Supporting Information

Substrate-dependent Divergent Outcome from Catalytic Reactions of Silyl-protected Enoldiazoacetates With Nitrile Oxides:
 Azabicyclo[3.1.0]hexanes or 5-Arylaminofuran-2(3H)-ones

Xinfang Xu, Dmitry Shabashov, Peter J. Zavalij, Michael P. Doyle*
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

E-mail: mdoyle3@umd.edu

Table of Contents

Crystallographic data for compound $\mathbf{4 g}$ S2
Spectra copies of the reaction mixture and compunds. S3-S23

Crystallographic data for compound $\mathbf{4 g}$

A clear colourless prism-like specimen of $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6}$, approximate dimensions $0.10 \mathrm{~mm} \times 0.28$ $\mathrm{mm} \times 0.50 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker Smart Apex2, CCD system equipped with a graphite monochromator and a $\mathrm{MoK} \alpha$ fine focus sealed tube $(\lambda=0.71073 \AA$). Data collection temperature was 150 K .

The total exposure time was 12.63 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 17592 reflections to a maximum θ angle of $30.00^{\circ}(0.71 \AA$ resolution $)$, of which 3452 were independent (average redundancy 5.096 , completeness $=100.0 \%, \mathrm{R}_{\text {int }}=1.93 \%$, $\left.\mathrm{R}_{\text {sig }}=1.48 \%\right)$ and $3196(92.58 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $a=6.8882(5)$ $\AA, b=20.8439(15) \AA, c=8.2554(6) \AA, \beta=90.0280(10)^{\circ}, V=1185.29(15) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9934 reflections above $20 \sigma(\mathrm{I})$ with $4.934^{\circ}<2 \theta<62.18^{\circ}$. Data were corrected for absorption effects using the multi-scan method (SADABS). The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9440 and 0.9880 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P $121 / \mathrm{c} 1$, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 221 variables converged at $\mathrm{R}_{1}=3.50 \%$, for the observed data and $\mathrm{wR}_{2}=7.14 \%$ for all data. The goodness-of-fit was 1.000. The largest peak in the final difference electron density synthesis was $0.455 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.228 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.045 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.559 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 576 \mathrm{e}^{-}$
${ }^{1} H$ NMR spectra comparison of $4 g$ with the reaction mixture (pre- 4 g)

NMR spectra of reaction mixture with TIPS-enoldiazoacetate

1D-Noe spectra of trans-4m and cis-4m

1D-Noe spectra of trans-4o

S-7

User Name xx00~N⿰氵气⿱八乂
User Name xx00~N⿰氵气⿱八乂
Group doyle1
Group doyle1

User Name xxu N N %-O/`O User Name xxu N N %-O/`O
Sample Label Ox-4F2
Sample Label Ox-4F2

1	1			1	1	，	1	T	1	1	1	1	1	1	1	1	1	1	
190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10	0

