Uniform and Porous Ce_{1-x}Zn_xO_{2-δ} Solid Solution Nanodisks:

Preparation and Their CO Oxidation Activity

Sheng-Liang Zhong ^{a, b}*, Lin-Fei Zhang ^a, Lei Wang^a, Wei-Xin Huang ^b, Cong-Min Fan ^b and An-Wu Xu ^b*

Supplementary Information

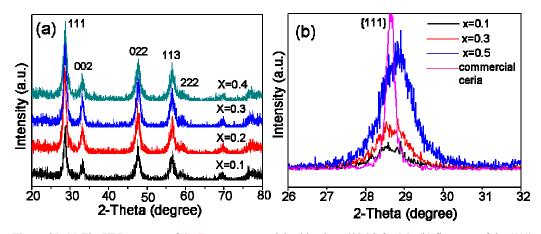


Figure S1. (a) The XRD patterns of Ce-Zn_X precursor calcined in air at 600 °C for 3 h, (b) fine scan of the (111) peaks.

By comparing with X-ray spectra from Ce-Zn_X nanodisks and commercial ceria (AR grade), peak shift towards wider angles and peak widening in Ce-Zn_X nanodisks was observed, indicating that the lattice parameter is decreased. According to the references,¹⁻³ we obtain the lattice parameter of these Ce-Zn_X based on the XRD results. Comparing with commercial ceria, the lattice parameter decreases from 0.5410 nm (commercial ceria) to 0.5394 nm for Ce-Zn_X. The lattice distortion of Ce-Zn_X was caused by the introduction of the oxygen vacancies via doping with Zn²⁺ and the accompanying Ce³⁺ ions.¹⁻³ The result is consistent with the XPS analysis.

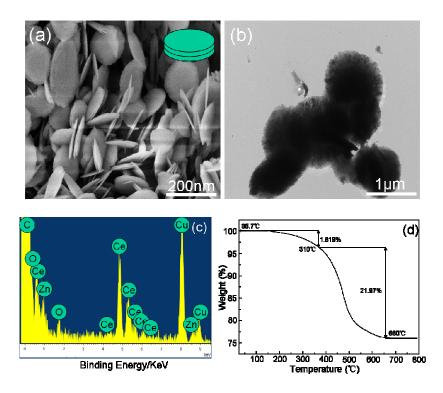


Figure S2. (a) SEM image and (b) TEM image, (c) EDS analysis, (d) TG analysis of the Ce- $Zn_{0.3}$ precursor prepared at 160 °C for 24 h.

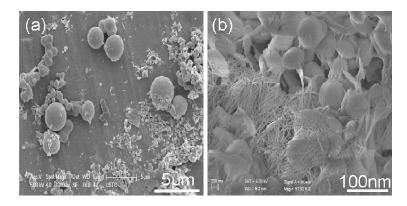


Figure S3. SEM images of the as-prepared Ce- $Zn_{0,3}$ precursor at different temperature. (a) 120 °C, 8 h; (b) 160 °C, 8 h.

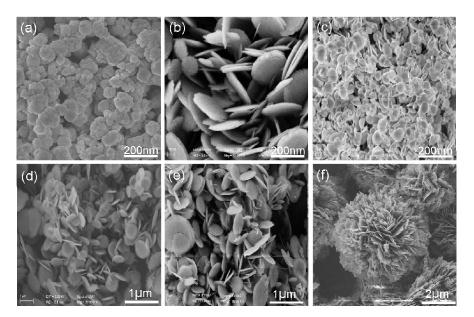


Figure S4. SEM images of the Ce-Zn_X precursors prepared at 160 °C for 24 h with different molar ratios of Ce³⁺ to Zn²⁺. (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4; (f) x = 1.0.

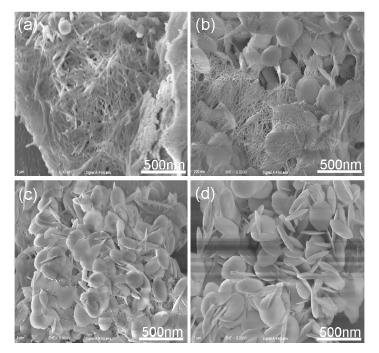
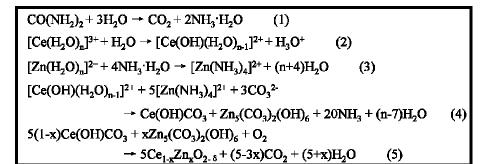
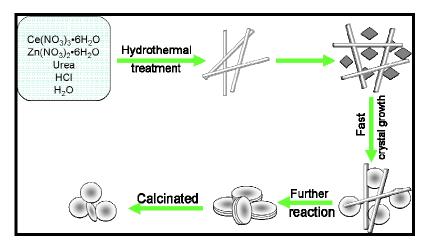




Figure S5. SEM images of the Ce- $Zn_{0.3}$ precursor prepared at 160 °C for different reaction time. (a) 4 h, (b) 8 h,

(c) 16 h, and (d) 24 h.

Scheme S1. Schematic illustration of the formation process of $Ce-Zn_X$ nanodisks may be summarized by the above reactions.

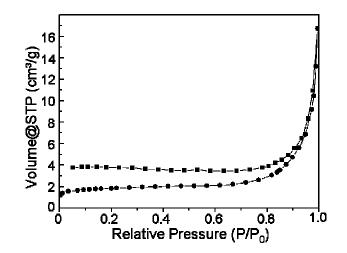


Figure S6. N₂ adsorption and desorption isotherms of the porous Ce-Zn_{0.3} nanodisks.

