Supporting Information (41 pages)

Hydrogen Storage in New Metal-Organic Frameworks

David J. Tranchemontagne, ${ }^{\dagger}$ Kyo Sung Park, ${ }^{\dagger}$ Hiroyasu Furukawa, $\left.{ }^{*}{ }^{\dagger},\right\rangle$ Juergen Eckert, ${ }^{\#}$ Carolyn B. Knobler, ${ }^{\dagger}$ and Omar M. Yaghi ${ }^{\dagger \uparrow, \uparrow, 0}$
${ }^{\dagger}$ Center for Reticular Chemistry, UCLA-DOE Institute for Genomics and Proteomics, and Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 East Charles E. Young Drive, Los Angeles, California 90095, United States.
${ }^{\dagger}$ NanoCentury KI and Graduate School of EEWS (WCU) KAIST, Daejeon 305-701, Korea.
"Department of Chemistry, 4202 E. Fowler Ave., University of South Florida, Tampa, Florida 33620, United States.
${ }^{\circ}$ Current Address: Department of Chemistry, University of California and The Molecular Foundry at Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.

Corresponding Author: *E-mail: furukawa@chem.ucla.edu

Table of Contents

Section S1 Synthesis of Organic Compounds

Section S2 Single Crystal X-ray Diffraction Analyses S16-S30
Section S3 Powder X-Ray Diffraction Patterns S31-S33
Section S4 Thermal Gravimetric Analyses S34-S36
Section S5 Gas Adsorption Measurements S37-S40
Section S6 Complete Ref. 3i S41
Section S7 References S41

Section S1: Synthesis of Organic Compounds

1.1 Synthesis of 4,4'-(ethyne-1,2-diyl)dibenzoic acid (H2EDB)

Scheme S1. The synthesis of $\mathrm{H}_{2} \mathrm{EDB}$.

Methyl 4-(trimethylsilylethynyl)benzoate (2). Methyl 4-iodobenzoate (50.3 g, 193 mmol), bis(triphenylphosphine)palladium (II) chloride ($1.37 \mathrm{~g}, 1.95 \mathrm{mmol}$), and copper (I) iodide $(0.740 \mathrm{~g}, 3.88 \mathrm{mmol})$ were stirred in a mixture of freshly distilled tetrahydrofuran $(\mathrm{Na} /$ benzophenone, 230 mL) and triethylamine $(60 \mathrm{~mL})$, and degassed for 10 minutes with N_{2}. Trimethylsilylacetylene (30 mL) was added under N_{2} flow, and the reaction mixture was stirred under N_{2} overnight, after which time the mixture was concentrated by rotary evaporation. The solid was mixed and washed thoroughly with ethyl acetate (500 mL in 4 portions), and the combined solution was concentrated by rotary evaporation. The solid was taken up in benzene and passed through a short column of silica 60 (800 mL total benzene). The product was concentrated by rotary evaporation and purified by Kugelrohr distillation ($20 \mathrm{mTorr}, 100^{\circ} \mathrm{C}$) as an off-white solid (43.9 g , $98 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 0.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.52(\mathrm{~d}$,
$J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 0.14,52.23$, 97.70, 104.08, 127.79, 129.38, 129.70, 131.88, 166.50; IR (KBr) 3002 (w), 2966 (m), 2900 (w), 2854 (w), 2162 (m), 1943 (w), 1724 (s), 1612 (m) cm ${ }^{-1}$; MS (GCMS) m/z 232 $\left(\mathrm{M}^{+}\right), 217$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2}$ in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S3. FT-IR spectrum of compound 2, KBr pellet.

Methyl 4-ethynylbenzoate (3). Methyl 4-((trimethylsilyl)ethynyl)benzoate (43.9 g, 188 mmol) was stirred in methanol (375 mL), and potassium carbonate ($10.0 \mathrm{~g}, 73.0 \mathrm{mmol}$) was added. The mixure was stirred for 1.5 hours, at which point the solvent was removed by rotary evaporation. Aqueous $\mathrm{HCl}(1 \mathrm{~N}, 500 \mathrm{~mL})$ was slowly added, and the product was extracted with dichloromethane, dried over sodium sulfate, and concentrated by rotary evaporation to yield the ester $(29.4 \mathrm{~g}, 98 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 3.23$ (s, 1H, C $\equiv \mathrm{C}-H), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.55(\mathrm{~d}, J=\mathrm{Hz} 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=\mathrm{Hz} 8.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 52.30,80.06,82.81,126.76,129.47,130.16,132.09$, 166.42; IR (KBr) 3302 (m), 3246 (s), 2951 (m), 2106 (m), 1704 (s) cm^{-1}; MS (GCMS) $m / z 160\left(\mathrm{M}^{+}\right), 129,101,75$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$ in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

Figure S6. FT-IR Spectrum of compound 3, KBr pellet.

