Supporting Information

Absolute Configuration for 1,n-Glycols: A Nonempirical Approach to Long Range Stereochemical Determination

Xiaoyong Li,, Carmin E. Burrell, Richard J. Staples, Babak Borhan*

Table of Contents:

General Procedures S2
Inconclusive ECCD Results with Tweezer A S2
UV-vis Profiles for 1,6-diol and 1,12-diol with Tweezer B S3
Job's Continuous Plot Analysis S6-S7
3D Model Conformations for 1,6-diol and 1,7-diol S8
X-Ray Structures of diol 8 and 10 S9-S11
Conformational Search for Diol-tweezer Complex. S12-S14
Synthesis of Chiral Glycols and Tweezers S15-S24
Full Cited References from Main Text S25-S26
References S27

EXPERIMENTAL:

Materials and general instrumentations:

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried and redistilled over CaH_{2}. The solvents used for CD measurements were purchased from Aldrich and were spectra grade. All reactions were performed in dried glassware under nitrogen. Column chromatography was performed using SiliCycle silica gel (230-400 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Varian Inova 300 MHz or 500 MHz instrument and are reported in parts per million (ppm) relative to the solvent resonances (δ), with coupling constants (J) in Hertz (Hz). IR studies were performed on a Nicolet FT-IR 42 instrument. UV/Vis spectra were recorded on a Perkin-Elmer Lambda 40 spectrophotometer, and are reported as $\lambda_{\max }[\mathrm{nm}]$. CD spectra were recorded on a JASCO J-810 spectropolarimeter, equipped with a temperature controller (Neslab 111) for low temperature studies, and were reported as $\lambda[\mathrm{nm}]\left(\Delta \varepsilon_{\max }\left[\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right]\right)$. Optical rotations were recorded at $20^{\circ} \mathrm{C}$ on a Perkin Elemer 341 Polarimeter ($\lambda=589 \mathrm{~nm}, 1$ dm cell). HRMS analyses were performed on a Q-TOF Ultima system using electrospray ionization in positive mode.

General procedure for CD measurement:

Zinc porphyrin tweezer ($2.5 \mu \mathrm{~L}$ of a 1 mM solution in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to hexane (1 mL) in a 1.0 cm cell to obtain a $2 \mu \mathrm{M}$ tweezer solution. The background spectrum was recorded from 350 nm to 550 nm with a scan rate of $100 \mathrm{~nm} / \mathrm{min}$ at $0{ }^{\circ} \mathrm{C}$. Chiral diol (1 to $10 \mu \mathrm{~L}$ of a 10 mM solution in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added into the prepared tweezer solution to afford the host/guest complex. The CD spectra were measured immediately (minimum of 4 accumulations). The resultant ECCD spectra recorded in millidegrees were normalized based on the tweezer concentration to obtain the molecular CD (Mol CD).

Inconclusive ECCD results with Tweezer A

When zinc porphyrin tweezer A bearing 5 methylene carbon linker was used for ECCD measurements, complications were observed for diols 2, 5 (Figure S1-a) and 10 (Figure S1-b) as described in manuscript. Their UV profiles upon complexation with tweezer A (Figure S2) are similar to those of other diol substrates. Changing the temperature did not solve this issue as similar ECCD curves were observed albeit with diminished amplitude at higher temperature ($25^{\circ} \mathrm{C}$, Figure S3-a) or increased amplitude at lower temperature $\left(-10^{\circ} \mathrm{C}\right.$, Figure $\mathrm{S} 3-\mathrm{b})$. In other nonpolar solvents such as MCH , fairly poor CD signal was detected. More polar solvents led to no ECCD (competitive binding of solvent with the highly fluorinated zincated porphyrin).

Figure S1. ECCD spectra of tweezer $\mathbf{A}(2 \mu \mathrm{M}$ in hexane) with $\mathbf{5}$ (graph a) and $\mathbf{1 0}$ (graph b) at different equivalents at $0^{\circ} \mathrm{C}$.

Figure S2. UV-Vis spectra change upon titration of tweezer \mathbf{A} ($1 \mu \mathrm{M}$ in hexane) with $\mathbf{5}$ (graph a) and $\mathbf{1 0}$ (graph b) at different equivalents (only selected curves were shown for clarity).

Figure S3. ECCD spectra of tweezer A (2 $\mu \mathrm{M}$ in hexane) with 1,12-diol 10 at $-10^{\circ} \mathrm{C}$ (graph a) and $25^{\circ} \mathrm{C}$ (graph b) at different equivalents.

Figure S4. ECCD spectra of tweezer $\mathbf{B}(2 \mu \mathrm{M}$ in hexane) with $\mathbf{5}$ (graph a) and $\mathbf{1 0}$ (graph b) at different equivalents at $0^{\circ} \mathrm{C}$.

Figure S5. UV-Vis spectra change upon titration of tweezer \mathbf{B} (1 $\mu \mathrm{M}$ in hexane) with 5 (10 mM in DCM, graph a) and $\mathbf{1 0}(10 \mathrm{mM}$ in DCM, graph b)

Job's Continuous Plot Analysis to Determine Complex Stoichiometry: ${ }^{1}$

For each titration, a stock solution of tweezer $\left(10^{-3} \mathrm{M}\right)$ and a stock solution of $\operatorname{diol}\left(10^{-3} \mathrm{M}\right)$ in dichloromethane were made. To 1 mL of hexanes in a 1 cm UV-Vis cuvette, the tweezer ($\mathrm{Tz} / 1 \mu \mathrm{~L}$ of the stock solution) and diol ($0,0.2,0.5,1,2,5,10,20$ and 50 equivalents) were added and UV-Vis spectrum ($350 \mathrm{~nm}-600 \mathrm{~nm}$) was recorded. The molar fraction of tweezer multiplied by the change in UV-Vis absorbance at the indicated wavelength for each titration point was determined and was plotted against the molar fraction of tweezer. Peaking at 0.5 mol fraction corresponds to a 1:1 tweezer:diol complex. This was observed in all cases as shown in Figures S6-S11.

Figure S6. Job's Plot C5 Tweezer (A) with 1,2-R,R diol (1). Absorbance at 409 nm .

Figure S7. Job's Plot C5 Tweezer (A) with 1,7-R,R diol (6). Absorbance at 409 nm .

Figure S8. Job's Plot C5 Tweezer (A) with $1,12-R, R$ diol (10). Absorbance at 409 nm .

Figure S9. Job's Plot C3 Tweezer (B) with 1,2-R,R diol (1). Absorbance at 426 nm .

Figure S10. Job's Plot C3 Tweezer (B) with 1,7-R,R diol (6). Absorbance at 426 nm .

Figure S11. Job's Plot C3 Tweezer (B) with 1,12-R,R diol (10). Absorbance at 426 nm .

