Supplement for

Towards molecular-level characterization of photo-induced decarboxylation of the green fluorescent protein: Accessibility of the charge-transfer states

Bella L. Grigorenko^a, Alexander V. Nemukhin^{a,b}, Dmitry I. Morozov^a, Igor V. Polyakov^a, Ksenia B. Bravaya^c, and Anna I. Krylov^c

^a Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia

^b Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia

^c Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482

1. The details the QM/MM model

Numbering of the residues is consistent with the 1EMA structure. The QM part includes:

a) the residues representing the chromophore (Ser65, Tyr66, Gly67);

b) side chains of the residues Arg96, Ser205, Glu222;

c) a water molecule connecting the chromophore with Ser205.

The MM part of includes side chains of the residues from 11 to 64 and from 68 to 227.

2. The QM/MM optimized coordinates of the QM-subsystem in the ground state (S_0)

С	22.720	27.252	36.337
0	22.334	26.193	36.823
N	24.032	27.533	36.182
Н	24.284	28.459	35.879
С	25.105	26.616	36.466
Н	24.639	25.653	36.706
C	26.029	26.427	35.254
п	25.384	20.150	34.410
	20.010	27.301	35.021
Ч	20.900	25.407	35,730
C	25 896	27.068	37 649
Ň	27.129	27.454	37.597
C	27.507	27.701	38.909
С	28.656	28.251	39.374
Н	28.693	28.345	40.459
С	29.784	28.817	38.669
С	29.971	28.777	37.273
Н	29.294	28.210	36.642
С	30.740	29.511	39.436
Н	30.616	29.541	40.515
	31.057	29.419	30.089
Г	31.194	29.330	38 860
н	32 565	30.653	39 467
C	31 991	30 110	37 474
Õ	33.087	30.717	36.956
H	33.339	30.310	36.067
С	26.364	27.412	39.793
0	26.229	27.522	41.016
Ν	25.372	27.024	38.940
С	24.006	26.907	39.397
Н	23.775	27.722	40.074
Н	23.319	26.984	38.561
C	23.717	25.595	40.078
U N	22.001	20.479	40.900
	24.443	24.090	38.009
N	25.100	31 749	43 263
Н	25.881	31,434	43,991
C	25.069	30.887	42.242
N	24.007	30.954	41.473
Н	23.956	30.331	40.684
Н	23.270	31.621	41.632
Ν	25.988	29.962	42.063
Н	25.874	29.182	41.413
Н	26.846	29.959	42.599
С	32.316	28.614	32.193
H	32.647	29.653	32.198
	31.200 37.750	20.029 28.210	31.020 33 546
Ч	31 358	20.210 27 831	33 812
C	31 333	25 273	34 452
Ĥ	31.463	24.430	35.129
Н	32.258	25.847	34.430

Table S1.	Cartesian	coordinates	(Å) of the	QM part
С	22,720	27,252	36.337	

С	30.250	26.167	35.050
0	30.069	27.285	34.501
0	29.602	25.733	36.036
0	34.237	29.680	34.947
Н	34.513	30.355	34.332
Н	33.571	29.156	34.493

3. Additional data complementing Table 1 of the main text

Model system	Computational protocol	Excitation energy
Chro	sa(10)-CASSCF(12/11)/6-31G*	5.32
Chro + all effective fragments for the protein	sa(10)-CASSCF(12/11)/6-31G*	5.23
Model cluster shown in Fig.1	sa(10)-CASSCF(12/11)/6-31G*	4.37
Model cluster shown in Fig.1 + remaining effective fragments	sa(10)-CASSCF(12/11)/6-31G*	5.20
Model cluster shown in Fig.1	XMCQDPT2/sa(10)-CASSCF(12/11)/cc-pVDZ	3.18
Model cluster shown in Fig.1	XMCQDPT2/sa(4)-CASSCF(12/11)/cc-pVDZ	3.08
Model cluster shown in Fig.1+remaining effective fragments	sa(3)-CASSCF(12/11)/cc-pVDZ	4.62
Model cluster shown in Fig.1+remaining effective fragments	XMCQDPT2/sa(3)-CASSCF(12/11)/cc-pVDZ	3.40

Table S2. S_0 - S_1 excitation energy (eV)

4. Active space orbitals from the CASSCF(12/11) and ORMAS calculations

sa(10)-CASSCF(12/11)/cc-pVDZ natural orbitals

sa(5)-MCSCF/ORMAS/cc-pVDZ optimized orbitals