1,4-bis(\boldsymbol{p}-carbomethoxybenzene)-1,2-acetylene (4). Methyl 4-iodobenzoate (19.2 g, $73.4 \mathrm{mmol})$ and $6(10.8 \mathrm{~g}, 67.3 \mathrm{mmol})$ were stirred in a mixture of THF (distilled over $\mathrm{Na} /$ benzophenone, 150 mL) and triethylamine (25 mL), and degassed with N_{2} for 6 minutes. Bis(triphenylphosphine)palladium (II) chloride ($0.470 \mathrm{~g}, 0.690 \mathrm{mmol}$), and copper (I) iodide ($0.256 \mathrm{~g}, 1.34 \mathrm{mmol}$) were added under a N_{2} blanket, and the reaction mixture was stirred under N_{2} for 21.5 hours. The solid was washed with chloroform and filtered, and then Soxhlet extracted with toluene. The precipitate that formed upon cooling was filtered and recrystallized from toluene with hot filtration, giving white crystalline alkyne ($13.6 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 3.93(\mathrm{~s}, 6 \mathrm{H} \mathrm{CH} 3), 7.60$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 52.43$, 91.51, 127.49, 129.71, 130.08, 131.78, 166.58; IR 3022 (w), 2966 (w), 1714 (s) cm^{-1}; MS (MALDI-MS) $\mathrm{m} / \mathrm{z} 294\left(\mathrm{M}^{+}\right)$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure S9. FT-IR spectrum of compound 4, KBr pellet.

4,4'-(ethyne-1,2-diyl)dibenzoic acid (H2EDB). Sodium hydroxide (7.36 g, 184 mmol) and (1,4-bis(p-carbomethoxybenzene)-1,2-acetylene $(9.00 \mathrm{~g}, 30.6 \mathrm{mmol})$ were stirred in ethanol $(95 \%, 200 \mathrm{~mL})$ and refluxed for 18 hours. The solvent was removed by rotary evaporation, and the solid was dissolved in water, and the pH was reduced to 1 with HCl $(12 \mathrm{M})$. The product was collected by filtration, washed with water $(2 \times 50 \mathrm{~mL})$, and dried at $120^{\circ} \mathrm{C}$ overnight, yielding the diacid $(7.67 \mathrm{~g}, 94 \%)$. Triethylamine was added to the NMR solution to improve the solubility of $1 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 7.52(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 90.29,123.35$, $129.25,130.61,138.24,169.12$; IR (KBr) 1688 (s), 1607 (s) cm^{-1}; MS (ESI, negative mode) -265 $\left((m-H)^{-} / z\right),-221\left(m-\mathrm{CO}_{2} \mathrm{H}\right)$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{H}_{2} \mathrm{EDB}$ in DMSO- $d_{6}, 400 \mathrm{MHz}$; triethylamine added for solubility.

Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{H}_{2} \mathrm{EDB}$ in DMSO- $d_{6}, 100 \mathrm{MHz}$; triethylamine added for solubility.

Figure $\mathbf{S 1 2}$. FT-IR spectrum of $\mathrm{H}_{2} \mathrm{EDB}, \mathrm{KBr}$ pellet.

1.2 Synthesis of 4,4'-(buta-1,3-diyne-1,4-diyl)dibenzoic acid ($\mathbf{H}_{2} \mathrm{BDB}$)

Scheme S2. The synthesis of $\mathrm{H}_{2} \mathrm{BDB}$.

1,4-bis(p-carbomethoxybenzene)-1,3-butadiyne (5). Methyl 4-ethynylbenzoate (60.2 g , 376 mmol) was dissolved in acetone (600 mL). Copper (I) chloride ($0.762 \mathrm{~g}, 7.70 \mathrm{mmol}$) and TMEDA ($1.34 \mathrm{~g}, 11.6 \mathrm{mmol}$) were added, and the mixture was stirred, open to air, for 20 hours. The precipitate was filtered and washed with additional acetone and then washed with chloroform (400 mL). The undissolved solid was Soxhlet extracted with chloroform. The two solutions were combined, and solvent was removed by rotary evaporation to give the butadiyne ($41.0 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 3.93(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 52.49,76.39,81.99,126.22,129.69,130.66,132.59,166.35$; IR (KBr) 3022 (w), 2961 (w), 2096 (w), 2065 (w), 1729 (s) cm ${ }^{-1}$; MS (MALDI) m/z 318 (M^{+}).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}$ in $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$.

