is 0.014 ms−1.
With this value of η, and the three parameters of the waiting time distribu-

tion, we can finally obtain the best values of the model parameters. They are
(all in ms−1):

ka c t ,1 = 0.2700 k12 = 0.0631
ka c t ,2 = 0.0254 k21 = 0.0033

(25)

B. Intensity fluctuations

Intensity fluctuates. The detected intensity consist of two components, the
background intensity, Ib (t ) and the intensity of photons originating from the
system, Is (t ). These two signals are presumably uncorrelated, so the correla-
tion function of the total intensity, I (t ) = Is (t )+ Ib (t ) can be written

〈I (t +τ)I (t )〉= 〈Is (t +τ)Is (t )〉+ 〈Ib (t +τ)Ib (t )〉+2〈Is (t )〉〈Ib (t )〉. (26)

If we subtract the square of the average intensity, 〈I (t )〉2 = 〈Is (t )〉2 + 〈Ib (t )〉2 +
2〈Is (t )〉〈Ib (t )〉we get

CI (τ) =Cs (τ)+Cb (τ), (27)

where Ci (τ) = 〈Ii (t +τ)Ii (t )〉−〈Ii (t )〉2 = 〈∆Ii (t +τ)∆Ii (t )〉, with∆Ii (t ) = Ii (t )−
〈Ii (t )〉 being the deviation of the signal from it’s average.

So, the intensity correlation function is a simple sum of two contributions,
one from the system and one from the background. To the extent that they de-
cay with very different decay times we can easily separate the two signals. This
is in contrast to the waiting times, where the background signal can interfere
with the waiting times for the system. E.g. a long waiting time in the system
can be cut into two shorter waiting times by an accidental burst of photons in
the background. The behavior of the intensity correlations can thus be an inde-
pendent check of the applied thresholding, as well as of the conclusions drawn
from the study of waiting times.

We can in fact calculate the intensity correlations for the two state model
considered here. A short (duration around 1 ms) burst of photons is associated
with each reaction, hence the system intensity can be written

Is (t ) =N0

∑

i

δ(t − ti ). (28)

Here N0 is the number of photons in each burst. For simplicity we shall assume
that this is the same for each reaction. It is straightforward to generalize the
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following discussion to the case where N0 fluctuates around a mean value. The
average value, 〈Is (t )〉 is equal to N0K , where K is given by (14). The correlation
function evaluates as follows:

〈Is (t +τ)Is (t )〉 = N 2
0

∑

i j

〈δ(t − ti )δ(t − t j )〉

= N 2
0 〈
∑

j

δ(t − t j )
∑

i

δ(t − ti + t j )〉

= N 2
0 K 〈
∑

i

δ(t − ti + t j )〉 (29)

= N 2
0 K
∑

n

∫
dτ1 · · ·
∫

dτnδ(τ−τ1 · · · −τn )p (τ1, . . . ,τn ).

Here τ1, . . . ,τn are n subsequent waiting times (in between two bursts at ti and
t j ). This expression is best worked out using a Laplace transform, and the ex-
plicit form of p (τ1, . . . ,τn ) from (18). After a lengthy but straightforward calcu-
lation, one arrives at

〈Is (t +τ)Is (t )〉=N 2
0 K 2

6
1+

k12k21(ka c t ,1−ka c t ,2)2

(ka c t ,1k21+ka c t ,2k12)2
e−(k12+k21)τ
7

. (30)

From this we get the final result:

Cs (τ) = 〈Is (t )〉2
k12k21(ka c t ,1−ka c t ,2)2

(ka c t ,1k21+ka c t ,2k12)2
e−(k12+k21)τ (31)

The intensity correlation, Cs (τ), is thus a single exponential decay with decay
constant k12+k21.

In the following figure we plot the experimental CI (τ) in a log-lin plot.
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Figure S15. Log-lin plot of the intensity correlation function CI (τ).

We see a very high peak with a width of around 2 ms. This we interpret as
the contribution to intensity correlation from the background, i.e. Cb (τ). More
interesting is the almost straight line in the experimental plot, which we inter-
pret as the system part of the correlation function, i.e. Cs (τ). The straight blue
line in the plot is the best fit to a single exponential decay, e−κτ. The value
for κ is 0.0611 ms−1, which should compared to the expected value k12 + k21,
which we know to be 0.0663 ms−1 — a very good agreement. These results thus
provide an independent check that correct thresholding has been applied.