Figure S12. Most stable trans-all staggered conformation of 1,6-diol (5)

Figure S13. Most stable trans-all staggered conformation of 1,7-diol (6)

Figure S14. Alternative trans-all staggered conformation of 1,7-diol (6)

Crystal structure of diol 10

a

b

c

Figure S15. Crystal structure of diol 10 (graph a and \mathbf{c} indicate two formations in the cell), graph \mathbf{b} illustrates H -bondings involved (red dashed line, O1B, O2B and O2D refer to oxygen atoms of adjacent diol molecules within the cell, note that the H atom on O2B is not shown); $\mathrm{d}(\mathrm{O} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~B}): 2.726 \AA, \mathrm{~d}(\mathrm{O} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~S}): 2.737 \AA$, d(O2A-O2B): $2.702 \AA . \mathrm{d}(\mathrm{O} 2 \mathrm{~A}-\mathrm{O} 2 \mathrm{D}): 2.713 \AA$

Figure S16. Crystal structure of diol 8, two conformations were found in one asymmetric unit cell
Table S1. Crystal data and structure refinement for Diol 8.

Identification code	Diol 8
Empirical formula	C11 H24 O2
Formula weight	188.30
Temperature	$173(2) \mathrm{K}$
Wavelength	$0.71073 \AA$

Crystal system	Orthorhombic
Space group	P 212121
Unit cell dimensions	$a=7.78370(10) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.9032(2) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=28.9411(4) \AA \quad \gamma=90^{\circ}$.
Volume	2456.15(6) \AA^{3}
Z	8
Density (calculated)	$1.018 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.067 \mathrm{~mm}^{-1}$
F(000)	848
Crystal size	$0.22 \times 0.16 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	1.41 to 25.31°.
Index ranges	$-8<=\mathrm{h}<=9,-13<=\mathrm{k}<=12,-34<=1<=34$
Reflections collected	14442
Independent reflections	$4434[\mathrm{R}(\mathrm{int})=0.0363]$
Completeness to theta $=25.31^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9922 and 0.9851
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4434 / 0 / 243
Goodness-of-fit on F^{2}	1.016
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0393, \mathrm{wR} 2=0.0808$
R indices (all data)	$\mathrm{R} 1=0.0555, \mathrm{wR} 2=0.0919$
Absolute structure parameter	-0.3(11)
Largest diff. peak and hole	0.110 and $-0.167 \mathrm{e} . \AA^{-3}$

Table S2. Crystal data and structure refinement for diol 10.

Identification code	Dio 10
Empirical formula	C14 H30.50 O2.25
Formula weight	234.88
Temperature	173(2) K
Wavelength	0.71073 £
Crystal system	Triclinic
Space group	P 1
Unit cell dimensions	$\mathrm{a}=9.4357(8) \AA \quad \alpha=88.3600(10)^{\circ}$.
	$\mathrm{b}=10.0619(8) \AA \quad \beta=76.6840(10)^{\circ}$.
	$\mathrm{c}=17.2986(13) \AA \quad \gamma=71.8240(10)^{\circ}$.
Volume	1516.8(2) \AA^{3}
Z	4
Density (calculated)	$1.029 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.067 \mathrm{~mm}^{-1}$
F(000)	530
Crystal size	$1.08 \times 0.20 \times 0.18 \mathrm{~mm}^{3}$
Theta range for data collection	1.21 to 32.04°.
Index ranges	$-12<=\mathrm{h}<=12,-14<=\mathrm{k}<=14,-25<=\mathrm{l}<=24$
Reflections collected	31513
Independent reflections	$14753[\mathrm{R}(\mathrm{int})=0.0283]$
Completeness to theta $=25.00^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9881 and 0.9311
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	14753 / 3 / 1074
Goodness-of-fit on F^{2}	0.983
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0433, \mathrm{wR} 2=0.0965$
R indices (all data)	$\mathrm{R} 1=0.0728, \mathrm{wR} 2=0.1106$
Absolute structure parameter	0.6(6)
Largest diff. peak and hole	0.202 and -0.191 e. \AA^{-3}

Conformational search of the diol-tweezer 10 complex

Figure S17. Front view (left) and side view (right) of the 'side-on' binding model of diol 10-tweezer B complex (lowest energy conformer by Monte Carlo conformational search using SYBYL force field, hydrogen atoms were omitted for clarity); the chromophore's center-to-center distance ($7 \AA$) and the distance between carbinol carbons ($14 \AA$) is highliohted

Monte Carlo conformational search of diol-tweezer complex was performed in vacuo with Spartan V 5.1.3 utilizing SYBYL as the force field. The O-Zn distance was constrained at $2.2 \AA$ to avoid dissociation of the complex. Default parameterization was used for metal atoms. All possible torsional angles were varied during each optimization step, except the porphyrin ring dihedral angles. Default convergence criteria was used. After over 1500 fully optimized steps, conformers with $10 \mathrm{kcal} / \mathrm{mol}$ were collected for analysis. For all three diols $(5,6$, and $\mathbf{1 0})$ complexed with tweezer \mathbf{B}, the most stable conformers consistently indicated clockwise helicity as proposed (Figure S17-S20). The side-on approach was also clearly revealed in these optimized structures. The center-to-center distance ($\mathrm{Zn} 1-\mathrm{Zn} 2$) of the tweezer host increases accordingly with the increase of diol chain length (ca. $7 \AA$ in $\mathbf{5 / B}$ complex and $16 \AA$ in $\mathbf{1 0} / \mathbf{B}$ complex). However, the interplanar distance changes only slightly while extending the guest molecular skeleton (ca. $6 \AA$ in $\mathbf{5} / \mathbf{B}$ complex and $7 \AA$ in $\mathbf{1 0} / \mathbf{B}$ complex), which is in line with the unusually strong CD signals primarily due to intimate chromophoric interaction in the 'side-on' binding process (Figure S17). The independence of CD amplitudes on substrate chain length is of particular importance since most bischromophoric methods inevitably suffer from weakened ECCD signal strength when used for long range stereochemical determination.

Figure S18. Front view (left) and side view (right) of the 1,6-diol-tweezer B complex (hydrogen atoms were omitted for clarity)

Figure S19. Front view (left) and side view (right) of the 1,7-diol-tweezer B complex (hydrogen atoms were omitted for clarity)

Figure S20. Front view (left) and side view (right) of the 1,12-diol-tweezer B complex (hydrogen atoms were omitted for clarity)

Synthesis of chiral diols

Diol 1 was obtained from Sharpless asymmetric dihydroxylation according to known procedures. Diol 2 is commercially available from Acros. Chiral 1,n-glycols (3-9) were readily accessible through Jacobsen's Hydrolytic Kinetic Resolution (HKR) of terminal dienes and subsequent ring opening of chiral diepoxides by LAH. Diols $\mathbf{1 0}$ and $\mathbf{1 1}$ were synthesized from (R)-propyl epoxide. Diols 12 and 13 were prepared from Grignard mediated ring-opening of ($2 S, 3$-epoxypropyl)benzene as described below.