Figure $\mathbf{S 1 5}$. FT-IR spectrum of compound 5, KBr pellet.

4,4'-(buta-1,3-diyne-1,4-diyl)dibenzoic acid ($\mathbf{H}_{\mathbf{2}} \mathbf{B D B}$). Sodium hydroxide ($26.1 \mathrm{~g}, 652$ $\mathrm{mmol})$ was dissolved in ethanol $(95 \%, 1.5 \mathrm{~L})$. The diester $8(41.0 \mathrm{~g}, 129 \mathrm{mmol})$ was added and the mixture was stirred and refluxed for 4 hours. The mixture was cooled and filtered, and the solid was dissolved in water. The solution pH was adjusted to 1 with HCl $(12 \mathrm{M})$, and the product was filtered in two funnels. Each portion was washed with water, THF (dried in a solvent purification column, 250 mL), then diethyl ether (dried in a solvent purification column, 250 mL), and dried in vacuo (38.6 g , quant.). The product exhibited low solubility in DMSO- d_{6} for NMR characterization; triethylamine was added to the NMR solution to improve the solubility of $\mathbf{2}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 7.55$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 74.19$, 82.19, 121.29, 129.27, 131.63, 139.65, 168.87; IR (KBr) 1688 (s), 1603 (m) cm ${ }^{-1}$; MS (ESI, negative mode) -289 $\left((m-H)^{-} / z\right)$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{H}_{2} \mathrm{BDB}$ in $\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}$; triethylamine added for solubility.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{H}_{2} \mathrm{BDB}$ in $\mathrm{DMSO}-\mathrm{d}_{6}, 100 \mathrm{MHz}$; triethylamine added for solubility.

Figure S18. FT-IR spectrum of $\mathrm{H}_{2} \mathrm{BDB}, \mathrm{KBr}$ pellet.

Section S2: Single Crystal X-ray Diffraction Analyses

MOF-324. The diffraction data set from a colorless crystalline parallelepiped sealed in a capillary was collected at 258 K on a Bruker SMART APEX CCD diffractometer with (graphite monochromated) $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$). The Bruker SMART program ${ }^{\text {S1 }}$ was used for analysis of the data collection, and SAINT ${ }^{\text {S2 }}$ was used for the cell refinement and reduction. An absorption correction was applied using SADABS. ${ }^{\text {S3 }}$ The crystal structure was solved using the SHELX-TL software package ${ }^{\mathrm{S4}}$ in the cubic space group, $P a \overline{3}$ (No. 205). An initial model for MOF-324 was obtained by direct methods using the Bruker program XS, and was improved by subsequent refinements using XL. With the exception of "solvent" atoms, all non-hydrogen atoms were refined anisotropically. The two hydrogen atoms of the pyrazole linker were placed in idealized positions. The PLATON SQUEEZE ${ }^{\text {S5 }}$ routine was applied to modify the reflection data because of the amount of disordered solvent present in the pores of the MOF. With modified reflection data excluding the solvent contribution, the final refinement process converged to $\mathrm{R} 1=0.0841$, $\mathrm{wR} 2=0.2550(I>2 \sigma(I))$. An asymmetric unit of MOF-324 is shown in Figure S19, and crystal and refinement data are given in Table S1.

Table S1. Crystal data and structure refinement for MOF-324.