C. Activity fluctuations

It is well-known, that activity will fluctuate for a given enzyme. This is also
the case for the TLL, studied in this work. In the following figure we plot the
running average of the waiting time in a moving time window with a width of
roughly 2 second.
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Figure S16. Activity fluctuations. Real data. The function 〈K (t +
τ)K (t )〉 as a function of τ. K (t ) is running average of the intensity.
The width, T , of the averaging function is 2 seconds.

It has been suggested, that this would indicate, that the enzyme is moving
through different states on a time scale of 5 seconds. This, however, is not a
correct interpretation. The activity fluctuations are natural statistical fluctua-
tions of the two-state model, that we are considering in this paper. We have
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simulated the model using the parameters found in the previous section. The
activity fluctuations of these synthetic data is as follows:
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Figure S17. Activity fluctuations. Simulated data. The function
〈K (t + τ)K (t )〉 as a function of τ. K (t ) is running average of the
intensity. The width, T , of the averaging function is 2 seconds.

We see, that the simple two state model also fluctuates on the 10 second
scale, and with an amplitude similar to the experimental data. In the final figure
we plot the two activity fluctuations in the same graph (green is experiment,
blue is model)
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Figure S18. Activity fluctuations. Comparison of real data and simulated data.

Analytically, we can characterize the activity fluctuations by correlations in
the time averaged intensity:

K (t ) =
∫

f T (t − t ′)∆I (t ′)d t ′. (32)
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Here f T (t ) is a function of width, T . It could be the gaussian

f T (t ) =
1(

2πT 2
e−

t 2

2T 2 . (33)

The detailed form is not so important. Let us calculate the correlation function
of this averaged intensity, 〈K (t +τ)K (t )〉. It is related to the intensity correlation
function via

〈K (t +τ)K (t )〉=
∫ ∫

f T (t +τ− t ′) f T (t − t ′′)〈∆I (t ′)∆I (t ′′)〉d t ′d t ′′. (34)

It can be rewritten in terms of the Fourier transforms,

〈K (t +τ)K (t )〉=
∫

dω
2π

e iωτ| f T (ω)|2CI (ω), (35)

where CI (ω) is the Fourier transform of the intensity correlation function. If
e.g. the intensity correlation function is a single exponential decay:
〈δI (t +τ)δI (t )〉=C0e−κ|τ|, then CI (ω) becomes

CI (ω) =C0
2κ

κ2+ω2
. (36)

The Fourier transform, f T (ω) of the averaging function, is a function of width
1/T , as exemplified by the gaussian example, where

f T (ω) = e−
ω2T 2

2 . (37)

We shall in particular consider the case, where intensity correlations decay faster
than the time, T , over which we average. In our example this would correspond
to κT ) 1. In the expression (35) the function | f T (ω)|2 is thus much more nar-
row than CI (ω), and we can approximate the latter by it’s value atω= 0. Hence
we get

〈K (t +τ)K (t )〉 ≈ CI (ω= 0)
∫

dω
2π

e iωτ| f T (ω)|2

=
C0(
πκT

e−
τ2

4T 2 . (38)

We see, that this correlation function only depends on the actual intensity through
a constant factor C0/κ. The time dependence is only reflecting the chosen av-
eraging function, and does not reflect actual correlations in the system.
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In the opposite limit, where κT + 1, CI (ω) is the narrow function, and we
can approximate | f T (ω)|2 by it’s zero frequency value, i.e. by 1. We then will
recover the original intensity correlation function.

We can conclude, that not much is learned by studying the correlation func-
tion 〈K (t +τ)K (t )〉. All information is already encoded in the direct intensity
correlation function 〈δI (t +τ)δI (t )〉.
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The two activity states of TLL can be approximated by an active and an inactive one.  