Typical procedure for synthesis of chiral diols using Jacobsen hydrolytic kinetic resolutions ${ }^{2}$ described for the synthesis of 5: 1,2:7,8-Diepoxyoctane (S1)

To a solution of 1,7-octanediene ($5.0 \mathrm{~g}, 45.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added m-CPBA $(70 \%, 13.4 \mathrm{~g}, 54.5 \mathrm{mmol})$. The suspension was stirred at room temperature for 2 h monitored by TLC until completion. The reaction was quenched and washed by saturated NaHCO_{3} solution $(4 \times 80 \mathrm{~mL})$ followed by brine $(100 \mathrm{~mL})$. The organic layers were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The oil residue was purified by flash chromatography (5$20 \% \mathrm{EtOAc} /$ hexane $)$ to afford the $1,2: 7,8$-diepoxyoctane ($5.32 \mathrm{~g}, 83 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.52(\mathrm{~s}, \mathrm{br}, 8 \mathrm{H}), 2.44\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right), 2.73(\mathrm{t}$, $2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.88(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.5,32.1,46.6,51.8 .{ }^{3}$

(1,2S:7S,8)-Diepoxyoctane (S2)

Clolen
1,2:7,8-Diepoxy-heptane ($3.68 \mathrm{~g}, 25.94 \mathrm{mmol}$), ($(S, S$)-Salen-Co catalyst ($157 \mathrm{mg}, 0.0259$ mmol, 0.01 equiv), THF (0.26 mL) and HOAc ($62 \mathrm{mg}, 1.04 \mathrm{mmol}, 0.04$ equiv) were added sequentially to a 50 mL round bottom flask rendering a dark red-brown solution. The mixture was cooled in ice-bath and $\mathrm{H}_{2} \mathrm{O}(514 \mathrm{mg}, 28.53 \mathrm{mmol}, 1.1$ equiv) was added in one portion. The reaction mixture was stirred for 20 h and then purified by flash chromatography ($10-30 \%$ EtOAc / hexane) to afford the ($1,2 S: 7 S, 8$)-diepoxyoctane ($552 \mathrm{mg}, 15 \%$) as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-22.3,\left(c=2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.52(\mathrm{~s}, \mathrm{br}, 8 \mathrm{H})$, $2.44\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right), 2.73(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.88(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.5,32.1,46.6,51.8$.

(2R,7R)-Octanediol (5)

To a solution of ($1,2 S: 7 S, 8$)-diepoxyoctane ($205 \mathrm{mg}, 1.44 \mathrm{mmol}$) in dry THF $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added LAH ($219 \mathrm{mg}, 5.77 \mathrm{mmol}, 4.0$ equiv). The mixture was stirred for 1 h until completion, then was quenched with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$. After filtration through celite, the organic layer was dried and concentrated. Purification by flash chromatography ($30-50 \%$ EtOAc / hexane) afforded the ($2 R, 7 R$)-octanediol ($203 \mathrm{mg}, 97 \%$) as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-17.5,\left(c=0.72, \mathrm{CHCl}_{3}\right)$; ee $=95 \%$ (NMR analysis of R-MPA diester) ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.14(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.35(\mathrm{~m}, 8 \mathrm{H}), 1.71(\mathrm{~s}, 2 \mathrm{H})$, $3.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.4,25.6,39.1,67.8 .{ }^{3}$

(1,2S:5S,6)-Diepoxyhexane (S3)

O-
HKR of racemic 1,2:5,6-diepoxyhexane following procedures described above afforded (1,2S:5S,6)-diepoxyhexane as colorless oil (12\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-27.5,\left(c=1.08, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{4}$ $[\alpha]^{26}{ }_{\mathrm{D}}=-26.4,\left(c=1.86, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.69(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{dd}, 2 \mathrm{H}$, $\left.J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right), 2.76(\mathrm{t}, 3 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.99(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 28.6,29.1,47.0,51.5,51.8$.

(2R,5R)-Hexanediol (3)

LAH ring opening of $\mathbf{S 3}$ following procedures described above afforded $\mathbf{3}$ as colorless oil $(90 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=-32.0,\left(c=1.0, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{4 \mathrm{4b,5}}[\alpha]^{25}{ }_{\mathrm{D}}=-35.7,\left(c=1.0, \mathrm{CHCl}_{3}\right) ; e e=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.18(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $1.55(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.7,36.0,68.3$.

(1,2S:6S,7)-Diepoxyheptane (S4)

HKR of racemic 1,2:6,7-diepoxyheptane following procedures described above afforded $\mathbf{S} 4$ as colorless oil (12\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-23.1,\left(c=1.0, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{4 \mathrm{~b}, 6}[\alpha]^{20}{ }_{\mathrm{D}}=+24.1,(c=1.7$, CHCl_{3}) for ($2 R, 6 R$)-diepoxyheptane; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.62(\mathrm{~m}, 6 \mathrm{H}), 2.46(\mathrm{dd}$, $\left.2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right), 2.74(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.91(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 22.4,32.1,46.9,52.0$.

(2R,6R)-Heptanediol (4)

LAH ring opening of $\mathbf{S 4}$ following procedures described above afforded $\mathbf{4}$ as colorless oil (90\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-24.9,\left(c=1.01, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{4 \mathrm{~b}, 7}[\alpha]^{25}{ }_{\mathrm{D}}=-25,\left(c=0.8, \mathrm{CHCl}_{3}\right) ; e e=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.18(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $1.44(\mathrm{~m}, 6 \mathrm{H}), 1.63(\mathrm{~s}, 2 \mathrm{H}) 3.78(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.8,23.5,38.8$.

(1,2S:8S,9)-Bisepoxy-Nonane (S5)

HKR of racemic 1,2:8,9-diepoxynonane following procedures described above afforded $\mathbf{S 5}$ as colorless oil (14\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-20.3,\left(c=1.45, \mathrm{CHCl}_{3}\right)$, lit. $^{4 \mathrm{4b}, 8}[\alpha]^{23}{ }_{\mathrm{D}}=+20.7,(c=1.03$, CHCl_{3}) for (1,2R:8R,9)-diepoxynonane; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.48(\mathrm{~m}, 10 \mathrm{H}), 2.44$ $\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}\right), 2.73(\mathrm{t}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.88(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 25.8,29.1,32.3,47.0,52.2$.
(2R,8R)-Nonanediol (6)

LAH ring opening of $\mathbf{S 5}$ following procedures described above afforded $\mathbf{6}$ as colorless oil (92\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-8.0,\left(c=1.56, \mathrm{CHCl}_{3}\right) ; e e=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.38(\mathrm{~m}, 10 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.5,25.7,29.6,39.2,68.1 .{ }^{9}$

(1,2S:9S,10)-Diepoxydecane (S6)

Co
HKR of racemic 1,2:9,10-diepoxydecane following procedures described above afforded $\mathbf{S 6}$ as colorless oil $(14 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=-18.4,\left(c=1.0, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{4 \mathrm{~b}, 10}[\alpha]^{27}{ }_{\mathrm{D}}=-17,(c=0.79$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.47(\mathrm{~m}, 12 \mathrm{H}), 2.43\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right)$, $2.71(\mathrm{t}, 2 \mathrm{H}, J=4.2 \mathrm{~Hz}), 2.87(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.8,29.3,32.4,47.1$, 52.3; IR (film) 3046, 2984, 2930 (str.), 2857 (str.), 1466, 1410, 1260, 914, 835 (str.); HRMS (ES+) m/z for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} ;$obs'd 193.1207 , calc'd 193.1204.