Empirical formula	C24 H12 N12 O25 Zn6
Formula weight	1260.68
Temperature	258(2) K
Wavelength	0.71073 A
Crystal system	Cubic
Space group	Pā 3 (No. 205)
Unit cell dimensions	$a=20.123(2) \AA \quad \alpha=90^{\circ}$.
	$b=20.123(2) \AA \quad \beta=90^{\circ}$.
	$c=20.123(2) \AA \quad \gamma=90^{\circ}$.
Volume	8148.5(15) \AA^{3}
Z	4
Density (calculated)	$1.028 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.791 \mathrm{~mm}^{-1}$
F(000)	2480
Crystal size	$0.3 \times 0.29 \times 0.18 \mathrm{~mm}^{3}$
Theta range for data collection	1.75 to 29.57°.
Index ranges	$-27<=\mathrm{h}<=13,-18<=\mathrm{k}<=25,-27<=1<=23$
Reflections collected	28521
Independent reflections	3823 [$\mathrm{R}(\mathrm{int})=0.0456]$
Completeness to theta $=29.57^{\circ}$	99.9\%
Absorption correction	SADABS
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3823 / 0 / 96
Goodness-of-fit on F^{2}	1.176
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0841, \mathrm{wR} 2=0.2550$
R indices (all data)	$\mathrm{R} 1=0.1024, \mathrm{wR} 2=0.2651$
Largest diff. peak and hole	1,537 and -0.810 e. A^{-3}

Figure S19. ORTEP drawing (50\% probability) of the asymmetric unit in MOF-324.

MOF-325. The diffraction data set from a blue crystalline parallelepiped sealed in a capillary was collected at 258 K on a Bruker SMART APEX CCD diffractometer with (graphite monochromated) $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$). The Bruker SMART program ${ }^{\text {S1 }}$ was used to analyze the data collection, and SAINT $^{\text {S2 }}$ was used for cell refinement and reduction. An absorption correction was applied using SADABS. ${ }^{\text {S3 }}$ The crystal structure was solved using the Bruker SHELX-TL software package ${ }^{\text {S4 }}$ in the cubic space group, $F m \overline{3} m$ (No. 225). An initial model for MOF-325 was obtained by direct methods using XS, and was improved by subsequent refinements using XL. All nonhydrogen atoms of the framework were refined anisotropically. The hydrogen atom of the pyrazole linker was placed in an idealized position. The crystal structure of MOF-325 has substantial residual electron density located within the pores of the material, and these peaks could not be fit to a chemically reasonable model of either a guest or a counter-ion. The structural model of MOF-325 was refined with the guest and counter-ion contributions removed from the diffraction data using the SQUEEZE ${ }^{\text {S5 }}$ routine in PLATON. Therefore, the formula given for MOF-325 corresponds only to the anionic truncated tetrahedral fragments. With modified reflection data excluding the solvent contribution, the final refinement process converged to $\mathrm{R} 1=0.0573$, $\mathrm{wR} 2=0.1566(I>$ $2 \sigma(I)$). An asymmetric unit of MOF-325 is shown in Figure S20, and crystal and refinement data are given in Table S2.

Table S2. Crystal data and structure refinement for MOF-325.

Empirical formula	C24 H12 N12 O23 Cu9
Formula weight	1408.41
Temperature	258(2) K
Wavelength	0.71073 A
Crystal system	Cubic
Space group	$F m \overline{3} m$ (No. 225)
Unit cell dimensions	$a=42.606(3) \AA \quad \alpha=90^{\circ}$.
	$b=42.606(3) \AA \quad \beta=90^{\circ}$.
	$c=42.606(3) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	77342(9) \AA^{3}
Z	16
Density (calculated)	$0.484 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.991 \mathrm{~mm}^{-1}$
F(000)	10960.0
Crystal size	$0.28 \times 0.26 \times 0.23 \mathrm{~mm}^{3}$
Theta range for data collection	0.83 to 20.82°.
Index ranges	$-28<=\mathrm{h}<=38,-42<=\mathrm{k}<=35,-42<=1<=27$
Reflections collected	33974
Independent reflections	$2053[\mathrm{R}(\mathrm{int})=0.2083]$
Completeness to theta $=20.82^{\circ}$	100.0\%
Absorption correction	SADABS
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2053 / 0 / 71
Goodness-of-fit on F^{2}	0.670
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0573, \mathrm{wR} 2=0.1566$
R indices (all data)	$\mathrm{R} 1=0.1251, \mathrm{wR} 2=0.2157$
Largest diff. peak and hole	0.364 and -0.849 e. \AA^{-3}

Figure S20. ORTEP drawing (50\% probability) of the asymmetric unit in MOF-325.