In our analysis we developed a statistical model that describes TLL to oscillate between two-
activity states with large difference in their inherent activities. (see Figure S19A). Because we 
found kact2 to be on the average ~ 20 time smaller than kact1 and independent of bilayer access it 
can be considered as inactive. Thus TLL may be approximated to oscillated between an active 
and inactive activity state correlating with the two major enzyme conformational states (see Table 
S3 and Figure S17B). The main advantage of this simplification is that to adequately describe 
TLL enzymatic behavior only 3 independent parameters, directly encoded in the waiting time 
distribution, are employed instead of 4 when using 2 non-zero activity states. To test if this 
approximation influences the validity of our findings we quantified both the probability of being 
on the highly active state Pact and the inherent activity of that state kact1 as a function of PEG 
concentrations using the model with 2 non-zero activity states. As shown in Figure S19 we found 
qualitatively identical results independent of the presence of one or two activity states (see Table 
S3). Systematic restriction of enzymes from accessing the effector-bilayer in both cases does not 
significantly influence the enzymes inherent activity but primarily confers a shift in the 
equilibrium towards the highly active states. Therefore to simplify statistical analysis and 
minimize error we chose to approximate TLL behavior to oscillate between an active and an 
inactive state. The individual kinetics rates for all single molecules studied as shown in Figure 
S20.  

The rest of the enzymes examined in this contribution have not been reported to undergo to an 
inactive conformational state to the best of our knowledge. Because therefore there is no direct 
correlation between conformational and activity states we used the more generic model with 2 
activity states to describe their kinetic behavior. All enzymes tested where found to oscillate 
between two activity states with markedly different inherent activities rather than a continuous 
distribution of them.  

 

 
 

Figure S19. Probability of TLL to reside on the highly active state as a function of bilayer accessibility 
calculated by using a model with a single active state A or two active states B. Independently of the 
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model qualitatively identical results are obtained. Systematically restricting enzymes from accessing the 
effector-bilayer confers a shift in the equilibrium towards the highly active states. Data are fitted with 
single exponential decays and error bars correspond to s.d. between values of different single enzymes. 

 

 
Figure S20. Kinetic rates of all single molecule as a function of PEG concentration. A. Average activity 
rate of the individual TLL molecules B. kact of each TLL molecule. C. k12 and D. k21 of individual TLL 
molecules. 
 

Bayesian comparison of two activity states model with multiple activity states models.   

To compare the 2 activity state model with continuous multistate model we will employ the 
Bayes theorem.  

    

€ 

P(u1 /Ni)
P(u2 /Ni)

=
P(Ni /u1)
P(Ni /u2)

. P(u1)
P(u2)

      (39)  

The two activity state (model 1) is described: 

€ 

f (t,γ,λ+,λ−) = kactPact(t) =
1−γ
2

λ+ exp(−tλ+) +
1+γ
2

λ− exp(−tλ−)  (40) 

A typical model with a distribution of activities (model 2) is described by  

       (41) 

where  

€ 

Φ0 =
1

e−(1/τ )
a

dt
0

∞

∫
=

α /τ
Γ(1/α)

      (42) ! 

"off (t) ="0e
#( t /$ )a
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We binned at 1ms, from 1 to 100, we have Ni waiting time locate in ith bin (i=1…100), when the 
total number of waiting time is N. Each model has a certain probability P in ith bin. The predicted 
number of waiting time in model 1 is u1= P1 N and in model 2 is u2=P2 N.  

 

But in experiment, the real number of waiting time is Ni 

Comparing the two models using Bayes theorem consists of two factors: 

 the ratio 

€ 

P(u1)
P(u2)

 showing the likelihood of each model to be correct. We will consider that as 1, 

and  

the ratio of probabilities 

€ 

P(u1 /Ni)
P(u2 /Ni)

 of having u1 waiting time in this bin according to model 1 

for Ni experimental data / Probability of have u2 waiting time according to model 2 for Ni 
experimental data.  

These probabilities are given by Poisson distributions  

€ 

P(Ni /u1) =
u1i
Ni

Ni

e−u1i        (43) and  

€ 

P(Ni /u2) =
u2i
Ni

Ni

e−u2i        (44) 

Since 

€ 

P(D /M1) = P(Ni /u1i) =
u1i
Ni

Nii=1

N

∏
i=1

N

∏ e−u1 i     (45) 

The ratio (eq 39) becomes 

€ 

P(u1 /Ni)
P(u2 /Ni)

=
P(Ni /u1)
P(Ni /u2)

. P(u1)
P(u2)

=

u1i
Ni

Nii=1

N

∏ e−u1i

u2i
Ni

Nii=1

N

∏ e−u2i
    (46) 

For the data in Figure S23A we found 

€ 

P(u1 /Ni)
P(u2 /Ni)

= 2.34 ×1034  showing that a double 

exponential fits the waiting time distribution significantly better than stretched exponential.  