(2R,9R)-Decanediol (7)

LAH ring opening of $\mathbf{S 6}$ following procedures described above afforded 7 as colorless oil (92\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-9.9,\left(c=1.0, \mathrm{CHCl}_{3}\right), e e=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.36(\mathrm{~m}, 12 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.5,25.7,29.6,39.3,68.1 .^{11}$

1,10-Undecdiene (S7)

To a slurry of PCC ($2.4 \mathrm{~g}, 48.6 \mathrm{mmol}$) and celite (30 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ and THF (60 mL) was added 1,9-nonanediol solid powder ($3.24 \mathrm{~g}, 20.3 \mathrm{mmol}$). The dark brown solution was stirred under N_{2} at RT overnight. The mixture was filtered through celite, concentrated and purified by flash chromatography ($5-20 \%$ EtOAc / hexane) to afford 1,9-nonane dialdehyde ($1.93 \mathrm{~g}, 61 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.30(\mathrm{~m}, 10 \mathrm{H})$, $2.39(\mathrm{t}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}), 9.76(\mathrm{~s}, 2 \mathrm{H})$.

To a solution of triphenylphosphine methyl bromide ($10.4 \mathrm{~g}, 28.5 \mathrm{mmol}$) in dry THF (80 mL) at $0^{\circ} \mathrm{C}$ was added NaHMDS ($28.5 \mathrm{~mL}, 28.5 \mathrm{mmol}, 1 \mathrm{M}$ in THF) dropwise. The solution was stirred for 1 h before dropwise addition of 1,9 -nonane dialdehyde ($1.74 \mathrm{~g}, 11.14 \mathrm{mmol}$). The resultant yellow slurry was stirred at RT overnight then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted by $\mathrm{Et}_{2} \mathrm{O}(2 \times 60 \mathrm{~mL})$. Organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to flash chromatography ($0-5 \% \mathrm{EtOAc} /$ hexane) to afford 1,10 -undecdiene $(1.61 \mathrm{~g}, 95 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.34(\mathrm{~m}, 10 \mathrm{H}), 2.01(\mathrm{q}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.94(\mathrm{~m}, 4 \mathrm{H}), 5.78(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 28.9,29.1,29.3,33.8,114.1,139.2 .^{12}$

1,2:10,11-Diepoxyundecane (S8)

m-CPBA mediated epoxidation of $\mathbf{S 7}$ as described above afforded $\mathbf{S 8}$ as colorless oil (78%). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.44(\mathrm{~m}, 14 \mathrm{H}), 2.45\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right), 2.73(\mathrm{t}$, $2 \mathrm{H}, J=4.5 \mathrm{~Hz}), 2.88(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.8,29.2,29.3,32.4,47.0$, 52.2.

(1,2S:10S,11)-Diepoxyundecane (S9)

HKR of racemic 1,2:10,11-diepoxyundecane following procedures described above afforded S9 as colorless oil (13%). $[\alpha]^{20}{ }_{\mathrm{D}}=-15.5,\left(c=1.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.44(\mathrm{~m}, 12 \mathrm{H}), 2.44\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right), 2.73(\mathrm{t}, 2 \mathrm{H}, J=4.5 \mathrm{~Hz}), 2.88(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.9,29.3,29.4,32.4,47.1,52.3$.; IR (film) 3046, 2982, 2930 (str.), 2859 (str.), $1458,1410,1260,916,835$ (str.) cm^{-1}; HRMS (ES+) m / z for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$; obs'd 185.1540 , calc'd 185.1542.

(2R,10R)-Undecanediol (8)

LAH ring opening of $\mathbf{S 9}$ following procedures described above afforded $\mathbf{8}$ as white solid (89%). $[\alpha]^{20}{ }_{\mathrm{D}}=-10.3,\left(c=1.0, \mathrm{CHCl}_{3}\right), e e=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.36(\mathrm{~m}, 14 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.4,25.7,29.5,39.3,68.0 .{ }^{13}$

1,11-Dodecadiene (S10)

1,11-Dodecadiene was prepared from 1,10-decanediol using procedures described above for S7 (61% over two steps). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.31(\mathrm{~m}, 12 \mathrm{H}), 2.00(\mathrm{q}, 4 \mathrm{H}), 4.94$ $(\mathrm{m}, 4 \mathrm{H}), 5.78(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 28.9,29.1,29.4,33.8,114.1,139.2 .{ }^{14}$

1,2:11,12-Diepoxydodecane (S11)

m-CPBA mediated epoxidation of S10 as described above afforded S11 as colorless oil $(75 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.45(\mathrm{~m}, 16 \mathrm{H}), 2.45\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right)$, $2.73(\mathrm{t}, 2 \mathrm{H}, J=4.5 \mathrm{~Hz}), 2.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.8,29.2,29.3,32.3$, 46.9, 52.2. ${ }^{8}$

(1,2S:11S,12)-Diepoxydodecane (S12)

HKR of racemic 1,2:11,12-diepoxydodecane following procedures described above afforded S12 as colorless oil (20\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-14.9,\left(c=1.0, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{4 \mathrm{~b}, 8}[\alpha]^{23}{ }_{\mathrm{D}}=-16.4,(c=0.3$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.45(\mathrm{~m}, 16 \mathrm{H}), 2.45\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right)$, $2.73(\mathrm{t}, 2 \mathrm{H}, J=4.5 \mathrm{~Hz}), 2.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 25.8,29.2,29.3,32.3$, 46.9, 52.2.
(2R,11R)-Dodecanediol (9)

LAH ring opening of $\mathbf{S 1 2}$ following procedures described above afforded $\mathbf{9}$ as white solid (93\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-8.9,\left(c=1.0, \mathrm{CHCl}_{3}\right), e e=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.17(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.38(\mathrm{~m}, 16 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.4,25.7,29.5,29.6,39.3,68.1 .{ }^{11}$

(2R,11R)-Tetradecanediol (10)