MOF-326. The diffraction data set from a colorless crystalline parallelepiped sealed in a capillary was collected at 258 K on a Bruker SMART APEX CCD diffractometer with (graphite monochromated) $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$). The Bruker SMART program ${ }^{\text {S1 }}$ was used for analysis of the data collection, and SAINT ${ }^{\text {S2 }}$ was used for the cell refinement, and reduction. An absorption correction was applied using SADABS. ${ }^{\text {S3 }}$ The crystal structure was solved using the Bruker SHELX-TL software package ${ }^{\text {S4 }}$ in the cubic space group, $F m \overline{3} m$ (No. 225). An initial model for MOF-326 was obtained by direct methods using XS, and improved by subsequent refinements using XL. All non-hydrogen atoms were refined anisotropically. The PLATON SQUEEZE ${ }^{\text {S5 }}$ routine was applied to the data to remove the contributions of the disordered solvents. With modified reflection data excluding the solvent contribution, the final refinement process converged to $\mathrm{R} 1=$ 0.0829 , wR2 $=0.2551(I>2 \sigma(I))$. An asymmetric unit of MOF-326 is shown in Figure S21, and crystal and refinement data are given in Table S3.

Table S3. Crystal data and structure refinement for MOF-326.

Empirical formula	C48 H72 B6 N12 O13 Zn4
Formula weight	1351.52
Temperature	258(2) K
Wavelength	0.71073 A
Crystal system	Cubic
Space group	$F m \overline{3} m$ (No. 225)
Unit cell dimensions	$a=33.410(4) \AA \quad \alpha=90^{\circ}$.
	$b=33.410(4) \AA \quad \beta=90^{\circ}$.
	$c=33.410(4) \AA \quad \gamma=90^{\circ}$.
Volume	37294(7) \AA^{3}
Z	8
Density (calculated)	$0.481 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.531 \mathrm{~mm}^{-1}$
F(000)	5584
Crystal size	$0.3 \times 0.2 \times 0.2 \mathrm{~mm}^{3}$
Theta range for data collection	1.06 to 18.85°.
Index ranges	$-15<=\mathrm{h}<=30,-30<=\mathrm{k}<=30,-30<=1<=28$
Reflections collected	15524
Independent reflections	$804[\mathrm{R}($ int $)=0.1188]$
Completeness to theta $=18.85^{\circ}$	100.0\%
Absorption correction	SADABS
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	804 / 4 / 44
Goodness-of-fit on F^{2}	0.974
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0829, \mathrm{wR} 2=0.2551$
R indices (all data)	$\mathrm{R} 1=0.1335, \mathrm{wR} 2=0.2846$
Largest diff. peak and hole	0.389 and -0.525 e. A^{-3}

Figure S21. ORTEP drawing (50\% probability) of the asymmetric unit in MOF-326.

IRMOF-61. The diffraction data set from a colorless crystalline parallelepiped sealed in a capillary was collected at 258 K on a Bruker SMART APEX CCD diffractometer with (graphite monochromated) $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA$). The Bruker SMART program ${ }^{\text {S1 }}$ was used for analysis of the data collection, and SAINT ${ }^{\text {S2 }}$ was used for cell refinement and reduction. An absorption correction was applied using SADABS. ${ }^{\text {S3 }}$ The crystal structure was solved using the Bruker SHELX-TL software package ${ }^{\mathrm{S4}}$ in the tetragonal space group, $P 4_{2} / n c m$ (No. 138). An initial model for IRMOF-61 was obtained by direct methods using XS, and was improved by subsequent refinements using XL. All non-hydrogen atoms were refined anisotropically. The PLATON SQUEEZE ${ }^{55}$ routine was applied to remove contributions of the disordered solvents. With modified reflection data excluding the solvent contribution, the final refinement process converged to $\mathrm{R} 1=$ 0.0526 , wR2 $=0.1336(I>2 \sigma(I))$. An asymmetric unit of IRMOF-61 is shown in Figure S22, and crystal and refinement data are given in Table S4.

Table S4. Crystal data and structure refinement for IRMOF-61.