 

Probability of a vesicle anchored TLL to reach the PEGylated bilayer 

In Figure 3 we showed the overall TLL activity to decrease exponentially depending on the PEG 
density on liposomes. If the overall activity (ATLL) is dependent on the accessibility to the 
liposomes it should be proportional to the enzyme’s residence probability on the PEGylated 
bilayer. This residence probability (Pr) is dependent on the surface pressure (Πp) and the cross 
sectional area of TLL (Apro) and is given by: 

€ 

ATLL = kPr = kP0 exp(
−AproΠp

kBT
) = A0 exp(

−AproΠp

kBT
)    (47) 
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where 

€ 

Πp =
fPEGkBT
AL

,  14:      (48) 

€ 

fPEG  is the membrane molar fraction of PEG, AL is the cross section of lipid and Apro is the cross 
section area of TLL given by 

€ 

Apro = πr2 . A0 is the activity of TLL without steric hindrance thus 
absorbing the proportionality constant k and the residence probability P0 at 0 % PEG.  

Combining 47 and 48 we obtain the following  

€ 

ATLL = A0 exp(
−Apro fPEG

AL

)       (49) 

 

Applying a exponential fit to the data of Figure 3C we obtain a exponential constant A0=22 ± 3 s-1 

and a surface ratio of 

€ 

Apro

AL
=49.2 ± 9 s-1  which is consistent with a surface ratio of 40.6 calculated 

from AL = 0.65 nm and Apro=π (2.9 nm)2 found in the literature 15, thus supporting our 
approximation that the reduced enzymatic activity is due to the restricted access to the bilayer.  

The fact that the data of Figure 3D with eq49 resulted in C = 0.32 ± 0.02 and Apro/AL = 48.1 ± 16 
also in agreement with the calculated surface ratio of 40.6 strongly supports that regulatory 
interactions  primarily redistribute TLL’s probability to reside in the highly active state.  

Note that CFDA is not TLL’s natural substrate. We obtained however comparable trends of 
activity increase upon regulatory interaction with bilayers as observed for natural substrates albeit 
with smaller amplitudes.  

 

Mechanistic origin of TLL activity regulation  

Shifting an equilibrium towards the active state in a two activity state model could originate by: 
a) stabilization of the active state, b) destabilization of the inactive state or c) a combination of 
both. Because we are measuring the conversion rate from the inactive to the active state (k21) as 
well as the reverse rate back to the inactive state (k12), we can calculate the energy barriers 
between the two states.  

To draw the energy landscape of lipase upon regulation a reference point is needed that is not 
dependent on effector concentration. Our findings support that the active state of lipase 
corresponds to the open lid conformation obtained when the enzyme resides on liposomes while 
when the enzyme is displaced from the bilayer it undergoes to inactive state. Because the inactive 
state corresponds to enzyme residing away from the effector bilayer, we will assume it to be 
independent of membrane modification by PEG. Therefore the energy level of the inactive state is 
taken as constant independently of bilayer access and is used as reference point to draw the 
energy landscape. Lipase regulation then originates from energetic stabilization of the active state 
and shift of the population equilibrium to the active conformations. 

To dissect the origin of the population shift we plotted the average exchange rate constants for the 
lipase as a function of bilayer access (see Figure S21). In spite the large scattering of the data, due 
to static disorder between different enzymes, we recorded k12 values that are not dependent on 
bilayer access in Figure S21A. We found k21 on the other hands to be reduced by 4 fold as bilayer 
access is restricted. Based on this we conclude that regulation of lipase proceeds via equal 
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energetic stabilization of the active state and the transition state to the active state (regulatory 
coordinate of Figure 4).   

As shown in Figure S21, regulation of enzyme activity may originate from i) shift in the average 
distribution of multiple activities (grey arrow), ii) redistribution of a two activity state equilibrium 
towards the highly active state (green arrow), iii) induction of new activity state (blue arrow). Our 
findings provide for the first time concrete validation that an enzyme other than ion-channels 
function in accordance to the hypothesis that regulatory interactions do not create new states of 
different inherent activity but primarily redistribute the conformational equilibrium towards one 
of the preexisting states.  