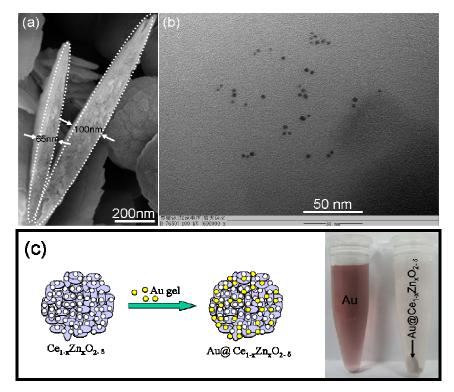


Figure S7. (a) SEM image of cross-section of Au@Ce_{1-x}Zn_xO_{2- δ}(x = 0.3), (b) TEM image of Au nanoparticles, (c)

 $Ce-Zn_{0.3}$ nanodisks adsorbed Au gel at the room temperature for 2 h.

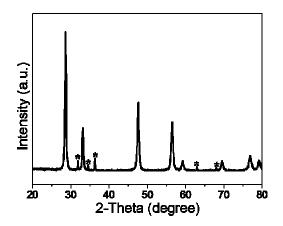


Figure S8. XRD pattern of Ce-Zn_{0.6}. The phase of ZnO was indicated with *.

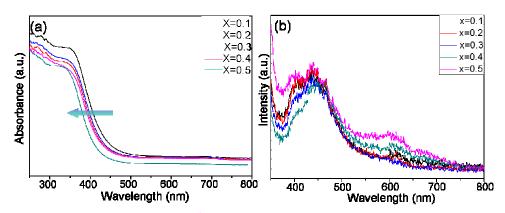


Figure S9. (a) UV–vis and (b) PL spectra of Ce- $Zn_{0.3}$ solid solutions.

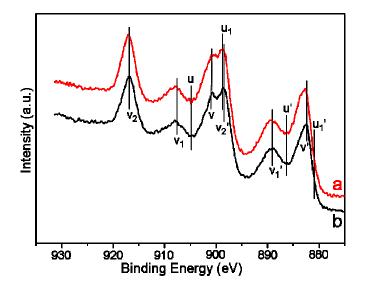


Figure S10. Ce3d XPS spectra from (a) ceria, (b) $Ce-Zn_{0.3}$ nanodisks prepared by precipitation and treated at the

same temperature.

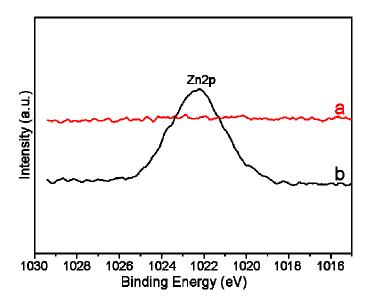


Figure S11. Zn2p XPS spectra from (a) ceria, (b) $Ce-Zn_{0.3}$ nanodisks prepared by precipitation and treated at the same temperature.

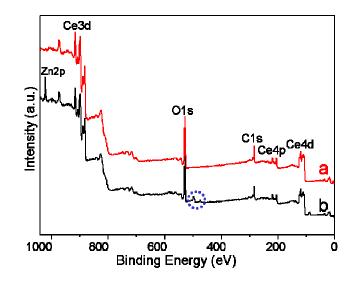


Figure S12. XPS full spectra of (a) ceria and (b) Ce-Zn_{0.3} nanodisks.

Figure S9 shows that the X-ray photoelectron spectra (XPS) obtained for the materials. The spectrum that obtained from traditional ceria and Ce-Zn_{0.3} prepared by precipitation is also given for comparison. The Ce 3d level has a very complicated structure. Six peaks labeled as v, v₁, v₂ ($3d_{5/2}$), v', v₁', v₂' ($3d_{3/2}$) involving three pairs of spin-orbit doublets can be identified and they are characteristic of Ce⁴⁺3d final states.^{4, 6} By comparing with the conventional ceria nanoparticles,

four peaks due to two pairs of doublets [noted as u, u', u₁, u₁'] corresponding to $Ce^{3+}3d$ states can be observed in the Ce-Zn_{0.3} samples. The doublet u₁ and u₁' are characteristic of Ce^{3+} species which lie at 885.7 eV and 904.1 eV, respectively.^{4, 5} The full XPS spectra of ceria and Ce-Zn_{0.3} indicated that there were only cerium, zinc and oxygen element in the samples. The weak C1s peak and blue circle were due to the contamination of the samples.⁴ Through the full spectra analysis, we could exclude the possible influence of other ions which may involve in the samples such as NO³⁻ during the experimental procedure.

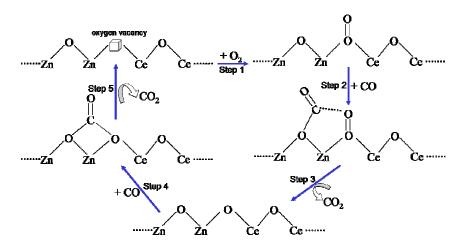


Figure S13. Proposed CO reaction pathways over $Ce-Zn_x$ solid solution.

References:

(1) Tsunekawa, S.; Ishikawa, K.; Li, Z. Q.; Kawazoe, Y.; Kasuya, A. *Phys. Rev. Lett.* 2000, 85, 3440.

(2) Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman I. P. Appl.

Phys. Lett. 2002, 80,127.

(3) Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seala, S. Appl. Phys. Lett. 2005, 87, 133113.

- (4) Qiu, L. M.; Liu, F.; Zhao, L. Z.; Ma, Y.; Yao, J. N. Appl. Surf. Sci. 2006, 252, 4931.
- (5) Natile, M. M.; Boccaletti, G.; Glisenti, A. Chem. Mater. 2005, 17, 6272.
- (6) Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. J. Am. Chem. Soc. 2009, 131, 3140.