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Figure S1. (a) The XRD patterns of Ce-Zny precursor calcined in air at 600 °C for 3 h, (b) fine scan of the (111)

peaks.

By comparing with X-ray spectra from Ce-Znx nanodisks and commercial ceria (AR grade),
peak shift towards wider angles and peak widening in Ce-Znyx nanodisks was observed, indicating
that the lattice parameter is decreased. According to the references,' we obtain the lattice
parameter of these Ce-Zny based on the XRD results. Comparing with commercial ceria, the
lattice parameter decreases from 0.5410 nm (commercial ceria) to 0.5394 nm for Ce-Zny. The
lattice distortion of Ce-Znyx was caused by the introduction of the oxygen vacancies via doping

with Zn>" and the accompanying Ce”" ions.'™ The result is consistent with the XPS analysis.
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Figure S2. (a) SEM image and (b) TEM image, (c) EDS analysis, (d) TG analysis of the Ce-Zn 3 precursor

prepared at 160 °C for 24 h.
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Figure S3. SEM images of the as-prepared Ce-Zn 3 precursor at different temperature. (a) 120 °C, 8 h; (b)

160 °C, 8 h.



Figure S4. SEM images of the Ce-Zny precursors prepared at 160 °C for 24 h with different molar ratios of Ce**

to Zn*". (a) x =0; (b) x=0.1; (¢) x=0.2; (d) x=0.3; (¢) x = 0.4; () x = 1.0.

Figure S5. SEM images of the Ce-Zn 3 precursor prepared at 160 °C for different reaction time. (a) 4 h, (b) 8 h,

(¢) 16 h, and (d) 24 h.
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Scheme S1. Schematic illustration of the formation process of Ce-Zny nanodisks may be summarized by the

above reactions.
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Figure S6. N, adsorption and desorption isotherms of the porous Ce-Zn 3 nanodisks.
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Figure S7. (a) SEM image of cross-section of Au@Ce;_.Zn,0,_5(x = 0.3), (b) TEM image of Au nanoparticles, (c)

Ce-Zn 3 nanodisks adsorbed Au gel at the room temperature for 2 h.
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Figure S8. XRD pattern of Ce-Zn ¢. The phase of ZnO was indicated with *.
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Figure S9. (a) UV—vis and (b) PL spectra of Ce-Zn 3 solid solutions.
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Figure S10. Ce3d XPS spectra from (a) ceria, (b) Ce-Zn, 5 nanodisks prepared by precipitation and treated at the

same temperature.
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Figure S11. Zn2p XPS spectra from (a) ceria, (b) Ce-Zn ; nanodisks prepared by precipitation and treated at the

same temperature.
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Figure S12. XPS full spectra of (a) ceria and (b) Ce-Zn 3 nanodisks.

Figure S9 shows that the X-ray photoelectron spectra (XPS) obtained for the materials. The
spectrum that obtained from traditional ceria and Ce-Zn, ; prepared by precipitation is also given
for comparison. The Ce 3d level has a very complicated structure. Six peaks labeled as v, vy, v,
(3dspn), v’, vi’, v2’ (3ds) involving three pairs of spin-orbit doublets can be identified and they are

characteristic of Ce*3d final states.* ® By comparing with the conventional ceria nanoparticles,



four peaks due to two pairs of doublets [noted as u, u’, u;, u;’] corresponding to Ce**3d states can
be observed in the Ce-Zny; samples. The doublet u; and u,’ are characteristic of ce’ species
which lie at 885.7 eV and 904.1 eV, respectively.4‘ > The full XPS spectra of ceria and Ce-Zn;
indicated that there were only cerium, zinc and oxygen element in the samples. The weak Cls
peak and blue circle were due to the contamination of the samples.* Through the full spectra
analysis, we could exclude the possible influence of other ions which may involve in the samples

such as NO™ during the experimental procedure.
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Figure S13. Proposed CO reaction pathways over Ce-Zn, solid solution.
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