Empirical formula	C 48 H 24 O 13 Zn 4
Formula weight	1070.15
Temperature	258(2) K
Wavelength	0.71073 A
Crystal system	Tetragonal
Space group	$\mathrm{P} 4_{2} / \mathrm{ncm}$ (No. 138)
Unit cell dimensions	$a=19.7213(13) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=19.7213(13) \AA \quad \beta=90^{\circ}$.
	$c=39.411(3) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	15328.0(18) \AA^{3}
Z	4
Density (calculated)	$0.464 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.638 \mathrm{~mm}^{-1}$
F(000)	2144
Crystal size	$0.44 \times 0.28 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	1.46 to 21.99°.
Index ranges	$-20<=\mathrm{h}<=20,-20<=\mathrm{k}<=20,-41<=\mathrm{l}<=41$
Reflections collected	94159
Independent reflections	$4944[\mathrm{R}(\mathrm{int})=0.0629]$
Completeness to theta $=21.99^{\circ}$	100.0\%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4944 / 0 / 175
Goodness-of-fit on F^{2}	1.023
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$] $]$	$\mathrm{R} 1=0.0526, \mathrm{wR} 2=0.1336$
R indices (all data)	$\mathrm{R} 1=0.0951, \mathrm{wR} 2=0.1554$
Largest diff. peak and hole	0.655 and -0.377 e. A $^{-3}$

Figure S22. ORTEP drawing (50\% probability) of the asymmetric unit in IRMOF-61.

IRMOF-62. The diffraction data set from a translucent orange crystalline polyhedron sealed in a capillary was collected at 258 K on a Bruker SMART APEX CCD diffractometer with (graphite monochromated) MoK α radiation ($\lambda=0.71073 \AA$). The Bruker SMART program ${ }^{\text {S1 }}$ was used for analysis of raw data, and SAINT ${ }^{\text {S2 }}$ was used for cell refinement and reduction. No absorption correction was applied. The crystal structure was solved using the Bruker SHELX-TL software package ${ }^{\text {S4 }}$ in the trigonal space group, $P 3_{2} 12$ (No. 153). An initial model for IRMOF-62 was obtained by direct methods using XS, and was improved by subsequent refinements using XL. All non-hydrogen atoms were refined anisotropically. The PLATON SQUEEZE ${ }^{\text {S5 }}$ routine was applied to the data to remove the contributions of the disordered solvents. With modified reflection data excluding the solvent contribution, the final refinement process converged to $\mathrm{R} 1=$ 0.0782 , wR2 $=0.2221(I>2 \sigma(I))$. An asymmetric unit of IRMOF-62 is shown in Figure S23, and crystal and refinement data are given in Table S5.

Table S5. Crystal data and structure refinement for IRMOF-62.

Empirical formula	C54 H24 O13 Zn4
Formula weight	1142.21
Temperature	258(2) K
Wavelength	0.71073 A
Crystal system	Trigonal
Space group	$P 3_{2} 12$ (No. 153)
Unit cell dimensions	$a=31.114(2) \AA \quad \alpha=90^{\circ}$.
	$b=31.114(2) \AA \quad \beta=90^{\circ}$.
	$c=39.280(3) \AA$ A $\quad \gamma=120^{\circ}$.
Volume	32931(4) \AA^{3}
Z	12
Density (calculated)	$0.691 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.893 \mathrm{~mm}^{-1}$
F(000)	6864
Crystal size	$0.30 \times 0.30 \times 0.30 \mathrm{~mm}^{3}$
Theta range for data collection	0.76 to 24.71°.
Index ranges	$-36<=\mathrm{h}<=36,-36<=\mathrm{k}<=36,-46<=1<=44$
Reflections collected	231155
Independent reflections	$37455[\mathrm{R}($ int $)=0.0760]$
Completeness to theta $=24.71^{\circ}$	100.0\%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	37455 / 0 / 1281
Goodness-of-fit on F^{2}	0.997
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$] $]$	$\mathrm{R} 1=0.0782, \mathrm{wR} 2=0.2221$
R indices (all data)	$\mathrm{R} 1=0.0978, \mathrm{wR} 2=0.2338$
Largest diff. peak and hole	0.642 and -0.917 e. A $^{-3}$

Figure S23. ORTEP drawing (50\% probability) of the asymmetric unit in IRMOF-62. Hydrogen atoms have been removed for clarity.

Section S3: Powder X-Ray Diffraction Patterns

Figure S24. Powder diffraction data for MOF-324. The pattern simulated from SXRD data is black; the experimental pattern is in blue.

Figure S25. Powder diffraction data for MOF-325. The pattern simulated from SXRD data is black; the experimental pattern is in blue.

Figure S26. Powder diffraction data for MOF-326. The pattern simulated from SXRD data is black; the experimental pattern is in blue.

Figure S27. Powder diffraction data for IRMOF-61. The pattern simulated from SXRD data is black; the experimental pattern is in blue.