 
Figure S21. Interconversion rates of equilibrium between the 2 activity states of TLL as a function of 
PEG concentration. A. The inactive to active transition k21 is strongly dependent on the presence of 
effector bilayer. Increasing enzyme accessibility confers a ~ 4 fold increase in the transition rate above 
the noise. B. The active to inactive transition k12 shows within noise no significant dependence on 
bilayer accessibility. Thus regulation appears to occur via stabilization of the active state and the 
transition state. Error bars correspond to standard deviation of values for individual enzymes. 

 

 
 

Figure S22. Regulation of enzyme activity may occur via i) shift in the average distribution of 
multiple activities (grey arrow), ii) redistribution of a two activity state equilibrium towards 
the highly active state (green arrow), iii) induction of new activity state (blue arrow). Our 
findings support the presence of two activity states over a continuous distribution of them. 
Regulatory interactions do not introduce a new activity state but simply shift the equilibrium 
towards the highly active states. 

 

Oscillation between a discrete number of activity states describes the behavior of additional 
monomeric enzymes.  
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In Figure S23A we plotted the entire histogram of TLL waiting time distribution showing that a 
double exponential decay prevalently describes the data of TLL as compared to a stretched 
exponential decay. Taken together with the data of Figures S13-18 we concluded that TLL 
toggles between two activity states instead of a continuous distribution of them. 

Next we reevaluated whether other monomeric enzymes possess a discrete number of states.  

We recorded the activity trajectory of Lipase from Candida Antarctica (CALB) 16 as a 
representative hydrolytic enzyme. CALB was chosen because it does not possess a lid and 
therefore its activity is not regulated by bilayer accessibility (see Figures S1-10). A single cyst 
variant of the enzyme, ensuring monodirectional coupling, was conjugated to SAV488 added on 
liposome and its activity was monitored at saturating CFDA concentrations (see Figures S1-10 
for controls). As shown in Figure S23B fitting of the waiting time distribution of CALB with 
double exponential decay resulted in significantly improved fitting as compared to a stretched 
exponential decay (see Figure S23B inset). Additionally the waiting time autocorrelation function 
was found to follow a monoexponential decay consistent with the two activity states model (see 
Figure S24A). We found CALB to interconvert between two activity states with activities kact1  = 
0.218  ms-1 and kact2 = 0.012 ms-1 and interconversion rates k12 = 0.08   ms-1 and k21 = 0.011 ms-1 
(See Table S2). Furthermore the intensity autocorrelation CI(t) can be described with 
monoexponential decay (see Figure S25A) further justifying our two activity state approximation. 
Despite the small deviation in long time scales the CI(t) decays with an exponent K(I) =0.09 ms-1 
that matches the sum of the two interconversion rates k12 + k21= 0.08 + 0.011 = 0.091 as proposed 
for two activity states models17,18. In full agreement with TLL data CALB appears to oscillate 
between two activity states with considerably different inherent activities rather than a continuous 
distribution of them.  

To further examine of additional enzyme besides lipases adopt analogous catalytic behavior we 
obtained the published activity trace of Nitrite Reductase from Alcaligenes faecalis as a 
representative of redox enzymes. Data recorded at saturating conditions (500 µM nitrite) were 
provided by professor G.W. Canters 19. As shown in Figure S23C fitting of the waiting time 
distribution of Nitrite reductase with double exponential decay resulted in significantly improved 
fitting as compared to a stretched exponential decay. In agreement with the two activity state 
approximation the waiting time autocorrelation decays monoexponetially (see Figure S24B). 
Calculation of the reaction rates resulted in kact1  = 0.022  ms-1 and kact2 = 0.004 ms-1 and 
interconversion rates k12 = 0.022   ms-1 and k21 = 0.011 ms-1 (See Table S2). Furthermore the 
intensity autocorrelation CI(t) can be described with monoexponential decay further justifying our 
two activity state approximation (see Figure S25B). Despite the small deviation in long time 
scales the CI(t) decays with an exponent K(I) =0.03 ms-1 that matches the sum of the 
interconversion rates k12 + k21= 0.022 + 0.011 = 0.033 ms1 as proposed for two activity states 
models 17,18. We conclude therefore that Nitrite reductase also oscillates between two activity 
states with considerably different inherent activities rather than a continuous distribution of them.  