To a flame dried 50 mL round bottom flask was added magnesium turnings ($514 \mathrm{mg}, 21.4$ mmol), 1,8-dibromooctane ($1.46 \mathrm{~g}, 5.35 \mathrm{mmol}$) and dry THF (10 mL). The mixture was stirred under N_{2} at $70{ }^{\circ} \mathrm{C}$ for 2 h then cooled to room temperature. This solution was added dropwise via syringe into a solution of (R)-propylepoxide ($0.62 \mathrm{~g}, 10.7 \mathrm{mmol}$) and $\mathrm{CuI}(0.21$ $\mathrm{g}, 1.07 \mathrm{mmol})$ in dry THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resultant slurry was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then warmed to room temperature. After being stirred overnight, the dark blue slurry was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted by $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 20 \mathrm{~mL})$. Organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to flash chromatography ($10-30 \%$ EtOAc / hexane) to afford $\mathbf{1 0}$ as white solid ($849 \mathrm{mg}, 69 \%$). $[\alpha]^{20}{ }_{\mathrm{D}}=-9.9,\left(c=1.29, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{4 \mathrm{~b}, 15}[\alpha]^{20}{ }_{\mathrm{D}}=10,\left(c=1.04, \mathrm{CHCl}_{3}\right)$ for $(2 S, 11 S)$ tetradecanediol, $e e=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.16(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.30(\mathrm{~m}, 20 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.4$, 25.7, 29.49, 29.52, 29.57, 39.3, 68.0.

(2R,17R)-Diol (11)

Diol 11 was prepared from 1,12-dibromododecane and (R)-propylepoxide using procedures described above for $\mathbf{1 0}$ as white solid (51\%). $[\alpha]^{20}{ }_{\mathrm{D}}=-7.4,\left(c=0.62, \mathrm{CHCl}_{3}\right)$, ee $=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.16(\mathrm{~d}, 6 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $1.31(\mathrm{~m}, 28 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 23.5,25.8,29.57,29.59,29.62$, 39.4, 68.2.; HRMS (ES +) m / z for $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$; obs'd 287.2969, calc'd 287.2950.

(2S,3-Epoxypropyl)benzene (S14)

To a solution of allylbenzene $(5.9 \mathrm{~g}, 50.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added m CPBA ($77 \%, 12.32 \mathrm{~g}, 55.0 \mathrm{mmol}$). The white suspension was stirred at room temperature for 4 h monitored by TLC until completion. The reaction was quenched and washed with saturated NaHCO_{3} solution $(4 \times 80 \mathrm{~mL})$ followed by brine $(100 \mathrm{~mL})$. The organic layers were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The oil residue was purified by flash chromatography ($5-10 \% \mathrm{EtOAc} /$ hexane) to afford the (2,3 -epoxypropyl)benzene (5.5 g , $82 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz})$, $2.82(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.88(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 5 \mathrm{H})$
(2,3-Epoxypropyl)benzene ($5.0 \mathrm{~g}, 37.3 \mathrm{mmol}$), (S, S)-Salen-Co catalyst ($113 \mathrm{mg}, 0.187 \mathrm{mmol}$, 0.005 equiv), THF (0.4 mL) and HOAc ($43 \mu \mathrm{~L}, 45 \mathrm{mg}, 0.746 \mathrm{mmol}, 0.02$ equiv) were added sequentially to a 25 mL round bottom flask rendering a dark red-brown solution. The mixture was cooled in ice-bath and $\mathrm{H}_{2} \mathrm{O}$ ($369 \mathrm{mg}, 20.5 \mathrm{mmol}, 0.55$ equiv) was added in one portion. The reaction mixture was stirred for 20 h and then purified by flash chromatography ($10-30 \%$ EtOAc / hexane) to afford the ($2 S, 3$-epoxypropyl)benzene as light brown oil (2.09 g , 42%) and 3-phenyl-1,2R-propyldiol as light brown oil ($2.31 \mathrm{~g}, 46 \%$). Epoxide S14: $[\alpha]^{20}{ }_{\mathrm{D}}=-$ 17.3, $(c=1.0, \mathrm{EtOH})$, lit. ${ }^{1}[\alpha]^{25 s}{ }_{\mathrm{D}}=+17.5,(c=1.94, \mathrm{EtOH})$ for ($2 R, 3$-epoxypropyl)benzene, $e e=98 \%$ (comparison of optical rotation); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.80$ $(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.82(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.88(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}$, $5 \mathrm{H})$

1-12-Dibenzyl-(2R,11R)-Dodecanediol (12)

To a flame dried 25 mL round bottom flask was added grounded magnesium turnings (96 mg , $4.0 \mathrm{mmol})$, 1,6-dibromohexane ($244 \mathrm{mg}, 1.0 \mathrm{mmol}$) and dry $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was stirred under N_{2} at $50{ }^{\circ} \mathrm{C}$ for 3 h then cooled to room temperature. This solution was added dropwise via syringe into a suspension of $\mathrm{CuI}(57 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dry THF (5 mL) at $50^{\circ} \mathrm{C}$ leading to white slurry. The mixture was warmed to $0^{\circ} \mathrm{C}$ over 30 min and then cooled to $-10^{\circ} \mathrm{C}$. followed by slow addition of ($2 S, 3$-epoxypropyl)benzene ($268 \mathrm{mg}, 2.0 \mathrm{mmol}$) solution in dry THF (2 mL). The resultant dark brown slurry was stirred overnight while warmed to room temperature, and was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous layer was extracted by EtOAc $(3 \times 20 \mathrm{~mL})$. Organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to flash chromatography ($5-50 \%$ EtOAc / hexane) to afford $\mathbf{1 2}$ as white solid ($85 \mathrm{mg}, 24 \%$). $[\alpha]^{20}{ }_{\mathrm{D}}=-8.3,\left(c=0.51, \mathrm{CHCl}_{3}\right), e e=95 \%$ (NMR analysis of R MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.25-1.54(\mathrm{~m}, 16 \mathrm{H}), 2.61\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=8.4 \mathrm{~Hz}\right.$, $\left.J_{2}=13.5 \mathrm{~Hz}\right), 2.80\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=4.2 \mathrm{~Hz}, J_{2}=13.5 \mathrm{~Hz}\right), 3.78(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 25.7,29.47,29.54,36.7,44.0,126.3$, 128.4, 129.4, 138.6; HRMS (ES+) m / z for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; obs'd 377.2445, calc'd 377.2457.

10-Bromodec-1-ene (S15)

Br

To a solution of 9-decene-1-ol $(1.56 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(3.98 \mathrm{~g}, 12 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Ph}_{3} \mathrm{P}(3.15 \mathrm{~g}, 12 \mathrm{mmol})$ portionwise. The resulting brownorange slurry was stirred for 2 h and warmed to RT. After further stirring for 1 h , TLC indicated completion and the solvent was then removed under reduced pressure. The brown residue was extracted with hexane ($4 \times 20 \mathrm{~mL}$) and filtered. Combined filtrates were concentrated and subjected to flash chromatography (hexane) to afford $\mathbf{S 1 5}$ as light yellow oil in quantitative yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.24-1.42(\mathrm{~m}, 10 \mathrm{H}), 1.83(\mathrm{~m}, 2 \mathrm{H}), 2.03\left(\mathrm{q}, 2 \mathrm{H}, J_{1}=6.9 \mathrm{~Hz}, J_{2}\right.$ $=7.8 \mathrm{~Hz}), 3.39(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.89-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.84(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz) $\delta 28.4,29.0,29.1,29.2,29.5,33.1,34.0,34.2,114.4,139.3$.