Figure S28. Powder diffraction data for IRMOF-62. The pattern simulated from SXRD data is black; the experimental patterns are in blue (solvothermal bulk synthesis) and red (room temperature bulk synthesis).

Section S4: Thermal Gravimetric Analyses

Figure S29. TGA of MOF-324 as-synthesized material (red), after exchange with methanol (green), and after activation (blue).

Figure S30. TGA of MOF-325 as-synthesized material.

Figure S31. TGA of MOF-326 as-synthesized material (red) and after activation (blue).

Figure S32. TGA of IRMOF-61 as-synthesized material (red) and after activation (blue). Thermal decomposition occurs at approximately $400^{\circ} \mathrm{C}$ after activation.

Figure S33. TGA of IRMOF-62 as-synthesized material (red) and after activation (blue). Thermal decomposition occurs at approximately $380^{\circ} \mathrm{C}$ after activation.

Section S5: Gas Adsorption Measurements

Figure S34. Ar adsorption isotherms of MOF-324 (red) and IRMOF-62 (blue) at 87 K and N_{2} isotherms of MOF-326 (green) and IRMOF-61 (black) at 77 K. Filled and open circles represent adsorption and desorption branches. Connecting lines are guides for the eye..

Figure S35. H_{2} isotherms for MOF-324 measured at 77 (red) and 87 K (blue). Filled and open symbols represent adsorption and desorption branches.

Figure S36. H_{2} isotherms for MOF-326 measured at 77 (red) and 87 K (blue). Filled and open symbols represent adsorption and desorption branches.

Figure S37. H_{2} isotherms for IRMOF-61 measured at 77 (red) and 87 K (blue). Filled and open symbols represent adsorption and desorption branches.

Figure S38. H_{2} isotherms for IRMOF-62 measured at 77 (red) and 87 K (blue). Filled and open symbols represent adsorption and desorption branches.

Estimation of Isosteric Heat of $\mathbf{H}_{\mathbf{2}}$ Adsorption. The isosteric heats of H_{2} adsorption were estimated for activated (IR)MOFs from the H_{2} sorption data measured at 77 K and 87 K . A virial-type expression was used (eq 1), which is composed of parameters a_{i} and b_{i} that are independent of temperature. ${ }^{\text {S6-S8 }}$ In eq $1, P$ is the pressure (Torr), N is the amount of adsorbed H_{2} gas $\left(\mathrm{mg} \mathrm{g}^{-1}\right)$, T is the temperature (K), and m and n represent the number of coefficients required to adequately describe the isotherms.

$$
\begin{equation*}
\ln P=\ln N+\frac{1}{T} \sum_{i=0}^{m} a_{i} N^{i}+\sum_{i=0}^{n} b_{i} N^{i} \tag{1}
\end{equation*}
$$

To estimate the values of the isosteric heat of H_{2} adsorption, eq 2 was applied, where R is the universal gas constant.

$$
\begin{equation*}
Q_{\mathrm{st}}=-R \sum_{i=0}^{m} a_{i} N^{i} \tag{2}
\end{equation*}
$$

Time-course $\mathbf{H}_{\mathbf{2}}$ uptake profile for IRMOF-62

Figure S39. Time-course H_{2} uptake profile for IRMOF-62 at 77 K . The red curve represents weight change as H_{2} pressure is changed on the sample, uncorrected for buoyancy. The blue curve represents the H_{2} pressure applied to the chamber during the experiment.

Section S6: Complete Ref. 3i

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Science 2010, 329, 424-428.

Section S7: References

(S1) Bruker SMART version 5.625, Area-Detector Software Package; Bruker AXS 1997-2001. Madison, WI, USA.
(S2) Bruker SAINT+ version 6.04. SAX Area-Detector Integration Program. Bruker AXS 1997-2001. Madison, WI, USA.
(S3) Sheldrick, G. M. SADABS version 2.03, a Program for Empirical Absorption Correction; Universität Göttingen, 1997-2001.
(S4) Bruker AXS SHELXTL version 6.10. Structure Determination Package. Bruker AXS 2000. Madison, WI, USA.
(S5) A. L. Spek, (2008) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands.
(S6) Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007, 17, 3197.
(S7) Czepirski, L.; Jagiełło, J. Chem. Eng. Sci. 1989, 44, 797.
(S8) Jagiello, J.; Bandosz, T. J.; Putyera, K.; Schwarz, J. A. J. Chem. Eng. Data 1995, 40, 1288.