However, in agreement with previous findings 20,21, β-galactosidase and chymotrypsin could not 
be fitted with a two-state model (see Figure S26). This might be expected for β-galactosidase, 
which is composed of four monomers that could catalyze independently of each other, but 
suggests chymotrypsin has indeed more than two states. 
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Figure S23. Full waiting time distribution and their fits for the enzyme studied. Data are fit with a 
double exponential decay from the 2 activity states model (blue line) and the stretched exponential (red 
line) of a multistate model with continuous activity, for A. TLL B. CALB C. Nitrite reductase from 
Faecalis Alcaligenis A. CALB data are obtained at saturating CFDA concentrations of 100 µM B. TLL 
data are at saturating CFDA concentrations of 100 µM, C. Nitrite reductase data are obtained at 
saturating 500 µM nitrite concentration 19 In all cases a significantly better fitting is obtained with the 2 
activity states model (double exponential) as compared to a model with a continuous distribution of 
activities (stretched exponential)  

 

 
 

Figure S24. A. Waiting time autocorrelations for A. CALB and B. Nitrite reductase. Data are 
fit in both cases with single exponentials verifying that two activity states accurately describe 
the activity behavior of these enzymes.  
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Figure S25. A. Intensity autocorrelations for A. CALB and B. Nitrite reductase fitted in both 
cases with single exponentials. A. CALB intensity autocorrelation CI(t) can be described with 
monoexponetially decay in agreement with our two activity state approximation. CI(t) decays 
with an exponent K(I) =0.09 ms-1 in full accordance with the sum of the two interconversion 
rates k12 + k21= 0.08 + 0.011 = 0.091. B. Despite the small deviation in long time scales, that 
deserves more investigation, CI(t) of Nitrite reductase decays with an exponent K(I) =0.03 ms-1 
that matches the sum of the interconversion rates k12 + k21= 0.022 + 0.011 = 0.033 ms1  

 

 
Figure S26. Waiting time distribution and intensity autocorrelation for A. B. β-galactosidase 
and C. D. chymotrypsin respectively showing them to exhibit more than two activity states. A. 
The waiting time distribution of β-galactosidase can be fitted with a double exponential decay. 
B. The intensity autocorrelation cannot be accurately fitted with single exponential indicating 
that the tetrameric β-galactosidase exhibits more that two activity states, in agreement with 
earlier findings 20. Data are fit with double exponential to guide the eye. C. Zoomed in region 
of the waiting time distribution of chymotryspin. A double exponential decay does not 
accurately fit the data. D. The intensity autocorrelation does not decay monoexponentially 
suggesting chymotrypsin to exhibit more than two activity states. Data are fitted with double 
exponential decay to guide the eye.  
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Table S1. Calculated values of Kact and Pact for TLL for various PEG concentrations  

PEG 
concentration (M) kact Pact k12 k21 

Number of 
enzymes 

0% 0.08 ± 0.04* 0.36 ± 0.07 0.14 ± 0.06 0.075 ± 0.02 6 

0.15 0.05 ± 0.01 0.37 ± 0.04 0.05 ± 0.03 0.029 ± 0.02 4 

0.7 0.09 ± 0.04 0.23 ± 0.06 0.07 ± 0.04 0.019 ± 0.06 9 

1.5 0.08 ± 0.04 0.18 ± 0.08 0.19 ± 0.11 0.032 ± 0.01 5 

2.1 0.05 ± 0.01 0.15 ± 0.05 0.14 ± 0.07 0.029 ± 0.01 4 

*Error bars correspond to standard deviations between values of different single enzymes.  

 

Table S2. Inherent activity rates and interconversion between the two activity states of rates for 
TLL. CALB and Nitrite reductase using 4 state model.  

Enzyme kact1 kact2 k12 k21 

TLL (0%PEG)* 0.24 ± 0.05# 0.017 ± 0.005 0.054 ± 0.03 0.0025 ± 0.002 

CALB 0.218  0.012  0.08  0.011 

Nitrite reductase 0.022  0.004 0.022 0.011 

* Average valued of 5 individual enzymes  
# Error bars correspond to standard deviations between values of different single enzymes 

 

Table S3. Calculated ratio of Kact2 / Kact2 for TLL for various PEG concentrations  

PEG concentration (M) kact2 / kact2 Number of enzymes 

0% 14.1 ± 4.6* 6 

0.15 9.4 ± 3.4 4 

0.7 19.3 ± 10.6 9 

1.5 25.2 ± 12.1 5 

2.1 24.7 ± 11.9 4 

*Error bars correspond to standard deviations between values of different single enzymes 
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