(R)-1-Phenyltridec-12-en-2-ol (S16)

To a mixture of $\mathbf{S} \mathbf{1 5}(1.75 \mathrm{~g}, 8.0 \mathrm{mmol})$ and magnesium turnings ($384 \mathrm{mg}, 16.0 \mathrm{mmol}$) in dry THF (10 mL), was added catalytic amount of I_{2} crystals immediately leading to a dark brown solution with gently reflux. The flask was placed in heating mantle after 20 min and heated at $70^{\circ} \mathrm{C}$ for 2.5 h . The solution was then cooled down and added to a suspension of $\mathrm{CuI}(76$ $\mathrm{mg}, 0.4 \mathrm{mmol}, 0.15$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ quickly via syringe. The slurry was stirred for 30 min and a solution of ($2 S, 3$-epoxypropyl)benzene ($357 \mathrm{mg}, 2.67 \mathrm{mmol}$) in dry THF (3 mL) was added at $-30^{\circ} \mathrm{C}$. The resultant dark brown solution was stirred for 2 h , and was then slowly warmed to RT over 1 h . The reaction was quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. 20 mL) and extracted by EtOAc $(3 \times 20 \mathrm{~mL})$. Organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to flash chromatography ($0-10 \%$ EtOAc / hexane) to afford $\mathbf{S 1 6}$ as colorless oil $(497 \mathrm{mg}, 68 \%)$. $[\alpha]^{20}{ }_{\mathrm{D}}=-7.7,\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 1.26-1.53(\mathrm{~m}, 16 \mathrm{H}), 2.03\left(\mathrm{q}, 2 \mathrm{H}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=14.4 \mathrm{~Hz}\right), 2.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{2}=13.8 \mathrm{~Hz}\right), 2.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.2 \mathrm{~Hz}, J_{2}=13.5 \mathrm{~Hz}\right), 3.79(\mathrm{~m}, 1 \mathrm{H}), 4.89-5.01(\mathrm{~m}$, 2H), 5.75-5.86 (m, 1H), $7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 25.7,28.9,29.1,29.4$, 29.51, 29.57, 29.61, 33.8, 36.8, 44.0, 72.7, 114.1, 126.4, 128.5, 129.4, 138.6, 139.2; HRMS (ES+) m / z for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$; obs'd 355.2636, calc'd 355.2627.

S17

To a solution of $\mathbf{S 1 6}(800 \mathrm{mg}, 2.92 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added m-CPBA ($77 \%, 786 \mathrm{mg}, 3.5 \mathrm{mmol}$). The white suspension was stirred overnight at room temperature, then was quenched and washed by saturated NaHCO_{3} solution $(4 \times 30 \mathrm{~mL})$ and brine (30 mL). The organic layers were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to flash chromatography ($0-30 \%$ EtOAc / hexane) to afford $\mathbf{S 1 7}$ as colorless oil ($557 \mathrm{mg}, 68 \%$). $[\alpha]^{20}{ }_{\mathrm{D}}=-8.0,\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.27-1.52(\mathrm{~m}, 18 \mathrm{H}), 2.44(\mathrm{q}$, $\left.1 \mathrm{H}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=5 \mathrm{~Hz}\right), 2.63\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=13.5 \mathrm{~Hz}\right), 2.72(\mathrm{t}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz})$, $2.81\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=13.5 \mathrm{~Hz}\right), 2.88(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 25.7,25.9,29.36,29.40,29.45,29.50,29.56,32.4,36.8,44.0,47.1$, $52.3,72.6,126.3,128.5,129.4,138.6,139.2$; HRMS (ES+) m / z for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; obs'd 313.2132, calc'd 313.2144.

S18

To a solution of alcohol in epoxy alcohol $\mathbf{S 1 7}(500 \mathrm{mg}, 1.72 \mathrm{mmol})$, DMAP ($42 \mathrm{mg}, 0.34$ $\mathrm{mmol})$ and imidazole ($288 \mathrm{mg}, 4.30 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TBSCl ($285 \mathrm{mg}, 1.90 \mathrm{mmol}$). The mixture was stirred overnight at RT and quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the combined organic layers were then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to flash chromatography ($0-5 \%$ EtOAc / hexane) to afford $\mathbf{S 1 8}$ as colorless oil ($653 \mathrm{mg}, 94 \%$). $[\alpha]^{20}{ }_{\mathrm{D}}=-7.0,\left(c=0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.22(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.83(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.52(\mathrm{~m}, 18 \mathrm{H}), 2.44\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}\right), 2.69\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=\right.$ $\left.4.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right), 2.72(\mathrm{t}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-4.9,-4.7,18.1,25.2,25.89,25.95,29.42,29.45,29.50,29.56$, 29.7, 32.5, 37.0, 44.0, 47.1, 52.4, 73.8, 125.9, 128.0, 129.7, 139.5.

S19

Racemic epoxide $\mathbf{S 1 8}(315 \mathrm{mg}, 0.78 \mathrm{mmol}),(R, R)$-Salen-Co catalyst $(4.8 \mathrm{mg}, 0.0078 \mathrm{mmol}$, 0.01 equiv), THF (0.2 mL) and HOAc ($1.8 \mu \mathrm{~L}, 1.9 \mathrm{mg}, 0.0312 \mathrm{mmol}, 0.04$ equiv) were added sequentially to a 4 mL vial rendering a dark red-brown solution. The mixture was cooled in ice-bath and $\mathrm{H}_{2} \mathrm{O}(7.7 \mathrm{mg}, 0.429 \mathrm{mmol}, 0.55$ equiv) was added in one portion. The reaction mixture was stirred for 22 h and then purified by flash chromatography ($0-5 \%$ EtOAc / hexane) to afford the $\mathbf{S 1 9}$ as colorless oil ($162 \mathrm{mg}, 51 \%$) with the ring opening diol as colorless oil ($150 \mathrm{mg}, 47 \%$). Epoxide S19: $[\alpha]^{20}{ }_{\mathrm{D}}=-6.1,\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta-0.22(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.24-1.52(\mathrm{~m}, 18 \mathrm{H}), 2.44\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=\right.$ $\left.2.7 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}\right), 2.69\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}\right), 2.72(\mathrm{t}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 2.88(\mathrm{~m}$, $1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-4.9,-4.7,18.1,25.2,25.89$, $25.95,29.42,29.45,29.50,29.56,29.7,32.5,37.0,44.0,47.1,52.4,73.8,125.9,128.0,129.7$, 139.5; HRMS (ES+) m / z for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$; obs'd 405.3170, calc'd 405.3189.

S20

To a solution of $\mathbf{S 1 9}(45 \mathrm{mg}, 0.111 \mathrm{mmol})$ in dry $\mathrm{Et} 2 \mathrm{O}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added LAH (8.5 $\mathrm{mg}, 0.223 \mathrm{mmol}$). The mixture was stirred for 2 h until completion, then was quenched with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$, and $\mathrm{NaOH}(2 \mathrm{M}, 0.2 \mathrm{~mL})$. The mixture was stirred for 30 min and filtered through celite. The organic layer was dried and concentrated to afford the pure S20 (43.5 mg, 96\%) as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-4.9,\left(c=0.44, \mathrm{CHCl}_{3}\right)$; ee $=95 \%$ (NMR analysis of R-MPA diester); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.22(\mathrm{~d}, 3 \mathrm{H}, J=4.0 \mathrm{~Hz}),-0.07(\mathrm{~d}$, $3 \mathrm{H}, J=4.0 \mathrm{~Hz}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.24-1.44(\mathrm{~m}, 18 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H})$, $3.79(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-4.9,-4.7,18.1,23.5,25.3,25.76$, $25.89,29.50$, 29.57, 29.59, 29.62, 29.8, 37.0, 39.4, 44.0, 68.2, 73.8, 125.9, 128.0, 129.7, 139.5; HRMS (ES+) m / z for $\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$; obs'd 407.3339, calc'd 407.3345 .

13

To a solution of $\mathbf{S 2 0}(20 \mathrm{mg}, 0.049 \mathrm{mmol})$ in dry THF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TBAF $(1 \mathrm{M}$ in THF, $59 \mu \mathrm{~L}, 0.059 \mathrm{mmol}$). The mixture was stirred for 4 h until completion, then was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and subjected to pipette column (10-50 \% EtOAc / hexane) to afford 13 as white solid ($13 \mathrm{mg}, 94 \%$). $[\alpha]^{20}{ }_{\mathrm{D}}=-6.4,\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.24-1.54(\mathrm{~m}, 18 \mathrm{H}), 2.63\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=13.5 \mathrm{~Hz}\right)$, $2.81\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=13.5 \mathrm{~Hz}\right), 3.79(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 23.5,25.7,29.47,29.55,29.60,36.8,39.4,44.1,68.2,72.7,126.4,128.5,129.4$, 138.6; HRMS (ES+) m / z for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$; obs'd 315.2284, calc'd 315.2300.

Synthesis of TPFP porphyrin tweezers B

Following literature procedures, ${ }^{16}$ TPFP monolinker and tweezer were prepared.

TPFP 1,3-Monolinker (S21)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta-2.88(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.70(\mathrm{t}$, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 8.29(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.46(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.82-8.91(\mathrm{~m}, 8 \mathrm{H})$; IR (film) 3322, 3107, 2930, 1717, 1518 (str.), 1499 (str.), 1402, 1275, 990, 920, 764; HRMS (ES+) m / z for $\mathrm{C}_{48} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{4} \mathrm{~F}_{15}[\mathrm{M}+\mathrm{H}]^{+} ;$obs'd 987.1458, calc'd 987.1452.

TPFP 1,3-Tweezer (S22)

${ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta-2.88(\mathrm{~s}, 4 \mathrm{H}), 2.58(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.84(\mathrm{t}, 2 \mathrm{H}, J=6.3$ Hz), 8.34 (d, 4H, $J=8.4 \mathrm{~Hz}$), 8.54 (d, $4 \mathrm{H}, J=8.4 \mathrm{~Hz}$), 8.13-8.94 (m, 16H); IR (film) 3322, 3105, 2928, 1719, 1518 (str.), 1499(str.), 1267, 990, 920, 764; HRMS (ES+) m/z for $\mathrm{C}_{93} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{~N}_{8} \mathrm{~F}_{30}[\mathrm{M}+\mathrm{H}]^{+}$; obs'd 1897.2314, calc'd 1897.2302.

TPFP Zn-1,3-Tweezer (B)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 2.17(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.25(\mathrm{t}, 4 \mathrm{H}, J=6.3 \mathrm{~Hz}), 8.08(\mathrm{~d}, 4 \mathrm{H}$, $J=8.1 \mathrm{~Hz}$), 8.22 (d, 4H, $J=8.1 \mathrm{~Hz}$), 8.87-8.96 (m, 16H); IR (film) 3104, 2935, 1719, 1696, 1520 (str.), 1491 (str.), 1339, 1269, 988, 939, 768; HRMS (ES+) m / z for $\mathrm{C}_{93} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{8} \mathrm{~F}_{30} \mathrm{Zn}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$; obs'd 2021.0588, calc'd 2021.0572.

Full Cited References from Main Text

(1) (a) Freire, F.; Calderon, F.; Seco, J. M.; Fernandez-Mayoralas, A.; Quinoa, E.; Riguera, R. J. Org. Chem. 2007, 72, 2297; (b) Freire, F.; Manuel Seco, J.; Quinoa, E.; Riguera, R. Org. Lett. 2010, 12, 208; (c) Freire, M.; Seco, J. M.; Quinoa, E.; Riguera, R. Chemistry-a European Journal 2005, 11, 5509; (d) Higashibayashi, S.; Czechtizky, W.; Kobayashi, Y.; Kishi, Y. J. Am. Chem. Soc. 2003, 125, 14379; (e) Kobayashi, Y.; Hayashi, N.; Kishi, Y. Org. Lett. 2002, 4, 411; (f) Kobayashi, Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2177; (g) Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. J. Org. Chem. 1999, 64, 866; (h) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.
(2) (a) Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy: Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA,, 1983; (b) Harada, N.; Saito, A.; Ono, H.; Gawronski, J.; Gawronska, K.; Sugioka, T.; Uda, H.; Kuriki, T. J. Am. Chem. Soc. 1991, 113, 3842; (c) Wiesler, W. T.; Nakanishi, K. J. Am. Chem. Soc. 1989, 111, 9205; (d) Wiesler, W. T.; Nakanishi, K. J. Am. Chem. Soc. 1990, 112, 5574; (e) Zhao, N.; Zhou, P.; Berova, N.; Nakanishi, K. Chirality 1995, 7, 636.
(3) (a) Di Bari, L.; Pescitelli, G.; Pratelli, C.; Pini, D.; Salvadori, P. J. Org. Chem. 2001, 66, 4819; (b) Frelek, J.; Geiger, M.; Voelter, W. Curr. Org. Chem. 1999, 3, 117; (c) Frelek, J.; Geiger, M.; Voelter, W. Tetrahedron-Asymmetry 1999, 10, 863; (d) Rosini, C.; Scamuzzi, S.; Pisani-Facati, M.; Salvadori, P. J. Org. Chem. 1995, 60, 8289; (e) Rosini, C.; Scamuzzi, S.; Uccellobarretta, G.; Salvadori, P. J. Org. Chem. 1994, 59, 7395; (f) Rosini, C.; Tartaglia, S.; Pace, F.; Scafato, P. Org. Lett. 2008, 10, 3421; (g) Rosini, C.; Tartaglia, S.; Padula, D.; Scafato, P.; Chiummiento, L. J. Org. Chem. 2008, 73, 4865; (h) Scafato, P.; Superchi, S. Chirality 2010, 22, E3; (i) Superchi, S.; Casarini, D.; Laurita, A.; Bavoso, A.; Rosini, C. Angewandte Chemie-International Edition 2001, 40, 451; (j) Superchi, S.; Casarini, D.; Summa, C.; Rosini, C. J. Org. Chem. 2004, 69, 1685; (k) Superchi, S.; Donnoli, M. I.; Proni, G.; Spada, G. P.; Rosini, C. J. Org. Chem. 1999, 64, 4762; (1) Superchi, S.; Donnoli, M. I.; Rosini, C. Org. Lett. 1999, 1, 2093.
(4) (a) MacMillan, J. B.; Linington, R. G.; Andersen, R. J.; Molinski, T. F. Angewandte Chemie-International Edition 2004, 43, 5946; (b) MacMillan, J. B.; Molinski, T. F. J. Am. Chem. Soc. 2004, 126, 9944.
(5) (a) Borovkov, V. V.; Lintuluoto, J. M.; Inoue, Y. Org. Lett. 2000, 2, 1565; (b) Borovkov, V. V.; Lintuluoto, J. M.; Inoue, Y. J. Am. Chem. Soc. 2001, 123, 2979; (c) Huang, X. F.; Fujioka, N.; Pescitelli, G.; Koehn, F. E.; Williamson, R. T.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc. 2002, 124, 10320; (d) Huang, X. F.; Rickman, B. H.; Borhan, B.; Berova, N.; Nakanishi, K. J. Am. Chem. Soc. 1998, 120, 6185; (e) Kurtan, T.; Nesnas, N.; Koehn, F. E.; Li, Y. Q.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc. 2001, 123, 5974; (f) Kurtan, T.; Nesnas, N.; Li, Y. Q.; Huang, X. F.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc. 2001, 123, 5962.
(6) Lintuluoto, J. M.; Borovkov, V. V.; Inoue, Y. J. Am. Chem. Soc. 2002, 124, 13676.
(7) (a) Proni, G.; Pescitelli, G.; Huang, X. F.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc. 2003, 125, 12914; (b) Proni, G.; Pescitelli, G.; Huang, X. F.; Quraishi, N. Q.; Nakanishi, K.; Berova, N. Chem. Commun. 2002, 1590; (c) Yang, Q. F.; Olmsted, C.; Borhan, B. Organic. Lett. 2002, 4, 3423.
(8) Li, X. Y.; Tanasova, M.; Vasileiou, C.; Borhan, B. J. Am. Chem. Soc. 2008, 130, 1885.
(9) Li, X. Y.; Borhan, B. J. Am. Chem. Soc. 2008, 130, 16126.
(10) (a) Chow, S.; Kitching, W. Chem. Commun. 2001, 1040; (b) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307; (c) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277, 936.
(11) Chiral monoalcohols failed to provide an ECCD signal with the zincated TPFP tweezers.
(12) Tanasova, M.; Borhan, B. Eur. J. Org. Chem. 2012, In Press.
(13) Harada, N.; Chen, S. L.; Nakanishi, K. J. Am. Chem. Soc. 1975, 97, 5345.
(14) Huang, X.; Borhan, B.; Berova, N.; Nakanishi, K. J. Indian Chem. Soc. 1998, 75, 725.
(15) The electric dipole transition moments (edtms) shown in Figure 4 (bold red lines) indicate the direction of edtms for assignment of helicity. These have been assumed in the direction that breaks the symmetry of the porphyrin ring (5,15-meso positions of the porphyrin). Although it is difficult to assign edtms for a metallated porphyrin system, since the coupling chromophores are degenerate in structure, the absolute orientation would remain the same, no matter the true direction of the edtms. For a leading discussion in this area the reader is referred to the following publication. Pescitelli, G.; Gabriel, S.; Wang, Y.; Fleischhauser, J.; Woody, R. W.; Berova, N. J. Am. Chem. Soc. 2003, 125, 7613-7628.

References:

(1) MacCarthy, P. Anal. Chem. 1978, 50, 2165.
(2) (a) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 1307; (b) Chow, S.; Kitching, W. Chem. Commun. 2001, 1040.
(3) van As, B. A. C.; van Buijtenen, J.; Mes, T.; Palmans, A. R. A.; Meijer, E. W. Chem-Eur J 2007, 13, 8325.
(4) (a) Machinaga, N.; Kibayashi, C. J. Org. Chem. 1992, 57, 5178; (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(5) Kim, M. J.; Lee, I. S.; Jeong, N. C.; Choi, Y. K. J. Org. Chem. 1993, 58, 6483.
(6) Chow, S.; Koenig, W. A.; Kitching, W. Eur. J. Org. Chem. 2004, 1198.
(7) Solladie, G.; Huser, N.; Garciaruano, J. L.; Adrio, J.; Carreno, M. C.; Tito, A. Tetrahedron Lett. 1994, 35, 5297.
(8) Chow, S.; Kitching, W. Tetrahedron-Asymmetr 2002, 13, 779.
(9) Keinan, E.; Sinha, S. C.; Sinhabagchi, A. J. Org. Chem. 1992, 57, 3631.
(10) Takano, S.; Murakami, T.; Samizu, K.; Ogasawara, K. Heterocycles 1994, 39, 67.
(11) Isakov, V. E.; Kulinkovich, O. G. Synlett 2003, 967.
(12) Johnson, D. K.; Donohoe, J.; Kang, J. H. Synth. Commun. 1994, 24, 1557.
(13) Hillbur, Y.; Celander, M.; Baur, R.; Rauscher, S.; Haftmann, J.; Franke, S.; Francke, W. J. Chem. Ecol. 2005, 31, 1807.
(14) Trost, B. M.; Muller, T. J. J.; Martinez, J. J. Am. Chem. Soc. 1995, 117, 1888.
(15) Suzuki, Y. I.; Isozaki, T.; Hashimoto, S.; Kusumoto, T.; Hiyama, T.; Takanishi, Y.; Takezoe, H.; Fukuda, A. J. Mater. Chem. 1996, 6, 753.
(16) Li, X. Y.; Tanasova, M.; Vasileiou, C.; Borhan, B. J. Am. Chem. Soc. 2008, 130, 1885.

